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ABSTRACT The diffuse optical tomography (DOT) technique which uses the traditional linear iterative
algorithm has the problems of slow calculation speed and low reconstruction imaging accuracy in the
inverse problem reconstruction, which limits its clinical application and development. This paper proposes
an inverse-problem solving technology based on a stacked auto-encoder (SAE) network to improve the
reconstruction accuracy of anomaly position, size and absorption coefficient in tissues. The reconstruc-
tion accuracy of anomaly position, size and absorption coefficient obtained by the traditional algebraic
reconstruction technique (ART) method and the SAE based method are experimentally compared. The
experimental results show that the SAE based method achieves the prediction accuracy of anomaly position
of 96.25%, thus improving the accuracy and shortening the reconstruction time compared with the traditional
ART method. Accordingly, the proposed method provides a better solution to the problem of the inaccurate
reconstruction of the position and size of the rapid DOT based positioning of anomalies.

INDEX TERMS Diffuse optical tomography, image reconstruction, stacked auto-encoder network.

I. INTRODUCTION.
The near-infrared spectroscopy for detection of biological
tissue components has the advantages of excellent real-time
performance, and continuous, non-invasive, and low-cost,
characteristics. The diffuse optical tomography (DOT) tech-
nique [1] for detection of tissue components and imaging
diagnosis of organisms has been widely applied in cerebral
hematoma diagnosis [2], brain functional imaging [3], early
screening and diagnosis of breast cancer [4], etc. The DOT
technique reflects or transmits a signal through a biological
tissue using one or more light sources, and acquires boundary
data of the tissue using a plurality of detector arrays, thereby
reconstructing the optical parameters of a cross-section of
biological tissue. The fast and accurate reconstruction of
inverse problems in biomedical imaging has been a research
hotspot in the field of biomedical imaging [5], [6]. The
inverse problem of the traditional DOT is mostly solved
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by using the algebraic iterative algorithm, but due to its
complicated structure, the nonlinear problem [7] of scatter-
ing, and high time consumption, the computational complex-
ity of inverse problem reconstruction is increased [8], thus
failing to meet the requirements for rapid imaging.

In recent years, due to the rapid development of deep neural
networks [9]–[11], they have been widely applied to various
fields for feature extraction and classification of complex
models. In [12], the neural network approach was adopted
to reconstruct the optical parameters of biological tissues
to overcome the shortcomings of traditional reconstruction
methods such as a long calculation time and limited optical
parameter range, providing the advantages of wide adaptabil-
ity, and high accuracy and stability.

In this paper, we aim to solve the DOT reconstruction
problem related to the optical parameters of anomalies and
establish an anomaly detection model based on deep neu-
ral networks. The Single-Source Multi-Detectors method is
used to obtain the light intensity detected by the detector,
and implement the feature extraction from the input layer to
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the output layer. The SAE algorithm [13] is used to realize
the feature extraction and analyze the position and size of
anomalies, optimizing the recognition rate. The proposed
method for reconstructing the anomaly position using an SAE
deep neural network can be used as an effective tool for
anomaly detection and rapid evaluation of anomaly position.
Also, it can provide a basis for improved methods for tumor
detection [14] and early screening of breast cancer [15].

II. SAE NEURAL NETWOR.
The stacked auto-encoder (SAE) depth neural network [16]
is an efficient unsupervised feature recognition and deep
learning method, which is widely used in various feature
extraction and classification problems.With the aim to realize
the reconstruction of anomaly position in biological tissue,
we use a deep neural network composed of a double hidden
layer SAE [17] to solve the inverse problem of the DOT. The
neural network includes a number of layers, where the output
of the former layer denotes the input data of the next layer.
It is layer-by-layer training in the order from front to back,
and each hidden layer denotes a higher layer abstraction of
the previous layer. The last layer is the softmax classifier. The
SAE working principle is shown in Fig. 1.

FIGURE 1. The structure of the stacked auto-encoder neural network.

The SAE network denotes a feedback neural network
model composed of multiple auto-encoders (AEs). The auto-
encoder represents a three-layer neural network consisted of
an input layer, a hidden layer, and an output layer. The neu-
rons form the adjacent layers are completely interconnected.
The auto-encoder uses the activation function of the first layer
of the neural network to extract the features of the input data
and forward it to the following hidden layer. In this work,
the sigmoid activation function is used, and it is given by:

f (x) =
1

1+ e−x
. (1)

The network training process includes two parts: unsu-
pervised pre-training and supervised NN-training, which are
presented in Fig. 2(a) and Fig. 2(b), respectively. The pre-
training denotes the training process used to adjust the values

FIGURE 2. The unsupervised pre-training (a) and supervised NN-training
(b) of an SAE neural network.

of network weights and biased using unsupervised learning.
The original data is used as the input of the SAE network, and
the network parameters of the first hidden layer are trained by
encoding and decoding. The output of the first AE is used
as the input of the next AE, and the weight and deviation
of the network layer are trained in the same way. The super-
vised NN-training is to use the obtained network weights and
deviations as initial values into the Back-propagation (BP)
neural network for further training using supervised learning.
The BP algorithm trains the neural network using the forward
conduction and then uses the backpropagation algorithm to
fine-tune network parameters to determine the optimal neural
network parameters to obtain a network with two hidden
layers. The working principle of the model structure used in
this study is shown in Fig. 2.

The input of the network model is the intensity value
collected by the detector, and the output is the absorption
coefficient of the biological tissue. Number of epoch is 49.
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Stop criteria is complete the preset 100 iterations. The num-
ber of iterations is obtained by tuning the preferences. The
network training time on the CPU of the Intel(R) Core(TM)
i5-8400 is about 2 hours.

III. DOT SIMULATION AND ANOMALY RECONSTRUCTION
A. DOT SIMULATION MODEL
To realize the image reconstruction of the anomaly position
in the biological tissue by using the SAE deep neural net-
work, the Nirfast software was used to obtain training data.
Nirfast is an optical imaging software developed by the Dart-
mouth College Biomedical Engineering team in the United
States, which is based on the finite element method that is
used to establish a model of the light transmission through
the measured object such as biological tissue. A uniform
two-dimensional rectangular model with the size of
40 mm × 90 mm was established by Nirfast optical finite
element tool. The background optical parameters were
µa = 0.01 mm−1 and µ′s = 1 mm−1. The Source-Detector
position of the model is shown in Fig. 3. The coordinate
system was established such that the model endpoint denoted
the coordinate system origin. The light source was located
at 5 mm from the coordinate system origin. Ten detectors
labeled from D1 to D10 were equidistantly distributed start-
ing from 13 mm to 85 mm from the coordinate system origin.
The distance between the light source and the first detector
was 8 mm, and the distance between adjacent detectors was
also set 8 mm to obtain the light intensity measured by
10 detectors.

FIGURE 3. Schematic diagram of model splitting results.

The Nirfast optical finite element tool was used to generate
the simulation training datasets fast and efficiently. The finite
element generated segmentation mesh was converted into a
voxel matrix by using the nearest neighbor difference based
on the triangulation. The model that is presented in Fig. 3 was
divided into 2409 splitting units, and the size of each splitting
unit was 1.25 mm. An anomaly was added to the uniform
tissue model, and it was moved through the simulation model
so that to traverse the entire model, and 430 datasets contain-
ing the information about the anomalies at different positions

were generated. In the simulation model, the anomaly radius
was 10 mm, and its optical parameters were set to µa =
0.5 mm−1, µ′s = 1 mm−1.

B. SAE NEURAL NETWORK MODELING
A two-hidden-layer SAE deep neural network which has four
layers in total was adopted. The input data of the SAE neural
network was the reflected light intensity detected by multiple
detectors in the simulation model, and the output data was
the absorption coefficient of each triangle-splitting unit in the
simulation model. The SAE neural network had 10 neurons
in the input layer, 200 neurons and 60 neurons in the first
and second hidden layers, respectively, and 2409 neurons in
the output layer.

The training datasets and the prediction datasets were
selected before establishing the SAE neural network. The
data equalization distribution method was adopted to per-
form equal distance cross-selection of collected data samples
to obtain training datasets and prediction datasets. Namely,
since the training and prediction datasets were processed
by the method of data equalization distribution selection,
the SAEmethod achieved the prediction accuracy of anomaly
position of 96.25%. The dataset samples represented the
optical information about the anomaly at different positions,
while the method of randomly selecting the data would
introduce a large error, and it would be easy to generate an
accidental error due to the incomplete selection of the training
datasets. Therefore, to realize high learning effect of the SAE
neural network when the anomaly was moved through the
tissue model, the data equalization distribution method was
used to select training datasets and prediction datasets.

IV. RESULTS AND DISCUSSION
A. SAE NEURAL NETWORK RECONSTRUCTION RESULTS
To determine the anomaly position in the tissue using the
method based on the SAE deep neural network, the radius of
the anomaly was set to 10 mm, and the dataset of 430 samples
was used for model training and testing, of which 350 sam-
ples constituted the training datasets, and 80 samples con-
stituted the test datasets. As already mentioned, the SAE
neural network consisted of four layers having 10, 200, 60,
and 2409 neurons, respectively. The number of training iter-
ations was set to 100. The obtained reconstruction results are
shown in Fig. 4.

In Fig. 4, on the left side, the actual distribution of the
true absorption coefficient µa of the tissue model containing
the anomaly is presented, and the actual distribution of the
predicted absorption coefficient µa of the same tissue model
predicted by the SAE neural network model is presented on
the right side. The prediction accuracy of anomaly position
of more than 95% was achieved using the proposed neural
network model.

According to the prediction results of five groups of
anomalies at different lateral positions and different depths,
the SAE neural network can be used to reconstruct the
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FIGURE 4. The reconstruction results obtained by the proposed SAE
neural network.

anomaly position and obtain a good recognition rate, that is,
the SAE neural network can predict the lateral position of the
anomaly and the longitudinal depth of the anomaly.

B. COMPARISON OF SAE NEURAL NETWORK
AND ART RECONSTRUCTION
To evaluate the image reconstruction results obtained by the
proposed reconstruction method, the obtained results were
compared with those of the traditional ART reconstruction.
The results for comparison were selected under the same
position and parameters in the dataset. The traditional ART
reconstruction used the Levenberg-Marquardt algorithm for
inverse problem reconstruction. The maximum number of
iterations for reconstruction was set to 100. The comparison
reconstruction results are shown in Fig. 5.

Fig. 5(a) show the actual distribution of the true absorption
coefficient µa of the tissue model containing the anomaly.
Fig. 5(b) show the actual distribution of the predicted absorp-
tion coefficient µa of the tissue model predicted by SAE
neural network. Fig. 5(c) show the actual distribution of the
absorption coefficient µa of the tissue model obtained from
reconstruction by the traditional ART reconstruction method.
Compared with the traditional ART reconstruction method,

FIGURE 5. Comparison of the traditional ART reconstruction method and
the proposed SAE based reconstruction method.

the SAE neural network achieved higher feature recognition
rate for anomaly position reconstruction. The reconstruction
results show that the SAE neural network has great advan-
tages in determining the size and position of anomaly and
reconstruction of its optical parameters. Thus, the proposed
method has better recognition ability than the traditional ART
reconstruction method in determining the anomaly position.

In the simulations, the traditional ART reconstruction
method was slow due to a large amount of computation.
On the other hand, due to the simple structure, the SAE
network-based method reduced the computational complex-
ity, shortened the reconstruction time of anomaly position,
and realized fast and accurate positioning of the anomaly
position.

C. SAE NEURAL NETWORK RECONSTRUCTION
RESULTS ANALYSIS
To quantitatively evaluate the SAE neural network regarding
the reconstruction accuracy of anomaly position, we com-
pared the actual anomaly central position of 80 predicted data
samples with those predicted by the SAE neural network.
The actual distance, called the Euclidean distance, was cal-
culated by:

ρ =

√
(x2 − x1)2 + (y2 − y1)2. (2)

In (2), ρ represents the Euclidean distance, x1 and y1
respectively represent the horizontal and vertical coordinates
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FIGURE 6. The Euclidean distance distribution of 80 samples.

of the actual anomaly center position, and, x2 and y2 respec-
tively represent the horizontal and vertical coordinates of
the anomaly center position predicted by the SAE neural
network. The stability and accuracy of the SAE neural net-
work model were judged by analyzing the Euclidean distance
distribution of the real and predicted data. Fig. 6 shows
the Euclidean distance distribution of 80 predicted samples.
As can be seen in Fig. 6, the SAE prediction results were rela-
tively accurate except in the cases where there were acciden-
tal errors such as that of the model splitting unit size. Besides,
the maximum, minimum, mean, and standard deviations of
the Euclidean distance of the predicted samples were deter-
mined. The red line in Fig. 6 represents the average value of
the Euclidean distance of the predicted samples, and the green
dashed area indicates three times the standard deviation of the
Euclidean distance of the predicted samples. As can be seen
in Fig. 6, the Euclidean distance of the predicted samples was
more than 90% scattered in the green area, and the Euclidean
distance of only 5 samples was larger than the upper limit of
the green area. The difference between the predicted and real
data was within an acceptable range, further confirming the
high prediction accuracy of the SAE neural network model.

At the same time, the anomaly center position within the
lateral position of 30-60 mm and the longitudinal position
of 15-23 mm was compared for real and predicted data. The
obtained comparison results in both x and y directions are
shown in Fig. 7.

Fig. 7(a) shows the difference between the true and pre-
dicted values of different lateral positions in the x-direction.
The curve in Fig. 7(a) can be approximated as a straight line
with a slope close to 1, the prediction accuracy of the SAE
neural network in the x-direction was high. By observing the
error of the curve, it can be found that the existing data error is
derived from the influence of the anomaly at different depths
on the prediction of the lateral position. The error distribution
presented in Fig. 7 show that when the anomaly was located
in the middle of the detector array, the influence of the depth
error was small, and the prediction accuracy of the SAE neu-
ral network was high. Fig.7(b) shows the difference between

FIGURE 7. Difference between real and predicted values.

the true and predicted values of different longitudinal posi-
tions in the y-direction. The curve in Fig. 7(b) can also be
approximated as a straight line with a slope close to 0.9, and
the error of the predicted values did not exceed 1 mm; the
error resulted from the effect of predicting the anomaly depth
when the anomalies were at different lateral positions.

Consequently, the difference between the true and
predicted values presented in Fig. 7 demonstrates that the
proposed SAE neural network based method represents an
excellent solution to the problem of inaccurate depth predic-
tion in the reflection DOT.

D. SAE NEURAL NETWORK RECONSTRUCTION
RESULTS UNDER NOISE
In order to evaluate the noise immunity of the network used,
we added noise to the dataset samples. Fig. 8 shows the
network reconstruction result after adding different noises.
Fig. 8 (a)-(d) were reconstruction results after adding 20 dB,
40 dB, 60 dB and 80 dB noise respectively.

Fig. 8 shows the network we used after adding noise
can still reconstruct the location and size of the anomaly.
For this, we also compared the anomaly center positions of
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FIGURE 8. Network reconstruction result under different noises.

FIGURE 9. The center position of anomaly under different noises.

the lateral and longitudinal positions of the predicted data
under different noises. The comparison results obtained in the
x and y directions are shown in Fig. 9.

Fig. 9(a) shows the center position of the anomaly in the
x-direction under different noises. Fig. 9(b) shows the cen-
ter position of the anomaly in the y-direction under differ-
ent noises. The center position of the true anomaly in the
x-direction is 50 mm, and the center position of the real
anomaly in the y-direction is 18 mm. The position and size
error of the anomaly reconstructed by the network is not more
than 2 mm, which proves the good noise resistance of the
network.

V. CONCLUSION
This study proposes a reconstruction method for anomaly
position based on the SAE neural network. The SAE neural
network intended for rapid detection of anomaly position is
constructed by using the Single-Source Multi-Detectors dis-
tribution of light intensity collected on the biological tissues
surface. The proposed method is evaluated by simulations,
and the obtained results show that the SAE neural network
exhibits great advantages regarding the accuracy and stability
of anomaly position reconstruction compared with the tradi-
tional linear iterative algorithm. Due to the simple structure
and short reconstruction time, the proposed method can be
used as an effective tool for rapid determination of anomaly
position in biological tissues in the clinical tasks.
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