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ABSTRACT Recently, large scale seismic data acquisition has been a critical method for scientific research
and industrial production. However, due to the bottleneck on data transmission and the limitation of energy
storage, it is hard to conduct large seismic data acquisition in a real-time way. So, in this paper, an efficient
seismic data acquisition method, namely, compressed sensing architecture with generative adversarial
networks (CSA-GAN), is proposed to tackle the two restrictions of collecting large scale seismic data. In the
CSA-GAN, a data collection architecture based on compressed sensing theory is applied to reduce data
traffic load of the whole system, as well as balance the data transmission. To make the compressed sensing
procedure perform well in both data quality and compression ratio, a kind of generative adversarial networks
is designed to learn the recovering map. According to our experiment results, a high data quality (about
30 dB) at the compression ratio of 16 is achieved by the proposed approach, which enables the system to
afford 15 times more sensors and reduces the energy cost by means of data collection from N(N + 1)/2
to N2/16. These results show that the CSA-GAN can afford more sensors with the same bandwidth and
consume less energy, via improving the efficiency seismic data acquisition.

INDEX TERMS Compressed sensing (CS), generative adversarial networks (GAN), dictionary learning,
seismic data acquisition.

I. INTRODUCTION
Seismology has been a major geophysical tool to determine
the geological structure of a given area for more than one
and a half centuries. In general, seismology can be broadly
classified into two categories: passive and active seismology.
In passive seismology, the nature and location of an earth-
quake source is unknown, and the acquired data are usually
used by scientists to monitor the variety of underground activ-
ities, such as some large-scale natural phenomena [1], [2],
volcanic unrest [3], [4] and nuclear test [5]. In active seis-
mology, artificial sources of seismic activity are used, and the
acquired data have been thought as a solid proof to image
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the geological structure of a given area, which is of great
interest for hydrocarbon resources exploration or civil con-
struction [6]. As the society’s continued demand for security,
hydrocarbon and urban underground space, both passive and
active seismology have an obviously growing trend in the
density and scale of their sensor arrays to achieve a more
accurate inference or higher resolution image. Unfortunately,
with the increasing density and scale of seismic data acqui-
sition, the bandwidth limitation in communication is going
to become the roadblock, which prevents seismic monitor-
ing or exploration system from transmitting data timely [7].
Moreover, deploying more sensors with traditional seis-
mic acquisition system leads to exponentially increasing
energy cost, consequently enlarging the battery capacity and
equipment weight [8]. As a result of the limitation of
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FIGURE 1. The basic logic of traditional data acquisition.

communication and energy, the traditional seismic acquisi-
tion method can hardly satisfy the requirement of acquiring
data with an extremely large and dense sensor array.

During the procedure of seismic data acquisition, all sen-
sors are placed on the surface to record vibrations pro-
duced by natural earthquake or artificial seismic sources.
Each recorded signal from a sensor, termed as seismic trace,
strands for the seismic wave through the sensor’s placement.
Because of the large scale of measured area, seismic data
acquired by individual sensors are delivered to data center
in a multi-hop form [9]. The basic logic of traditional data
gathering method used in seismic data acquisition is shown
in Fig. 1. Traditionally, sensors close to the data center need to
afford more data to transmit, which results in more delaying
time and consuming energy. Consequently, this unbalanced
data gathering strategy make communicational and energy
resources of the seismic data acquisition system consumed
inefficiently.

Many attempts have been carried out to reduce the trans-
mitting data in the system by implementing compression
algorithms in individual sensors. These seismic data com-
pression algorithms could be classified into two categories:
dictionary-based and predictive methods [7]. The core idea
of dictionary-basedmethods is transforming seismic data into
another domain for compression, whereas predictive methods
are aiming at using a predication algorithm to reduce data
redundancy. However, both types of compression algorithms
cost a large amount of computational resources for seismic
sensors. In addition, these methods still cannot solve the
inefficient problem caused by the unbalanced data collection
architecture.

Compressed sensing (CS) theory is also leveraged to
improve the efficiency of acquisition system [10]–[12].
As the spasity of seismic data is utilized, these CS-based
methods are able to improve the efficiency of seismic data
acquisition. However, most of them focused on the procedure
of seismic signal recording, without regarding of the strategy
of data collection. The remained unbalanced problem in the
data retrieval has been a long-standing problem, which leads
to inefficiency of data transmission and energy consumption.

Based on these observations, we propose a novel CS archi-
tecture in conjunction with generative adversarial networks
(CSA-GAN), to improve the efficiency of seismic data acqui-
sition system. This proposed method can not only solve the
unbalanced data gathering problem, but also self-adaptively
learn a sparse representation and reconstruction mapping
for CS. Moreover, compared with state-of-the-art methods
used in efficient seismic acquisition, there are two main

advantages by applying CSA-GAN: first, only negligible
computational cost is added to seismic sensors; second, it can
be widely applied to different kinds of seismic acquisition.
We also demonstrate that our method performs well on data
recovery via performance assessment on both simulating data
and real field data. To the best of our knowledge, it is the first
work that utilizing CS theory combined with a deep learning
algorithm for efficient seismic data acquisition.

The rest of this paper is organized as follows. In Section II,
the recent works related to compressed and efficient seismic
data acquisition are reviewed. Section III introduces the pro-
posed method in detail. Then, the results, comparisons with
other methods and related analyses are shown in Section IV.
Finally, Section V concludes this paper.

II. RELATED WORK
In order to make the next generation of seismic data acqui-
sition system have a great progress in density and scale,
lots of researchers are mainly focusing on the two following
approaches: compressing seismic data at individual sensors
and improving acquisition efficiency by nonuniform sam-
pling based on CS theory.

A. SEISMIC DATA COMPRESSION
To overcome the bandwidth limitation of communication,
some in-field compression algorithms have been proposed.
These algorithms reduce the amount of in-field data transfer
by removing redundancy from the traces. To be specific,
these seismic in-field compression algorithms can be gener-
ally summarized as two different kinds: dictionary-based and
predictive methods.

Dictionary-based methods attempt to find a new domain
where seismic signals have a compact and sparse repre-
sentation. Early attempts for dictionary-based methods were
mainly relying on fixed transforms, also termed as analytical
predefined dictionaries, such as discrete cosine transform,
wavelets, seislet [13]–[15]. Although analytical predefined
dictionaries are applied to compress different types of seis-
mic data, their recovery qualities have either a relative low
signal-noise-ratio (SNR) or an unstable compression ratio.
The main cause of this drawback is that analytical predefined
dictionaries are only representative for the input data which is
used to design the underlying mathematical models. Hence,
it is impossible to select a fixed dictionary to perform sta-
bly and effectively on compressing the highly nonstationary
seismic data. Latterly, some data-adaptive dictionaries are
proposed to achieve more compact and sparse representation
of the seismic signal, on the basis that seismic signals in
one acquisition are almost following the same features and
patterns. Liu et al. [16] proposed a scheme based on online
dictionary learning, named sparse increment online dictio-
nary learning (SIODL). To be specific, SIODL applies sparse
constraints and a sliding window mechanism on the training
process to speed up the convergence of online dictionary
scheme. Compared with traditional online dictionary learning
algorithm, this method consumes less computational power
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and has a better compression result. In [17], a rate-optimized
dictionary learning (Rate-Optimized DL) is proposed, which
is aiming to minimize the overall bit rate in encoding the
target domain coefficients directly instead of optimizing for
sparsity of seismic signal representation. More specifically,
Rate-Optimized DL attempts to represent seismic signals in
a low entropy form, via considering the effect of quantiza-
tion on the rate-distortion curve and the distributions of the
coefficients in target domain. As encoding entropy is taken
into account, Rate-Optimized DL has a significantly better
performance than other dictionary-based methods used in
seismic data compression. However, this consideration brings
more computational complexity to Rate-Optimized DL as
well, which makes it unavailable for seismic sensors.

Predictive methods are the most traditional compression
algorithm used in time series data. These methods leverage
the temporal or spatial correlation among consecutive sam-
ples to compress the residual signal from predictive coding.
Like dictionary-based methods, the predictor in predictive
methods are also have two types, known as fixed and adap-
tive predictors. Owing to the nonstationarity and diversity
of seismic signals, an accurate prediction could be hardly
achieved through a fixed number of predictor variables at
fixed locations. Therefore, more recent researches related
to predictive methods are focusing on utilizing the adaptive
predictors. In [18], [19], a lightweight compression scheme
for seismic sensor networks, namely adaptive linear filter-
ing compression (ALFC), was proposed. This algorithm can
learn a linear filter for predicting sample values followed by
entropy coding of prediction residuals. Although ALFC is
able to compress seismic data without loss, its compression
ratio is only about 2. In [7], an oversampling recursive least
square (OV-RLS) scheme was used to compress seismic data,
whose aim is to alleviate the problems encountered in large
alphabet signal compression and reduce the dynamic range
of data. Particularly, seismic signals are oversampled, and a
certain number of the samples are selected by a sequence
of zero-crossings. Then, the selected samples are encoded
into fewer bits by context tree weighting (CTW). At the
receiver, the raw seismic can be recovered by a nonlinear
method from the nonuniform samples. As shown in [7],
OV-RLS and SIODL have a similar performance on seismic
data compression.

However, all the state-of-the-art seismic data compressing
methods require extra computational cost, compared with
the original acquisition system. Even SIODL, ALFC and
OV-RLS are relative lightweight among these seismic data
compression algorithms, they still need to operate multiplica-
tions no less than hundreds of thousands of times per second
at a sampling frequency of 500 Hz. For a seismic sensor, this
computational cost is not negligible.

B. ACQUISITION EFFICIENCY IMPROVEMENT
To cover a larger acquisition area or achieve a higher reso-
lution image with the same amount of equipment and cost,
many researchers have studied seismic acquisition efficiency

improvement, especially after appearance of the newly devel-
oped CS. Methodologies for the efficiency improvement are
mainly designed through applying CS on two approaches:
temporal and spatial domain.

The core idea of efficient acquisition methods used in
temporal domain is that each seismic sensor records seismic
signals in a random nonuniform and undersampled scheme
by leveraging insights from CS. Following this approach,
the data needed to be collected by the acquisition system can
be reduced. This methodology was firstly proposed in [20],
where seismic data were demonstrated to be successfully
recovered from a well-designed nonuniform undersampling.
In [21], a temporal domain CS-based acquisition system was
implemented to monitor a bridge health for a long-term via
recording its vibrations. More specifically, a pseudo-random
generator is embedded into the central process unit (CPU) of
seismic sensors, and the generator creates a subsampling time
series. The analogue-to-digital (ADC) samples seismic data
refer to the generated time series. So, the data recorded by
seismic sensors and transmitted among the system is reduced.
At the data center, the random subsampling timestamps and
subsampled data are used for signal reconstruction via an
iterative algorithm named CoSaMP [22]. As a result, this
system can achieve the modal assurance criterion (MAC)
values above 0.9 when only 20% of data volume is sam-
pled and delivered. However, the method used in this sys-
tem cannot be directly applied for other kinds of seismic
acquisition, e. g., volcanic monitoring, seismic exploration,
earthquake monitoring. The reason for this restriction is
that the bridge vibrational signal is mainly focused on a
very narrow frequency bandwidth (mentioned as 3-20 Hz),
whereas the bandwidth of seismic signal varies significantly
in other kind seismic acquisition. In detail, because of the
specific structure of bridge and the common physical features
of concrete, the signal of bridge vibration could be sparse
enough in the transform domain, which is a very important
factor that impacts the compression effect. In other kinds of
seismic acquisition, geological structures, physical feature of
geosphere and seismic sources are all aeolotropic and various,
which results in the wide frequency band of seismic signals.

As another approach for improving the efficiency of
seismic acquisition, the spatial domain CS-based methods
have been proposed to optimize seismic sensors deployment.
These methods aim to reduce acquisition costs, cover a larger
area with fewer sensors, or increase the image resolution.
One of the most representative researches focusing on such
approach is presented in [23], which proposes a nonuniform
sampling method for seismic survey, termed as Non-uniform
Optimal Sampling (NUOS). This method combines CS, opti-
mization algorithms and seismic wave theory together, to
design an efficient sensor placement for a seismic survey.
Specifically, a Monte-Carlo optimization scheme is used in
NUOS to determine the location of each seismic sensor,
relying on prior knowledge of the seismic survey. According
to the result of field trials, a deployment based on NUOS
can cover one time larger than a conventional survey with
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the same image resolution in 2D seismic exploration. This
result is equal to 50% data reduced, compared with traditional
seismic acquisition method.

Although these summarized methods have improved the
efficiency of seismic acquisition, there are still a few aspects
remained to be regarded. First, as seismic data is correlative in
both temporal and spatial domain, it could be more efficient
once applying CS toward temporal-spatial domain. Second,
data-driven methods combined with CS could be more effec-
tive on multiple seismic acquisition applications, due to the
diversity of seismic data. At last, all these methods cannot
solve the unbalanced data gathering problem.

III. THE PROPOSED METHOD
In this section, we first present our efficient acquisition
architecture used in CSA-GAN. Second, the main idea and
structure of the reconstruction algorithm are introduced in a
high-level view. Finally, the two main parts of our reconstruc-
tion algorithm, namely the generator and discriminator, are
described in detail, respectively.

A. EFFICIENT COMPRESSED SENSING ARCHITECTRUE
IN CSA-GAN
According to the CS theory referred by [24], a vector x ∈ Rn

can be conditionally recovered from an underdetermined lin-
ear measured vector y ∈ Rm, described as following:

y = Ax + z (1)

where A is a stochastic or deterministic measurement matrix
with the size of M × N (M < N), and z is an unknown error
term. There are two conditions for perfectly recovering x:
first, x is a p-sparse vector and p ≤ M/2; second, the matrixA
satisfies the restricted isometry property (RIP) condition.

In most cases, seismic signal does not satisfy the sparsity
required byCS theory directly. However, there is a sparse land
for seismic data, referring to [25], [26]. So, the undersampling
method stated in equation (1) can be applied for seismic data,
after the seismic data is translated into its sparse domain.
Then, equation (1) can be converted into the following form:

y = s98+ z (2)

where 8 is the new measurement matrix (8 ∈ RN×M), 9 is
the sparse dictionary of seismic data (9 ∈ RD×N), and N,
M, D are the number of sensors, compressed signal dimen-
sion and sparse domain dimension, respectively. Compressed
seismic data is represented as y (y ∈ RT×M). Original seismic
data is termed as x (x ∈ RT×N, x = s9), where T means time
length of seismic data and s ∈ RT×D is the corresponding
coefficients. The two recovery conditions are stated as follow:
first, the sparsity of each row in the s is less thanM/2; second,
the matrix 98 satisfies the RIP condition.

In traditional seismic data acquisition, the sensor network
is relying on a line-based multiple-hop structure. Considering
the drawbacks of data collection in the line-based multiple
hop network, equation (2) is applied to design an efficient

FIGURE 2. Compressed sensing architecture in CSA-GAN.

acquisition architecture. To solve the bottleneck on data col-
lection and allow each sensor to transmit data volume equally,
the architecture make seismic acquisition system collect the
compressed data y instead of the original data x. The proposed
acquisition architecture is shown in Fig. 2. Particularly, each
sensor multiplies the recorded seismic data by its correspond-
ing column vector in8, then adds this product with the vector
received from its child node. At last, this seismic sensor sends
the summed vector to its father node. For example, at time j,
the seismic data xji is recorded in the sensor node i. Then,
the measured vector for the node i can be computed via xji8i,
where 8i denotes the i th column of 8. After that, the sensor
node i sums its own measured vector with the compressed
vector of its child node, formulated as

∑i
q=1 xjq8q. Finally,

node i delivers its compressed vector to the sensor node i+1.
By utilizing this architecture, there are three improve-

ments. First, the unbalanced problem in acquisition system is
solved Communication bandwidth required is reduced from
N to M and energy cost by data collection is changed from
N(N + 1)/2 to NM. Second, the compressed data could be
reconstructed via time-frequency domain, since both tempo-
ral and spatial information are merged into the compressed
data. Third, only negligible computational cost is introduced
to the seismic sensors, as just M more multiplications are
added to each sensor at one recording time. The extra compu-
tation is totally about thousands of multiplications per second
at a sampling frequency of 500 Hz, which is much less than
other seismic compression methods reviewed in Section II.

B. The MAIN IDEA OF RECONSTRUCTION
ALGORITHM IN CSA-GAN
To recover the original signal x from equation (2), there are
two parts must be determined: the measurement matrix 8

and signal reconstruction mapping. For the measurement
matrix, it is necessary to satisfy the RIP condition. As random
Gaussian matrices has been proved to own an acceptable
RIP and widely used in CS [27], a norm Gaussian matrix is
used as the measurement matrix in our work. For the signal
reconstruction mapping, many model-based methods, such
as FISTA [28] and ADMM [29], have been proposed with
theoretical guarantees. However, there are numerous uncer-
tainties in these methods, such as transform domain, sparse
regularizer in the transform domain, regularization param-
eters. These uncertainties are challenging to be determined
properly, because various features of the input data must be
considered. Inspired by the work introducing neural networks
to image restoration and CS imaging tasks [30]–[32], we take
a deep neural network to fit the reconstruction mapping with
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the consideration of regularizations in CS, such as sparse
transform domain and regularization. In addition, the deep
neural network can handle varied features of seismic data in
a data-driven way, which makes CSA-GAN be suitable for
different kinds of seismic acquisition.

However, there are three non-trivial matters for a tradi-
tional neural network to be applied for CS image recovery.
First, there is a prevailing problem caused by overfitting
in a traditional neural network and other general machine
learning algorithms. This problem restricts the reconstruction
method based on traditional neural networks to a particu-
lar seismic acquisition. Second, traditional neural networks
are not appropriate for seeking out the optimal solution to
CS reconstruction problem, which consists of a certain
amount of distributed subproblems.Moreover, these subprob-
lems are considerably high-dimensional (such as represen-
tation learning and compressed data reconstruction), which
make it difficult for traditional neural networks to directly
reverse the compressed procedure and recover the original
data in the high dimensional solution space. Third, the suc-
cess of CS is relying on sparse representation, whereas the
traditional conventional neural network is not designed for
learning a reversible and sparse transform in an automatic
form.

To deal with these three non-trivial issues simultaneously,
a novel GAN-based CS reconstruction algorithm is proposed
in this paper. First, an adversarial process is introduced to the
reconstruction algorithm to provide the model an ability for
generalization. As proven in [33], the adversarial framework
is able to learn explicit and tractable features effectively,
because the optimization is used directly on the likelihood
the training data. Therefore, in the proposed reconstruction
algorithm, an adversarial process is used to extract the com-
mon features of seismic data so as to avoid overfitting for a
special case. Second, due to converging efficiency of the alter-
nating direction method of multipliers (ADMM), insights
from ADMM are taken into our reconstruction algorithm
to tackle all the subproblems in CS reconstruction via a
decomposition-coordination procedure. To be specific, the
reconstruction is spilt into three jobs: transform domain learn-
ing, signal recovery learning and representation recovery
learning. In the training process, the solutions to the three
jobs are coordinated to find the final solution in an alternating
direction mechanism. Third, we design a convolution neural
network (CNN) module in the proposed model to explore the
sparse domain of seismic signal via utilizing the connections
between sparse modeling and deep learning architectures.
The related foundations for the connections are presented
in [34].

C. THE RECONSTRUCTION ALGORITHM STRUCTURE
IN CSA-GAN
The proposed reconstruction algorithm can be formulated
mathematically as a minimax game with two players. One is
termed as a discriminator network D, whose aim is to learn
a suitable transform according to CS theory; the other one

FIGURE 3. Reconstruction algorithm structure in CSA-GAN.

is termed as a generator network G, which is kept finding a
proper mapping from compressed data to original signal.

In order to match the procedure of CS imaging, a two-step
generative learning scheme is designed. In the first step, a
transforming module Gt is used to output the representation
coefficients in transform domain learned by D, when the
compressed data is given. Considering the different kinds of
correlations between the compressed data and representation
in the transform domain, there are two stages in Gt , namely
Gt1 andGt2, which are designed to handle the global and local
correlations. For the second step of the generator, a recovering
module Gr is applied to recover the original signal from the
transform domain.

The particular structure of our reconstruction algorithm
structure is illustrated in Fig. 3 and detailed in the following
two aspects: adversarial process and alternating direction
mechanism.

1) ADVERSARIAL PROCESS
In the proposed reconstruction algorithm, the generator G
and discriminator D play an adversarial game to search for
the optimal solution to seismic signal reconstruction. More
specifically, G wishes to learn a mapping with a less recon-
struction error in the transform domain learned by D, while
D attempts to find a transform domain where the recon-
struction error could be measured as a larger value based
on the mapping learned by G. To this end, G can generate
a reconstruction mapping with less error, and D is able to
underline the recovering error more clearly. Both G and D
compute their costs according to the other one, and each of
them can only control its own parameters to search for a better
solution.Motivated by the improved stability of LSGAN [35],
least square function is used to measure the distribution dis-
tances in our model. The specific adversarial process in our
reconstruction algorithm can be formulated as following:

min
θG

max
θD

(
‖D (x−G (y; θG) ; θD)‖2

‖x‖2

)2

−

(
‖D(x)‖2
‖x‖2

−1
)2

(3)
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where θD and θG are the parameters ofD andG to be learned,
respectively.

Thus, D learns a new transform domain, which highlights
the reconstruction error with respect to the mapping gen-
erated by G; G learns a new reconstruction mapping by
minimized the reconstruction error in the transform domain
updated by D. In other words, D keeps discovering the draw-
backs of the solution proposed byG, andG is trying to update
the new solution according to the suggestion given by D.

2) ALTERNATING DIRECTION MECHANISM
On the basis of CS theory, the reconstruction problem in this
work can be spilt into three subproblems: transform domain
learning, representation recovery learning and signal recov-
ery learning. In the reconstruction algorithm, D is designed
to learn the transform domain, while Gt and Gr aim to
perform representation recovery learning and signal recovery
learning, respectively. Besides, there two more requirements
for the relationships among D, Gt and Gr . First, to ensure
the transforming learned by D is reversible in a certain space
and the signal recovering mapping learned by Gr can recover
the original data from the transform domain, D and Gr are
required to comprise an encoder-decoder framework. Second,
to guide Gt to learn the correct representation coefficients
with respect to corresponding Gr , the representation learned
by D should act as the label to supervise Gt . Taking these
aims and constraints into account, an alternating direction
mechanism is introduced to the reconstruction algorithm to
find the final optimal solution. In each iterative time, D,
Gt and Gr are coordinate to updated for the solutions to their
own subproblems with newest parameters of the other two.
The specific procedure can be described as following:

θ
(k+1)
D = min

θ
(k)
D

LD

(
x, y; θ (k)D , θ

(k)
Gr , θ

(k)
Gt

)
θ
(k+1)
Gr = min

θ
(k)
Gr

LGt

(
x, y; θ (k+1)D , θ

(k)
Gr , θ

(k)
Gt

)
θ
(k+1)
Gt = min

θ
(k)
Gt

LGr

(
x, y; θ (k+1)D , θ

(k)
Gr , θ

(k+1)
Gt

) (4)

in which k denotes k-th iteration. θGr and θGt are the param-
eters of Gr and Gt to be learned, respectively. LD, LGt and
LGr are the cost functions of D, Gt and Gr , respectively.

D. THE DISCRIMINATOR IN CSA-GAN
The discriminator D aims at learning a transform domain
with the consideration of reconstruction error and sparsity,
by given the original seismic data. So, D is designed to
implement an invertible and sparse projection by dealing with
the correlations contained in a 2-dimensional matrix. The
details in D are presented in the two aspects: the network
structure and cost function.

1) THE NETWORK STRUCTURE OF DISCRIMINATOR
As the seismic profiles contain temporal-spatial correlations,
the residual information remained in the reconstruction error

FIGURE 4. The neural network structure of discriminator.

also own a certain correlation neglected by the recovering
mapping. Motived by leveraging the neglected correlation for
more effective representation, D applies convolution oper-
ations to extract features of the residual information for
the transform domain learning. To guarantee sparsity of the
learned transform domain, a rectified linear unit (ReLU) is
used as the sparsifying operation after every convolution
operation. To be specific, D applies 3 convolution layers
with ReLU to extract features, also termed as atoms in the
dictionary learning area. There are 32 filters in the first layer,
whose aim is to capture the local features. So, the size of these
filter is 7 × 7, which is larger the minimum size of seismic
data characters in temporal, spatial and frequency domain.
The stride of first layer is 2. There are 128 and 512 filters in
the second and third layer, respectively. They are aiming at
global feature extraction, on account of their larger sensing
field. The size of filters in the second layer is 5 × 5, and the
size of filters in the third layer is 3 × 3. Their stride is 1.
The neural network structure of D is illustrated in Fig. 4.
Specifically, in Fig 4, t is the time length of seismic profiles
and n represents the number of sensors in the seismic profile.
Since values in the edges of seismic profile are around 0,
the padding value used in the convolutional operations is 0.

2) THE COST FUNCTION OF DISCRIMINATOR
To guide D to learn a suitable transform domain for CS,
the cost function must have some items regarding recon-
struction error, sparsity and RIP, which also guarantee the
consistency and stability of GAN. Taking the recovering pre-
cision and generalization into account, there are two key items
needed to be included by the cost function. The first item is
the reconstruction error, which must be minimized to achieve
the requirement of recovering precision. The second one is
the adversarial loss for D, which values reconstruction error
in the learned transform domain. This adversarial loss leadsD
to capture the features of reconstruction error and provide
an optimized direction for recovering mapping. Considering
the sparse representation and RIP condition in CS, the cost
function should also include regularization items related to
the sparsity of representation and the incoherence between
measurement matrix8 and the transformation. For the sparse
regularization, `1-norm is used, since it is more tractable than
`0-norm and lots of literatures has proven the CS problem can
be solved under `1-norm regularization. Although random
Gaussian matrices have been shown to satisfy an accept-
able RIP, it is still necessary for high-quality reconstruction to
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ensure the restricted isometric constant remains a relative low
value. To guarantee a better RIP, the learned transformation
needs to have a lower incoherence with8. So, `2-norm of the
projection of 8 in the learned transform domain is chosen as
the RIP regularization. The cost function ofD, denoted asLD,
is represented as:

LD= min
θD,λ1∼4

λ1EE + λ2LGANd + λ3RRIP + λ4Rsparse

(5)

EE =‖X − Gr (D(x; θD); θGr )‖2 (6)

LGANd =

(
‖D(x)‖2
‖x‖2

−1
)2

−

(
‖D (x− G (y; θG) ; θD)‖2

‖x‖2

)2

(7)

RRIP=‖D(8; θD)‖2 (8)

Rsparse=‖D (x; θD)‖1 (9)

where EE represents the recovering error of the encoder-
decoder procedure composed of D and Gr . LGANd is the
loss of adversarial process for D. RRIP and Rsparse are the
regularization of RIP and sparsity, respectively. λ1, λ2, λ3
and λ4 are trade-off parameters and can be calculated via the
following equations:

e1 = tanh(θλ1EE + bλ1 ) (10)

e2 = tanh(θλ2LGANd + bλ2 ) (11)

e3 = tanh(θλ3RRIP + bλ3 ) (12)

e4 = tanh(θλ4Rsparse + bλ4 ) (13)

λt1 =
exp(et1 )∑4
n=1 exp(en)

(14)

where t1 = 1, 2, 3, 4; θλ1 , θλ2 , θλ3 , θλ4 and bλ1 , bλ2 , bλ3 , bλ4
are weight and bias terms to be learned. All these parameters
are trained during the backpropagation process.

E. THE GENERATOR IN CSA-GAN
There are two modules in the generatorG, namely transform-
ing module Gt and recovering module Gr . Gt aims to learn
the transform from compressed data y to the representation
s projected by D, by considering the connections between y
and s.Gr focuses on learning the mapping from the transform
domain s to original seismic data x, which also be thought as
an inverse procedure of D.

1) THE NETWORK STRUCTURE OF GENERATOR
For the transforming module Gt , to allow y be projected as
the same representation as its corresponding x, a data-driven
supervised representation learning framework is imple-
mented. The sparse representation s in the transform domain
is the label of its corresponding compressed data y. To fully
mine the information contained in y, the features contained
by x and the connections between y and xmust be considered
in the structure design of Gt . More specifically, since each
element of y is calculated using all the elements of x and 8,
y should be processed in a global pattern to capture the orig-
inal features remained in x. Therefore, the first stage of the

FIGURE 5. The neural network structure of generator. (a) The network
structure of Gt . (b) The network structure of Gr .

transforming moduleGt1 is designed to globally approximate
the between-manifold projection from the compressed data
domain to the sparse representation domain, by considering
the latent global correlations between y and s. There is one
fully-connected layer with t × n neurons. After the mapping
of Gt1, there are some local correlations left, which are the
small-scale relationships between y and s at a similar position.
So, in the second stage of transforming module Gt2, local
correlations between y and s become the key to lead Gt2
generate a representation similar to s output by D. Gt2 uses a
CNN structure that is the same with D to learn the mapping
for the sparse representation based on the features extracted
by Gt1. The specific structure of Gt is shown in Fig. 5 (a).
To ensure the original data can be recovered from the rep-

resentation s in the sparse transform domain, the recovering
module Gr is designed to be a decoder for D. Since the
decoder and encoder should appear in pair, deconvolutional
operations with ReLU are utilized inGr , and the structures of
Gr and D are symmetric. In detail, the first deconvolutional
layer in Gr corresponds to the last convolutional layer in D,
the last deconvolutional layer in Gr corresponds to the first
convolutional layer in D, and so on. The structure of Gr is
shown in Fig. 5 (b).

2) THE COST FUNCTION OF GENERATOR
For implementing of the projection from compressed data y
to its corresponding representation s in the learned transform
domain, as well as taking the feedback from the discrimina-
tor D into consideration, Gt should be guided by both its cor-
responding label on representation and the adversarial loss.
So, the cost function of Gt , denoted as LGt , is represented as:

LGt = min
θGt ,λ5∼6

λ5ER + λ6LGANg (15)

ER = ‖Gt (y; θGt)− D (x; θD)‖2 (16)

LGANg =

(
‖D (x− Gr (Gt (y; θGt) ; θGr ) ; θD)‖2

‖x‖2

)2

(17)

105954 VOLUME 7, 2019



X. Zhang et al.: Efficient Seismic Data Acquisition Based on CSA-GAN

where ER stands for the error of representation in the trans-
form domain and LGANg is the loss provided by adversarial
process for G. λ5 and λ6 are trade-off parameters and calcu-
lated via the following equations:

e5 = tanh(θλ5ER + bλ5 ) (18)

e6 = tanh(θλ6LGANg + bλ6 ) (19)

λt2 =
exp(et2 )∑6
n=5 exp(en)

(20)

where λ5 and λ6 are trade-off parameters. t2 = 5, 6. More-
over, θGt , θλ5 , θλ6 , bλ5 and bλ6 are the learnable parameters
and updated via the backpropagation.

To guide Gr to learn the mapping from transform domain
to original seismic data as well as be a close part of the GAN,
not only the recovering error caused by the encoder-decoder
procedure (D and Gr ), but also the adversarial loss from
adversarial process should be used to update the learnable
parameters. Thus, the cost function of Gr , denoted as LGr ,
is represented as:

LGr = min
θGr ,λ7∼8

λ7EE + λ8LGANg (21)

e7 = tanh(θλ7EE + bλ7 ) (22)

e8 = tanh(θλ8LGANg + bλ8 ) (23)

λt3 =
exp(et3 )∑8
n=7 exp(en)

(24)

where λ7 and λ8 are trade-off parameters. t3 = 7, 8. Besides,
θGr , θλ7 , θλ8 , bλ7 and bλ8 are the learnable parameters.

IV. EVALUATION
In this section, the performance of our efficient seismic data
acquisition method is evaluated on both synthetic and real
seismic data. First, the description of datasets and experi-
mental setting used in our experiments are detailed. Next,
synthetic seismic data is used to study the impacts of key
hyperparameters used in the model, such as compression
ratio and training epochs. The varied characters of synthetic
seismic data also play a role to certify that our method has an
ability to handle seismic data with different features. Finally,
our method is tested on real seismic data and compared with
several popular methods.

A. DATASETS AND EXPERIMENTAL SETTING
1) SYNTHETIC SEISMIC DATASET
Since there are many kinds of seismic data acquisition aiming
at different applications, the characters of recorded seismic
data are varied a lot. So, we use Ricker wavelets with different
central frequency to generate various seismic data. Accord-
ing to the main frequency band of seismic wave recorded
in the commonest use cases, Ricker wavelets with central
frequency from 5Hz to 500Hz are used to generate seis-
mic profiles. Some of these seismic profiles comprise the
training set, while the others comprise the testing set. Each
seismic profile includes 64 traces averagely distributed on
a 640-meter line. The length of sampling time is 1.28s, and the

sampling frequency is 1000Hz. Therefore, the sizes of these
seismic profiles are all 1280× 64.
In the training set, there are totally 1024 samples, whose

central frequency are distributed evenly across the frequency
domain from 5Hz to 500Hz. Due to the frequency bandwidth
of Ricker wavelets in the training set, every two Ricker
wavelets with adjacent central frequency have a significant
overlap between each other in the frequency domain. Thus,
1024 training samples in the training set are able to cover
main information in the frequency domain from 5Hz to
500Hz. Besides, the amplitudes of these seismic profiles and
geophysical properties of seismic wave are also generated in
a uniform distribution.

In the testing set, there are 512 samples, whose central fre-
quency are at the middle of the two adjacent central frequency
Ricker wavelets in the training set. So, the testing seismic
profiles have the largest difference with training seismic pro-
files in this simulation, which would make the testing set be
the most appropriate samples to examine effectiveness of the
trained model. In addition, the amplitudes of testing seismic
profiles and geophysical properties of seismic wave also obey
the same uniform distribution with the training set.

2) REAL SEISMIC DATA
To prove our method is effective on the real application, a set
of field seismic data is needed to evaluate the performance.
Since the proposed data collection framework is used in each
acquisition terminal, there should not be any data preprocess
in the testing data, e. g., correction and stack. This kind of raw
seismic data is not common in online open seismic dataset.
So, the real seismic data used in our experiment is a set
of seismic exploration data collected by our laboratory. The
seismic data acquisition system proposed in [36] was used
in this seismic exploration. Specifically, this set of seismic
data was acquired for exploring the underground structure in
a hilly land, and the place of this exploration was conducted
in the southwest of Liaoning Province, China. There were
2400 traces averagely distributed on four 8-kilometer-length
lines in this exploration. The sampling time length was 8s,
and the sampling frequency was 500Hz.

In the real seismic data experiment, the training set is
comprised of 1024 generative seismic profiles yielded by a
forward seismic modeling of the target area, which is set up
according to some hilly-related geological prior knowledge,
such as the scope of wave speed, the possible underground
structures, properties of the used seismic source.

All data acquired by the seismic exploration is used to
comprise the testing set in the real seismic data experiment.
To be specific, there are two types of seismic data recorded by
our seismic data acquisition system. One is the regular data,
collected in the traditional way, which is used as the ground
truth in our experiment; the other one is the compressed
data, which is collected by the proposed compressed sens-
ing architecture and used as the input of our reconstruction
algorithm.
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FIGURE 6. SNR curves with different compression ratios on the training
set over 6400 iterations (200 epochs).

3) EXPERIMENTAL SETTING
Since most parameters of the proposed reconstruction algo-
rithm can be learned by training, there are only two param-
eters need to be defined for the configuration of training
process. They are batch size and learning rate. It is clear that
the larger batch sizes need fewer epochs to get an acceptable
result. However, there are only 32 samples in each batch
for seismic training process, as the size of real seismic data
is considerably large. Since a relatively small batch size is
used here, an exponentially decaying learning rate start with
a small value should be applied to minimize the noising scale
brought by small batch size. Thus, the learning rate starts
at 0.01 and decays every 100 steps with a base of 0.9. All
cost functions in our method are optimized via the Adam
algorithm. The proposed method and all the experiments in
this work are implemented through TensorFlow and Python 3.

B. SYNTHETIC DATA RESULTS AND ANALYSIS
In the synthetic seismic data experiment, we aim to select a
proper compression ratio for CSA-GAN, by taking both con-
vergence speed and reconstruction performance into account.
we first evaluated the convergence of our method with dif-
ferent compression ratios. The three different compression
ratios are 4, 8 and 16. Since the training set has 1024 samples
and the batch size is 32, there are 32 iterations in each
epoch. The result of training procedure is shown in Fig. 6.
Roughly speaking, the training process shows that our recon-
struction method can reach a stable convergence stage within
2000 iterations (about 60 training epochs). In detail, when the
compression ratio is low (e. g., 4), the reconstruction SNR
can achieve a considerable value (e. g., 50 dB) within about
1000 iterations. When the compression ratio is relatively high
(e. g., 16), the reconstruction SNR can still reach an accept-
able value (e. g., 35 dB) within about 1000 iterations. So,
Both the reconstruction SNR and rate of convergence have
an acceptable decrease, until the compression ratio increases
to 16.

According to Fig. 7, the testing result is consistent with the
training result. Although the SNR tends to drop and diverge
with the increasement of compression ratio, the reconstruc-
tion result of testing set is still acceptable. Specifically, with
the compression ratios of 4, 8, and 16, the average values

FIGURE 7. SNR with different compression ratios on the testing set.

FIGURE 8. Simulating sample I and its recover results with different
compression ratios. (a) Original seismic profile I. (b) The reconstruction
image of 16-fold compression (SNR: 34.29dB). (c) The reconstruction
image of 8-fold compression (38.42dB). (d) The reconstruction image
of 4-fold compression (48.47dB). (e) The residual image of (b). (f) The
residual image of (c). (g) The residual image of (d).

of SNR are 50.65dB 39.61dB and 35.15dB, respectively.
When the compression ratio becomes 16, the range of SNR
is between 31.43 to 39.17dB. According to the synthetic
data results, our reconstruction method performs stably and
effectively enough for seismic data acquisition when the
compression ratio is 16.

For detailed analyses on the reconstruction effect, three
different testing samples are shown in Figs 8, 9 and 10.
To be specific, Fig. 8 (a), Fig. 9 (a) and Fig. 10 (a)
are original profiles of these three testing samples.
Figs 8 (b), (c) and (d) are reconstruction images of Fig. 8 (a),
and their compression ratios are 4, 8, and 16, respec-
tively. Figs 8 (e), (f) and (g) are residual images of
Figs 8 (b), (c) and (d), respectively. Figs. 9 and 10 have the
same format as Fig. 8. Since, the geophysical parameters
(e. g., central frequency, seismic wave speed and underground
structure) are different in these three original profiles, the
reconstruction results prove that our method can recover
the original seismic data under various geophysical circum-
stances. Based on the comparison of residual images with
different compression ratios, it is easy to find two following
phenomena: first, there is no obvious loss in the reconstruc-
tion results, when the compression ratio is less than 8; second,
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FIGURE 9. Simulating sample II and its recover results with different
compression ratios. (a) Original seismic profile II. (b) The reconstruction
image of 16-fold compression (34.61dB). (c) The reconstruction image
of 8-fold compression (38.18dB). (d) The reconstruction image of 4-fold
compression (49.06dB). (e) The residual image of (b). (f)The residual
image of (c). (g) The residual image of (d).

FIGURE 10. Simulating sample III and its recover results with different
compression ratios. (a) Original seismic profile III. (b) The reconstruction
image of 16-fold compression (33.98dB). (c) The reconstruction image
of 8-fold compression (39.08dB). (d) The reconstruction image of 4-fold
compression (51.15dB). (e) The residual image of (b). (f) The residual
image of (c). (g) The residual image of (d).

when the compression ratio is large, such as 16, the main loss
of recovery is concentrated in the direct wave part, which
appears linear characters in the upper seismic profiles. The
reason for the second phenomenon is that the direct waves
has a great difference with the reflected and refracted waves,
which appear quadratic characters in the bottom seismic
profiles. The proposedmodel can easily extract the features of
the reflected and refracted waves, whereas lose some features
of the direct wave. However, it has little influence on seismic
data acquisition, since the direct waves are not as import as
the reflected and refracted waves in seismic data analysis.

FIGURE 11. Measuring line I and its recover results with different
methods. (a) Original seismic profile of measuring line I. (b) The
reconstruction image (29.24dB) with CSA-GAN. (c) The reconstruction
image (22.02dB) with SIODL. (d) The reconstruction image (18.73dB) with
DPCA. (e) The reconstruction image (11.56dB) with JPEG2000. (f) The
residual image of (b). (g) The residual image of (c). (h) The residual image
of (d). (i) The residual image of (e).

C. REAL DATA RESULTS AND ANALYSIS
Considering the simulating results and resolution demands
of seismic data acquisition, a compression ratio of 16 is
chosen to implement the field seismic data experiment.
To assess the data recovering performance of our recon-
struction algorithm, three different seismic data compression
methods are used as benchmarks. One of the benchmark
methods is SIODL [16], which has been thought as a
state-of-the-art dictionary learning algorithm used in seis-
mic data compression [7]; another state-of-the-art seismic
data compression method is distributed principal component
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FIGURE 12. Measuring line II and its recover results with different
methods. (a) Original seismic profile of measuring line II; (b) The
reconstruction image (29.83dB) with CSA-GAN. (c) The reconstruction
image (19.78dB) with SIODL. (d) The reconstruction image (16.27dB) with
DPCA. (e) The reconstruction image (15.27dB) with JPEG2000. (f) The
residual image of (b). (g) The residual image of (c). (h) The residual image
of (d). (i) The residual image of (e).

analysis (DPCA), which is presented in [37]; the last baseline
method is JPEG2000 Standard [38], which has been proved as
an efficiency compression method for still image relying on
the Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet trans-
form. In our experiment, all the three methods use the same
compression ratio, which is 16.

To display recovery qualities of the four methods more
clearly, only the most remarkable part of the data collected
in the four measuring lines of this seismic exploration are
shown in Figs11 to 14. Specifically, the data shown in the
Fig. 11 (a), Fig. 12 (a), Fig. 13 (a) and Fig. 14 (a) are

FIGURE 13. Measuring line III and its recover results with different
methods. (a) Original seismic profile of measuring line III. (b) The
reconstruction image (30.02dB) with CSA-GAN. (c) The reconstruction
image (19.97dB) with SIODL. (d) The reconstruction image (16.04dB) with
DPCA. (e) The reconstruction image (14.83dB) with JPEG2000. (f) The
residual image of (b). (g) The residual image of (c). (h) The residual image
of (d). (i) The residual image of (e).

picked from the 256 sensors that are the nearest to the seis-
mic source location in the four measuring lines. Besides,
the sampling time selected to show is the first 1024ms after
the seismic source exploded. This part of data has the most
apparent features in the whole real seismic dataset of this
exploration, since the energy of seismic source is decreasing
with the increasing of spatial distance and temporal interval.
Figs. 11 (b), (c), (d) and (e) are the reconstruction images of
the profile Fig. 11 (a), which are recovered by different meth-
ods. Fig. 11 (b) is reconstructed by ourmethod, while SIODL,
DPCA and JPEG2000 are utilized in Figs. 11 (c), (d) and (e),
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FIGURE 14. Measuring line IV and its recover result with different
methods. (a) Original seismic profile of measuring line IV; (b) The
reconstruction image (29.57dB) with CSA-GAN. (c) The reconstruction
image (23.92dB) with SIODL. (d) The reconstruction image (21.02dB) with
DPCA. (e) The reconstruction image (9.74dB) with JPEG2000. (f) The
residual image of (b). (g) The residual image of (c). (h) The residual image
of (d). (i) The residual image of (e).

respectively. Figs. 11 (f), (g), (h) and (i) are the resid-
ual images of Figs. 11 (b), (c), (d) and (e), respectively.
Figs. 12 to 14 have the same format as Fig. 11. According
to the four testing result figures, our reconstruction algo-
rithm has a significantly better performance than the three
benchmark methods. Broadly speaking, the reconstruction
loss of our method is obviously less than that of the other
three methods. Besides, as the residual images of our method
illustrate, there is no structural information remained in the
reconstruction error. In the SIODL’s residual images, there
is slight noise in the middle and bottom part of the seis-

mic profile. In the residual images of DPCA, the noise is
more obvious than that of SIODL, and only a narrow mid-
dle part is clean. JPEG2000’s residual images have evident
recovering errors distributed in the whole seismic profiles.
In addition, the SNR values of our reconstruction results
are higher and more stable than those of the three baseline
results. The SNR values of our reconstruction results values
are roughly about 30dB. By contrast, SIODL’s SNR values
range from 19dB to 23dB, which are the second-best result in
the four methods. The SNR values of DPCA generally range
from 16dB to 21dB, which are slightly worse than that of
SIODL with respect to reconstruction quality and stability.
JPEG2000’s SNR values range from 9dB to 15dB, which are
relatively low and fluctuant.

Based on the comparison of these four methods, the resid-
ual images show that our method owns not only a better
recovering ability but also a more stable performance. More-
over, the residual images of JPEG2000 displays an obvious
and global structure, which is similar to its original seismic
profile. That means a lot of information has been lost, as the
fixing dictionary used in JPEG2000 is not effective enough
to represent seismic signal at that compression ratio. Since
DPCA is a kind of data-driven method that can extract the
most obvious components, there is nearly no noise in the
middle part of seismic profile. However, lots of details in
these seismic profiles have been lost, because this method
only focuses on a few principal features. Although the dic-
tionary of SIODL is self-adaptively learned from the input
signal, there is still structural loss in several local regions
of the residual images. In contrast to these three baseline
methods, there is little structural noise in the whole residual
images of our method, and this result certifies that generative
adversarial network performs well in representing seismic
data effectively and stably.

V. CONCLUSION
In this paper, we present a novel method, named CSA-GAN,
for efficient seismic data acquisition by utilizing the sparsity
and spatiotemporal features of seismic data. In this proposed
method, compressed sensing theory and generative adversar-
ial networks are combined to adaptively learn the effective
representation of seismic data and compressively transmit
seismic data with only negligible extra computation in the
seismic terminals. Specifically, first, to tackle the data trans-
mission bottleneck of traditional seismic acquisition network,
a data collection architecture based on compressed sensing
theory is designed and applied as the encoding procedure in
CSA-GAN. Second, a GAN algorithm is used to learn the
sparse transform domain and reconstruction mapping. Our
approach is evaluated on both synthetic seismic data and real
seismic data. The testing results of synthetic data show that
our method has a stable training process and is able to handle
seismic data with varied characters, when the compression
ratio is 16. The experimental results of real seismic data
show that CSA-GAN is able to stably get a high-quality
seismic profile (about 30dB) a high compression ratio of 16,
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compared with two state-of-the-art methods (SIODL and
DPCA) and a standard compression method (JPEG2000).
It means that the CSA-GAN can afford 15 times more sensors
with the communication bandwidth and reduce the power
cost by data collection from N(N + 1)/2 to N2/16, under
the condition of only subtle noise introduced. Therefore,
we could conclude that CSA-GAN is able to improve the effi-
ciency of seismic data acquisition, which means it has great
potential to be used in practice for large scale seismic data
acquisition.
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