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ABSTRACT In this paper, we propose a novel robust algorithm for image recovery via affine transformations
and the L2,1 norm. To be robust against miscellaneous adverse effects such as occlusions, outliers, and heavy
sparse noise, the new algorithm integrates affine transformations with low-rank plus sparse decomposition,
where the low-rank component lies in a union of disjoint subspaces, so the distorted or misaligned images can
be rectified to render more faithful image representation. In addition, the L2,1 norm is employed to remove
the correlated samples across the images, enabling the new approach to be more resilient to outliers and
large variations in the images. The determination of the variables involved and the affine transformations is
cast as a convex optimization problem. To alleviate the computational complexity, the Alternating Direction
Method of Multipliers (ADMM) method is utilized to derive a new set of recursive equations to update the
optimization variables and the affine transformations iteratively in a round-robin manner. The convergence
of the developed updating equations is addressed and experimentally validated as well. The conducted
simulations demonstrate that the new algorithm is superior to the state-of-the-art works in terms of accuracy
on some public databases.

INDEX TERMS Affine transformation, L2,1 norm, robust image recovery, low-rank plus sparse
representation.

I. INTRODUCTION
Image recovery has found applications in a variety of
areas such as medical imaging, wireless sensor networks,
surveillance, batch image denoising, computational imaging,
etc. [1]–[6]. Image recovery can also be used in background
extraction, where the low-rank component corresponds to
the background and the sparse component captures the fore-
ground [7]–[9]. However, this problem faces some severe
challenges such as illumination variation, occlusion, outliers
and heavy sparse noise. It is thus important to develop robust
image recovery algorithms to tackle the above adverse effects.

A number of robust algorithms have been addressed
for the image alignment or image recovery problems. For
instance, De la Torre et al. [10] proposed a parameterized
component analysis algorithm to find the low-rank com-
ponent, and used a robust fitting function to reduce the
impact of outliers. However, it is non-convex and thus
lacks a polynomial-time algorithm to solve the problem.
To tackle this dilemma, Ebadi and Izquierdo [11] considered
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an approximated robust principal component analysis for
the recovery of corrupted and linearly correlated images.
Chen et al. [12] addressed a Non-convex plus Quadratic
penalized a Low-rank and Sparse Decomposition (NQLSD)
algorithm to clean the outliers and sparse errors. However,
it was unable to recover and align images when the out-
liers and noise follow statistical distributions other than
the mixture of Gaussian distributions. Peng et al. [13]
considered a Robust Alignment for Sparse and Low-rank
decomposition (RASL) algorithm by affine transformations
to recover the low-rank component. However, it only consid-
ers the outliers from a single subspace. Oh et al. [14] proposed
a new method, Partial Singular Value Thresholding (PSVT),
which used the partial sum of the singular values to replace
the nuclear norm in the Robust Principal Component Analysis
(RPCA) algorithm [15] to find the low-rank component. It is,
however, not robust against outliers and sparse errors when
there are lots of data samples. He et al. [16] considered
a similar efficient convex relaxation algorithm. However,
it cannot deal with outliers lying outside the main subspaces.
To overcome this setback, [17] proposed an Image Alignment
Robust Principal Component Analysis via stochastic gradient
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descent (IA-RPCA) by combining geometric transformations
with the online RPCA. However, it fails in aligning images
when there are severe occlusions, distortions and outliers.
To resolve this drawback, Zheng et al. [18] considered an
optimization problem for batch image alignment via Image
Gradient Orientations for Online Robust Image Alignment
(IGO-RIA) to minimize the impact of sparse errors.

In this paper, we propose a novel robust algorithm for
image recovery via affine transformations and the L2,1 norm.
To be robust against miscellaneous adverse effects such as
occlusions, outliers and heavy sparse noise, the new algo-
rithm integrates affine transformations with low-rank plus
sparse decomposition, where the low-rank component lies
in a union of disjoint subspaces, so the distorted or mis-
aligned images can be rectified to render more faithful image
representation. In addition, the L2,1 norm, which enjoys the
advantages of the L1 and L2 norms, is employed to remove
the correlated samples across the images, enabling the new
approach to be more resilient to outliers and large variations
in the images. The determination of the variables involved
and the affine transformations is cast as a convex optimiza-
tion problem. To alleviate the computational complexity,
the Alternating Direction Method of Multipliers (ADMM)
method is utilized to derive a new set of recursive equations to
update the optimization variables and the affine transforma-
tions iteratively in a round-robin manner. The convergence
of the developed updating equations is addressed as well.
Conducted simulations demonstrate that the new algorithm
is superior to the state-of-the-art works in terms of accuracy
on some public databases.

The major contributions of this paper include:
1) The affine transformations are aggregated with the low-

rank plus sparse representation, where the low-rank com-
ponent lies in a union of subspaces instead of one single
subspace. These transformations can fix the distortion or mis-
alignment in a batch of corrupted images to render more faith-
ful image decomposition, thereby being more robust against
heavy sparse errors and outliers.

2) Since large errors in images may happen, which will
impact the accuracy of image recovery, the L2,1 norm is
utilized. This new norm, when combined with the affine
transformations, can further enhance the performance.

3) The ADMM method is employed to solve the new con-
vex optimization problem and a new set of updating equations
is derived to iteratively update the optimization variables and
the affine transformations.

4) The convergence of the developed iterative equations is
addressed and experimentally justified.

The remainder of this paper is organized as follows. Sec. II
gives an overview of the related works. Sec. III describes the
formulation of the problem. Secs. IV and V develop updating
equations to solve the proposed problem and analyze its
convergence characteristics, respectively. In Sec. VI, exper-
imental results are conducted to justify the proposed method.
Sec. VII provides some concluding remarks to summarize the
paper.

II. RELATED WORKS
There has been a considerable amount of research
in image alignment and image recovery. For instance,
Vedaldi et al. [27] proposed to minimize a log-determinant
cost function to tackle the potential impact of sparse errors
in image alignment. Lia and Fang [28] addressed an image
alignment algorithm by explicitly modeling the spatially
varying illumination multiplication and bias factors by low-
order polynomials. However, it does not work well when
there are severe outliers and sparse errors in the data.
To circumvent this setback, [29], [30] considered a RPCA
algorithms, which decomposed the corrupted data into a
summation of a low-rank component and sparse errors.
Podosinnikova et al. [31] developed a robust PCA to min-
imize the reconstruction error. Shahid et al. [32] incorpo-
rated the spectral graph regularization with the robust PCA.
Shaker et al. [33] proposed an online sequential framework
to recover the low-rank component by pruning the sparse
corruptions. Hu et al. [34] introduced an approximate of the
low-rank assumption for the matrix via a low-rank regulariza-
tion to solve the face image denoising problems. Zhang and
Lerman [35] proposed a robust subspace recovery method to
reduce the influence of outliers and sparse noise. However,
its complexity is high when the outliers and sparse noise are
heavy in the data.

Extensive approaches have also been investigated to
solve the low-rank subspace decomposition problems.
Zhang et al. [36] addressed a linear subspace learning
approach via the low-rank decomposition. Zhao et al. [37]
proposed a robust discriminant low-rank representation to
explore the multiple subspace structures. Ma et al. [38] pro-
posed a generalized Principal Component Analysis (GPCA),
which utilized an algebraic approach to model the data drawn
from a union of subspaces. Liu et al. [26] proposed a low-
rank representation to identify the subspace structures from
the corrupted data. Recently, Rao et al. [39] introduced
a compressed sensing technique to subspace segmentation.
Elhamifar and Vidal [40] considered a Sparse Subspace Clus-
tering (SSC) approach which used the sparsest representa-
tion produced by L1-minimization [41] to define the affinity
matrix of an undirected graph. The subspace segmentation
is performed by spectral clustering algorithms such as the
normalized cuts [42] and subspace clustering [42], [43].
These algorithms, however, are not robust against occlusions
and illuminations. To resolve this drawback, [44] proposed
a transformation invariant subspace clustering framework
by jointly aligning data samples and learning the subspace
representation. Shen et al. [45] addressed an online low-
rank subspace clustering by basis dictionary pursuit to reduce
complexity. Wu et al. [46] proposed an orthogonal subspace
decomposition algorithm to mitigate the impact of noise
in motion segmentation. Li et al. [21] arranged the input
images as a 3D tensor, and claimed that severe intensity
distortions and partial occlusions can be separated in the gra-
dient and frequency domains. The optimally aligned image
tensor is achieved by simultaneously specifying a frequency
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tensor and a gradient error tensor. It is, however, very
time-consuming. Ding and Fu [47] proposed a multi-view
subspace learning algorithm through dual low-rank decom-
position to seek a low-dimensional view invariant subspace
from multi-view data.

To deal with higher-dimensional data, RPCA has also been
extended from images to multi-way data [48]. A number of
robust tensor PCA methods have been proposed. For exam-
ple, Liu et al. [49] considered an Improved Robust Tensor
Principal Component Analysis (IRTPCA) method which fur-
ther exploited the low-rank structure and used an improved
tensor nuclear norm to provide better performance. Com-
pared with our work, apart from different input data type
we use different norms and incorporate the affine transfor-
mations in low-rank component recovery. Liu et al. [48]
addressed a low tensor tree rank and total variation minimiza-
tion method for image completion. However, total variation
mainly accounts for the piecewise smoothness, but our focus
is mainly on sparsity of the noise and outliers. Also, we use
the L2,1 norm instead of the L1 or the L2 norms in [48], [50].
Recently, non-convex optimization has also drawn lots

of research interests, as summarized in [51]–[53]. In some
cases, the non-convex regularizers such as L0, L1/2, SCAD,
MC, Lq, and log−q regularizers can indeed provide superior
performance over the convex regularizers. However, in some
scenarios when the signal is not strictly sparse or when the
signal-to-noise ratio is low, the use of the non-convex regular-
ization may not substantially improve the performance [51],
[55]. Also, the global solution is not ensured and the analy-
sis of the convergence characteristics algorithms using these
non-convex regularizers is not an easy task.

III. PROBLEM FORMULATION
Consider n images, {I0i } ∈ <

w×h, i = 1, · · · , n, where w and
h denote the weight and height of the images, respectively.
All of these images contain the same objects and are highly
correlated with each other. In many scenarios, these images
are corrupted by occlusions and outliers. We can stack these
images into a matrix: M = [vec(I01 ) | vec(I

0
2 ) | . . . |

vec(I0n )] ∈ <
m×n, where vec(·) denotes the vector stacking

operator. We can decompose M into a summation of a low-
rank component and a sparse error matrix [56], [57]: M =
AC + E, where we assumed that the subspaces may not be
independent from each other or the data are contaminated
by large noise, so the low-rank component lies in a union
of subspaces, in which A ∈ <m×n is a clean low-rank
dictionary and C ∈ <n×n is a coefficient matrix as the low-
rank representation by A, and E ∈ <m×n denotes a sparse
error matrix incurred by outliers or corruptions.

In practice, I0i are generally not well aligned, entailing the
above low-rank plus sparse decomposition to be imprecise.
To take account of this, inspired by [13] we apply affine
transformations τ i to the potentially misaligned input images
I0i to get a collection of transformed images I i = I0i oτ i,
where the operator o indicates the transformation. We can
then stack these aligned images into a matrix and obtain

Moτ = [vec(I1) | vec(I2) | . . . | vec(In)] ∈ <m×n. The
aligned images can be treated as samples taken from a union
of low-dimensional subspaces, which, if well aligned, should
exhibit a low-rank subspace structure as the rank of the trans-
formed images is as small as possible, up to some outliers and
heavy sparse errors. Solving for the variables corresponding
to the constraints Moτ = AC C E is intractable due to its
nonlinearity. To resolve this dilemma, we assume that the
change produced by these affine transformations τ i is small
and an initial of τ i is known. We can then linearize Moτ by
using the first-order Taylor approximation as Mo(τ+1τ ) ≈

Moτ +
∑n

i=1 J i1τviv
T
i , where Moτ ∈ <

m×n is the trans-
formed image, 1τ ∈ <p×n with p being the number of
variables, J i =

∂vec(I ioτ i)
∂τ i

∈ <
m×p denotes the Jacobian of the

ith image with respect to τ i, and vi is the standard basis for<n.
In this way, we obtain approximate transformations to recover
the low-rank component from the underlying subspaces.

To make the new approach more resilient to outliers and
heavy sparse noise, the L2,1 norm, which combines the advan-
tages of the L1 and L2 norm, is used here. The L2,1 regularizer
is considered as the rotational invariant of the L1 norm and
can effectively handle outliers [58]. Also, as observed in
[59], the L2,1 regularizer can also achieve better sparsity
promotion than the L1 norm. The L1 norm may yield a biased
estimation as it ignores the extreme values and cannot handle
the collinearity of features. In contrast, the L2,1 norm is
more stable and has the ability to better preserve the spatial
information than the L1 regularizer, as demonstrated in [58],
[59]. Additionally, the L2,1 norm is superior to the nonconvex
norms when the signals are not sparse or when the matrix is
not strictly low-rank [51], [55]. The overall problem can thus
be posted as an optimization problem given by

min
A,E,C,Q,1τ

‖A‖∗ + ‖C‖∗ + λ1 ‖Q‖2,1 + λ2 ‖E‖2,1

s.tMoτ +

n∑
i=1

J i1τvivTi = AC + E, C = Q,Q � 0

(1)

where ‖A‖∗ =
∑min(m,n)

i=1 σi(A) denotes the nuclear norm
of A, in which σi(A) indicates the singular values of A,
λ1 and λ2 are the regularization parameters, and ‖E‖2,1 =∑m

i=1(
∑n

j=1 E
2
ji)

1/2 denotes the L2,1 norm of E.
The first nuclear norm term in (1) enforces the dictionary

A to lie in low-dimensional subspaces. The second and the
third terms constrain the representation to be low-rank plus
sparse. The fourth term regularizes the error E to be sparse.
For easy reference, a comparison of the proposed approach

with other related methods is furnished in Table 1.

IV. PROPOSED METHOD
To solve the optimization problem in (1), we use the aug-
mented Lagrangian multiplier technique and re-write (1) as

L
(
A,C,E,Q,1τ

)
= ‖A‖∗ + ‖C‖∗ + λ1 ‖Q‖2,1
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TABLE 1. Comparison of the proposed approach with other related algorithms in terms of the objective function and constraints.

+ λ2 ‖E‖2,1 + 〈Z1,B− AC − E〉

+
µ1

2
‖B− AC − E‖2F + 〈Z2,C − Q〉

+
µ2

2
‖C − Q‖2F (2)

where Z1 ∈ <m×n and Z2 ∈ <n×n are the Lagrangian mul-
tipliers, µ1 and µ2 are the penalty parameters, 〈X,Y 〉 =
Trace(XTY ), || · ||F denotes the Frobenius norm, and
B = Moτ +

∑n
i=1 J i1τviv

T
i . By using augmented Lagrange

multiplier with adaptive penalty [60], Eq. (2) can be rewritten
as

L
(
A,C,E,Q,1τ

)
= ‖A‖∗ + ‖C‖∗ + λ2 ‖E‖2,1

+ λ1 ‖Q‖2,1 +
µ1

2

∥∥∥∥B− AC − E+ Z1
µ1

∥∥∥∥2
F

+
µ2

2

∥∥∥∥C − Q+ Z2
µ2

∥∥∥∥2
F

(3)

Solving (3) directly is computationally prohibitive, thereby
we consider to iteratively update the variables alternatively
via ADMM [60], which decomposes the original problem
into a set of subproblems. In each step, we update just
one variable while keeping the other variables unchanged.
So the above terms like ‖B− AC − E‖F are convex even if
it involves the matrix factorization term AC [61].

Firstly, to update A, we fix E, Q, C and 1τ , so A(k+1) can
be determined by

A(k+1)
= argmin

A
L
{
A,E(k),C(k),Q(k),1τ (k)

}
(4)

where k is the iteration index. By ignoring all irrelevant terms
of A, Eq. (4) can be simplified as

A(k+1)
=argmin

A

{
‖A‖∗+

µ
(k)
1

2

∣∣∣∣∣∣∣∣B(k)
−AC(k)

−E(k)
+
Z(k)1

µ
(k)
1

∣∣∣∣∣∣∣∣2
F

}
(5)

We can then use the linear augmented direction method
with the soft shrinkage operator in [57], [62], [63] and update
A(k+1) by

A(k+1)
= � 1

κ
(k)
A

{
A(k)
−

P(k)A
κ
(k)
A

}
(6)

where � is the singular value threshold, P(k)A =

(µ(k)
1 )(A(k))TC(k)

− µ
(k)
1 (B(k)

− E(k))− (Z(k)1 + Z
(k)
2 )(C(k))T ,

κ
(k)
A = (µ(k)

1 ) τA2 , τA > σ (CTC) is the proximal parameter,
in which σ (CTC) denotes the spectral radius of CTC.

Secondly, to update E, we keep A, Q, C and 1τ as con-
stants, so E(k+1) can be determined by

E(k+1)
= argmin

E
L
{
A(k+1),E,C(k),Q(k),1τ (k)

}
(7)

Again, by ignoring all irrelevant terms of E, Eq. (7) can be
simplified as

E(k+1)
= argmin

E

{
λ2 ‖E‖2,1 +

µ
(k)
1

2

∣∣∣∣∣∣∣∣B(k)

−A(k)C(k)
− E+

Z(k)1

µ
(k)
1

∣∣∣∣∣∣∣∣2
F

}
(8)

By using lemma [64], the update of the ith column of
E(k+1), E(k+1)

i , is given by

E(k+1)
i =


∥∥∥V (k)

i

∥∥∥
2
−

λ2

µ
(k)
1∥∥∥V (k)

i

∥∥∥
2

V (k)
i , if

∥∥∥V (k)
i

∥∥∥
2
≥

λ2

µ
(k)
1

0, otherwise

(9)

where ‖.‖2 denotes the Euclidean norm and V (k)
= (B(k)

−

A(k)C(k)
+

Z(k)1

µ
(k)
1

).

Thirdly, to find an update of C, we keep A, E, Q and 1τ
as constants, and thus C(k+1) can be determined by

C(k+1)
= argmin

C
L
{
A(k+1),E(k+1),C,Q(k),1τ (k)

}
(10)

By ignoring all irrelevant terms of C, Eq. (10) can be
simplified as

C(k+1)
= argmin

C

{
‖C‖∗ +

µ
(k)
1

2

∣∣∣∣∣∣∣∣B(k)

−A(k)C − E(k)
+
Z(k)1

µ
(k)
1

∣∣∣∣∣∣∣∣2
F

+
µ2

2

∥∥∥∥∥C − Q(k)
+
Z(k)2

µ
(k)
2

∥∥∥∥∥
2

F

}
(11)

To solve this sub-problem, we can employ a linearized
augmented Lagrangian multiplier with the singular value
threshold [57], [62], [63] Thereby, C(k+1) can be updated by

C(k+1)
= � 1

κ
(k)
C

{
C(k)
−

P(k)C
κ
(k)
C

}
(12)
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where κ (k)C = (µ(k)
1 + µ

(k)
2 ) τC2 , τC > σ (AAT ) and P(k)C =

A(k)(µ(k)
1 +µ

(k)
2 )A(k)

−µ
(k)
1 (B(k)

−E(k))−Z(k)1 +µ
(k)
2 (C(k)

−

Q(k))+ Z(k)2 .
Again, to update Q, we keep A, E, C and 1τ as constants

and Q(k+1) can then be determined by

Q(k+1)
= argmin

Q
L
{
A(k+1),E(k+1),C(k+1),Q,1τ (k)

}
(13)

By ignoring all of the irrelevant terms, Eq. (13) can be
simplified as

Q(k+1)
= argmin

Q


λ1 ‖Q‖2,1

+
µ
(k)
2
2

∥∥∥∥C(k)
− Q+ Z(k)2

µ
(k)
2

∥∥∥∥2
F

 (14)

Again, by using lemma in [64], the update of the ith column
of Q(k+1), Q(k+1)

i , is given by

Q(k+1)
i =


∥∥∥P(k)

i

∥∥∥
2
−

λ1

µ
(k)
2∥∥∥P(k)

i

∥∥∥
2

P(k)
i , if

∥∥∥P(k)
i

∥∥∥
2
≥

λ1

µ
(k)
2

0, otherwise

(15)

where P(k)
= (C(k+1)

+
Z(k)2

µ
(k)
2

).

Lastly, to get an update of 1τ , we keep A, E, C and Q as
constants and 1τ (k+1) can be determined by

1τ (k+1) = argmin
1τ

L
{
A(k+1),E(k+1),C(k+1),1τ ,Q(k+1)}

(16)

By ignoring all irrelevant terms of 1τ , we can obtain

1τ (kC1) = argmin
1τ

{
µ
(k)
1

2

∣∣∣∣∣∣∣∣B(k)
− A(k+1)C(k+1)

−E(k+1)
+
Z(k)1

µ
(k)
1

∣∣∣∣∣∣∣∣2
F

}
(17)

Solving (17) with the threshold operators [13] and [12], we
can get an update of 1τ (k+1) as

1τ (k+1)=

n∑
i=1

J+i

(
A(k+1)C(k+1)

+E(k+1)
−Moτ−

Z(k)1

µ
(k)
1

)
vivTi

(18)

where J+i denotes the Moores-Penroses Pseudoinverse of J i
[65].

Following the same steps as the above, the Lagrangian
multipliers Z1 and Z2 are updated by

Z(k+1)1 =Z(k)1 +µ
(k+1)
1

{
B(k)
−A(k+1)C(k+1)

− E(k+1)} (19)

and

Z(k+1)2 = Z(k)2 + µ
(k+1)
2

{
C(k+1)

− Q(k+1)} (20)

Likewise, the regularization parameters µ1 and µ2 are
updated respectively by

µ
(k+1)
1 = min

{
µmax , ρµ

(k)
1

}
(21)

and

µ
(k+1)
2 = min

{
µmax , ρµ

(k)
2

}
(22)

where ρ is a properly chosen constant and µmax is a tunable
parameter adjusting the convergence of the proposed method.

These updating equations proceed in a round-robin man-
ner until convergence. For easy reference, the updat-
ing equations of the proposed algorithm is summarized
in Algorithm 1.

Algorithm 1 ADMM for the Proposed Algorithm

Input: Data MatrixM ∈ <m×n, A0
∈ <

m×n, E0
∈ <

m×n,
1τ0 ∈ <p×n, C0

∈ <
n×n, Q0

∈ <
n×n, λ1, λ2, ρ

While not converged Do
1: Update: A(kC1) by (6)
2: Update: E(kC1) by (9)
3: Update: C(kC1) by (12)
4: Update: QkC1 by (15)
5: Update: 1τ (kC1) by (18)
6: Update: Z(k+1)1 by (19)
7: Update: Z(k+1)2 by (20)
8: Update: µ(k+1)

1 by (21)
9: Update: µ(k+1)

2 by (22)
End while
Outputs:A,E, C, Q, 1τ

V. CONVERGENCE ANALYSIS
This section considers the convergence characteristics of the
updating equations addressed in the previous section. Two
theorems are established to address this issue.
Theorem 1: If

{
µ
(k)
1

}
is non-decreasing and upper-

bounded by τA > σ (CCT ), then the sequences
{
A(k)}, {E(k)}

and
{
Z(k)1

}
by ADMM converge to a Karush-Kuhn-Tucker

(KKT) point of (6) and (9).
Theorem 2: If

{
µ
(k)
1

}
and

{
µ
(k)
2

}
are non-decreasing

and upper-bounded by τC > σ (AAT ), then the sequences{
C(k)},{Q(k)}, {

1τ (k)
}
,
{
Z1(k)

}
,
{
Z2(k)

}
generated by

ADMM converge to a KKT point of (12), (15) and (18).
The proofs of both theorems can be readily extended

from [54], [57], [62], [63].
Theorem 1 implies that the variablesA(k) andE(k) are guar-

anteed to converge to the global optimumwith an appropriate
choice of the Lagrange multipliers

{
Z(k)1

}
and

{
Z(k)2

}
, and

a sufficiently large penalty parameters
{
µ
(k)
1

}
. Meanwhile,

Theorem 2 shows that the variables C(k), Q(k) and 1τ (k)

are guaranteed to converge to the global optimum with an
appropriate choice of the Lagrange multipliers

{
Z(k)1

}
and{

Z(k)2

}
, and sufficiently large penalty parameters

{
µ
(k)
1

}
and

{
µ
(k)
2

}
.
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TABLE 2. Comparison of the proposed approach with the L1 or L2,1 norm of E and Q, and with and without the affine transformations on three databases.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS
In this section, we first assess the convergence behavior of the
proposed algorithm. Afterward, we justify the effectiveness
of the new algorithm for image recovery on some public
databases. Our comparison is in terms of two widespread
metrics: Peak Signal to Noise Ratio (PSNR) and Structural
Similarly Index (SSIM). The PSNR is defined as

PSNR(f , f̂ ) = 10log

2552
1

m×n
∑m
i=1

∑n
i=1(fij−f̂ij)

2

10 (23)

where f and f̂ denote the original image and the recovered
image, the size of both of which is m× n. On the other hand,
the SSIM is a perceptual image quality assessment measure
and is defined as

SSIM(f , f̂ ) =
(2µf µf̂ + C1)(2σf ,f̂ + C2)

(µ2
f + µ

2
f̂
+ C1)(σ 2

f + σ
2
f̂
+ C2)

(24)

where σf ,f̂ is the correlation coefficient between f and f̂ , µf
and σ 2

f denote the mean and variance corresponding to f ,
respectively, and C1 and C2 are constants mostly taken as
one to stabilize the algorithm. The three databases considered
include theMINST database [66], theWild database [67], and
the Al Gore talking video [13].

A. EXPERIMENTAL CONVERGENCE PERFORMANCE
In this section, we provide some experimental analysis of the
proposed algorithm based on three sets of images. The first set
of image is the handwritten digits from the MINST database,
the second one is the Natural Face images from the Wild
database, and the third one is the video face images from the
Al Gore talking video. As [49], the convergence characteristic
is assessed by comparing the Relative Square Error (RSE) vs.
the iteration number, where RSE is defined as∥∥∥ ˆf − f ∥∥∥

F

‖f ‖F
(25)

in which f̂ is the recovered image and f is the original one.
The resulting convergence curves are as shown in Fig. 1 based
on three sets of images, from which we can see that the RSEs
of the proposed algorithm for all images decrease with the
iteration number and then reach at a constant after a few
iterations. This fact justifies the convergence of the proposed
algorithm.

B. ABLATION STUDIES
First, we investigate the performance of the proposed
approach using either the L1 or the L2,1 norms of E

FIGURE 1. Convergence curves of the proposed algorithm on (a)
Handwritten images; (b) Natural Face images;(c) Video Face images.

and Q, and with and without the affine transformations on
three databases, as shown in Table 2, from which we can
see that the PSNR performance can be boosted with the
incorporation of the affine transformations in the low-rank
plus sparse decomposition. This is because the L2,1 norm is
considered, which is better than the L1 norm in dealing with
outliers. Also, the performance can be further improved if we
consider the L2,1 norm instead of the L1 norm of Q and E in
the objective function in (1). The performance improvement
on the handwritten digits is more substantial. This is because
the L2,1 norm can remove the correlated samples across the
images, so it is more resilient to outliers and large variations
in the images, which are more pronounced in the handwritten
digits.

C. COMPARISON WITH THE STATE-OF-THE-ART
METHODS
In this subsection, we compare the proposed approach, which
adds in the affine transformations and uses the L2,1 norm,
with some recently reported works in terms of PSNR on
the aforementioned three databases. Five different state-
of-the-art methods, including RASL [13], IA-RPCA [17],
PSVT [14], NQLSD [12], IGO-RIA [18] and the proposed
algorithm are conducted for comparison. The results from
these baselines are to re-implement of the publicly available
codes.
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1) HANDWRITTEN DIGITS
In this experiment, 30 handwritten digits of the size
29 × 29 are taken from the MINST database [66].
We compare the PSNR performance of the proposed
method with the aforementioned five baselines, as shown
in Table 3 and Table 4, from which we can see that NQLSD
has better performance than IA-RPCA, as NQLSD employs
the local linear approximation with a quadratic penalty
approach to tackle the potential setback of outliers and sparse
noise in the images. We can notice that PSVT yields better
performance than RASL, NQLSD and IA-RPCA. This is
because PSVT employs the truncated nuclear norm rather
than the nuclear norm to better deal with outliers and sparse
noise. IGO-RIA is superior to the other four baselines, as it
considers an iterative linearization to minimize the L1 norm
of the sparse error and the optimization variables are adap-
tively updated based on the incremental thin singular value
decomposition. We can also observe from Tables 3 and 4 that
the proposed approach provides the best performance. This
is because it incorporates a set of affine transformations and
employs the L2,1 norm to simultaneously align and recover
the hand written digits, both of which enable the new algo-
rithm to be more robust against outliers, heavy sparse noise,
occlusions, and illuminations.

As an illustration, some visual images of the recov-
ered handwritten digits based on the aforementioned meth-
ods are shown in Fig. 2, from which we can see that
the proposed method is better aligned and recovers the
handwritten images better as compared with the other five
baselines. As shown in Fig. 2 (g), the recovered hand-
written images provide clearer visual quality by prop-
erly removing the adverse effects such as outliers and
heavy sparse noise. This is in agreement with the results
in Tables 3 and 4, and further justifies that the proposed
approach is more resilient to outliers and heavy sparse
noise.

2) NATURAL FACE IMAGES
Next, we conduct simulations on more challenging images
taken from the Labeled Natural Faces in the Wild
database [67]. In this experiment, 7 Natural Face images with
the size 80 × 60 are considered. We compare the proposed
method with the aforementioned five baselines in terms
of PSNR for image recovery. The comparison results are
given in Tables 3 and 4, from which we can see that PSVT
outperforms RASL, NQLSD and IA-RPCA, as it considers
the partial sum of the singular values instead of the nuclear
norm of the low-rank component to reduce the errors between
the original distorted Natural Face images and the recovered
one. IGO-RIA provides the second best performance, as it can
cope with outliers and heavy sparse noise via the L1 norm
and the subspace learning into a unified online framework.
We can also find that the proposed method provides the
largest PSNR compared with the other baselines. This is
because the new approach uses the affine transformations

FIGURE 2. Some recovered handwritten digits: (a) Original; (b) RASL;
(c) PSVT;(d) NLQSD; (e) IA-RPCA; (f) IGO-RIA; (g) Ours.

to fix the images in the low-rank plus sparse decomposition
and employs the L2,1 norm, so it is more robust to various
annoying effects.
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FIGURE 3. Some recovered Natural Face images:(a) Original; (b) RASL;
(c) PSVT;(d) NLQSD; (e) IA-RPCA; (f) IGO-RIA (g) Ours.

Again, as an illustration, some recovered Natural
Face images based on the proposed method and the
aforementioned baselines are given in Fig. 3, where the
Natural Face images with different corruptions are depicted
in Fig. 3 (a). The recovered images by the aforementioned
algorithms are shown in Fig. 3 (b)-(g), from which we can
see that the visual quality of the proposed method is better
than all of the baselines. This is consistent with the numerical
results in Tables 3 and 4.

3) VIDEO FACE IMAGES
Finally, we conduct an experiment on more complicated face
images in videos taken from the Al Gore talking [13]. In this

FIGURE 4. Some recovered face images from Al Gore talking:(a) Original;
(b) RASL; (c) PSVT;(d) NLQSD; (e) IA-RPCA; (f) IGO-RIA (g) Ours.

video, 7 different video face images with the size 232× 312
are considered. The comparison of PSNR using the proposed
method and the other five baselines is given in Tables 3 and 4,
from which we can see that IGO-RIA yields the second
best performance. This is because IGO-RIA combines the
subspace learning with iterative linearization to minimize
the L1-norm of the sparse error. We can also notice from
Tables 3 and 4 that the proposed method still outperforms all
baselines, as it includes affine transformations and utilizes the
L2,1 norm to render more robust subspace recovery.

As an illustration, some recovered face images based on
the above algorithms are provided in Fig. 4, from which we
can find that the proposed method again produces recovered
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TABLE 3. Performance comparisons on different databases in terms of PSNR.

TABLE 4. Performance comparisons on different databases in terms of SSIM.

images with better visual quality as compared with the five
baselines. These results are once again in agreement with the
numerical results in Tables 3and 4.

VII. CONCLUSIONS
In this paper, we have developed a new algorithm for robust
image recovery by combining the affine transformations with
low-rank plus sparse image representation and utilizing the
L2,1 norm. The search of the affine transformations and the
optimization variables is formulated as a constrained con-
vex optimization problem. The ADMM approach is then
employed and a new set of equations is established to iter-
atively update the optimization variables and the affine trans-
formations. Moreover, the convergence of these new updat-
ing equations is experimentally verified as well. Conducted
simulations show that the new algorithm outperforms the
state-of-the-art methods in terms of accuracy on three public
databases.

ACKNOWLEDGMENT
The authors would like to express their gratitude to the asso-
ciate editor and to the anonymous reviewers for carefully
reviewing the manuscript, for many thoughtful comments,
and for bringing more related references to their attention,
which have enhanced the readability and quality of this
manuscript.

REFERENCES

[1] J. Yang, L. Luo, J. Qian, Y. Tai, F. Zhang, and Y. Xu, ‘‘Nuclear norm based
matrix regression with applications to face recognition with occlusion and
illumination changes,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 1, pp. 156–171, Jan. 2017.

[2] H. T. Likassa andW.-H. Fang, ‘‘Robust regression for image alignment via
subspace recovery techniques,’’ in Proc. ACM Int. Conf. Netw., Commun.
Comput., 2018, pp. 288–293.

[3] G. Chen, X.-Y. Liu, L. Kong, J.-L. Lu, W. Shu, and M.-Y. Wu, ‘‘JSSDR:
Joint-sparse sensory data recovery in wireless sensor networks,’’ in Proc.
IEEE Int. Conf. Wireless Mobile Comput., Netw. Commun., Oct. 2013,
pp. 367–374.

[4] X. Xiang and T. D. Tran, ‘‘Linear disentangled representation learning for
facial actions,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 12,
pp. 3539–3544, Dec. 2018.

[5] G. Lerman and T. Maunu, ‘‘An overview of robust subspace recovery,’’
Proc. IEEE, vol. 106, no. 8, pp. 1380–1410, Aug. 2018.

[6] M. K. Chung, H. Lee, P. T. Kim, and J. C. Ye, ‘‘Sparse topological data
recovery in medical images,’’ in Proc. IEEE Int. Symp. Biomed. Imag.,
From Nano Macro, Jun. 2011, pp. 1125–1129.

[7] T. Bouwmans, S. Javed, H. Zhang, Z. Lin, and R. Otazo, ‘‘On the applica-
tions of robust PCA in image and video processing,’’ Proc. IEEE, vol. 106,
no. 8, pp. 1427–1457, Aug. 2018.

[8] S. Wang, Y. Wang, Y. Chen, P. Pan, Z. Sun, and G. He, ‘‘Robust PCA using
matrix factorization for background/foreground separation,’’ IEEE Access,
vol. 6, pp. 18945–18953, 2018.

[9] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy, ‘‘Robust
subspace learning: Robust PCA, robust subspace tracking, and robust
subspace recovery,’’ IEEE Signal Process. Mag., vol. 35, no. 4, pp. 32–55,
Jul. 2018.

[10] F. De la Torre andM. J. Black, ‘‘Robust parameterized component analysis:
Theory and applications to 2D facial appearance models,’’ Comput. Vis.
Image Understand., vol. 91, nos. 1–2, pp. 53–71, 2003.

[11] S. E. Ebadi and E. Izquierdo, ‘‘Approximated RPCA for fast and effi-
cient recovery of corrupted and linearly correlated images and video
frames,’’ in Proc. IEEE Int. Conf. Syst., Signals Image Process., Sep. 2015,
pp. 49–52.

[12] X. Chen, Z. Han, Y.Wang, Y. Tang, and H. Yu, ‘‘Nonconvex plus quadratic
penalized low-rank and sparse decomposition for noisy image alignment,’’
Sci. China Inf. Sci., vol. 59, no. 5, May 2016, Art. no. 052107.

[13] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, ‘‘RASL: Robust
alignment by sparse and low-rank decomposition for linearly corre-
lated images,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11,
pp. 2233–2246, Nov. 2012.

[14] T.-H. Oh, Y.-W. Tai, J.-C. Bazin, H. Kim, and I. S. Kweon, ‘‘Partial sum
minimization of singular values in robust PCA: Algorithm and applica-
tions,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 4, pp. 744–758,
Apr. 2016.

[15] E. J. Candès, X. Li, Y. Ma, and J. Wright, ‘‘Robust principal component
analysis?’’ J. ACM, vol. 58, no. 3, p. 11, May 2011.

[16] J. He, D. Zhang, L. Balzano, and T. Tao, ‘‘Iterative Grassmannian opti-
mization for robust image alignment,’’ Image Vis. Comput., vol. 32, no. 10,
pp. 800–813, 2014.

[17] W. Song, J. Zhu, Y. Li, and C. Chen, ‘‘Image alignment by online robust
PCA via stochastic gradient descent,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 26, no. 7, pp. 1241–1250, Jul. 2016.

[18] Q. Zheng, Y. Wang, and P. A. Heng, ‘‘Online subspace learning from
gradient orientations for robust image alignment,’’ IEEE Trans. Image
Process., vol. 28, no. 7, pp. 3383–3394, Jul. 2019.

[19] M. Tao and X. Yuan, ‘‘Recovering low-rank and sparse components
of matrices from incomplete and noisy observations,’’ SIAM J. Optim.,
vol. 21, no. 2, pp. 57–81, 2011.

VOLUME 7, 2019 125019



H. T. Likassa et al.: Robust Image Recovery via Affine Transformation and L2,1 Norm

[20] R. Vidal, Y. Ma, and S. S. Sastry, ‘‘Robust principal component analysis?’’
in Generalized Principal Component Analysis (Interdisciplinary Applied
Mathematics 40). Springer, 2016, pp. 63–122.

[21] Y. Li, C. Chen, F. Yang, and J. Huang, ‘‘Deep sparse representation for
robust image registration,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 4894–4901.

[22] A. Baghaie, R. M. D’Souza, and Z. Yu, ‘‘Sparse and low rank decompo-
sition based batch image alignment for speckle reduction of retinal OCT
images,’’ in Proc. IEEE Int. Symp. Biomed. Imag., Apr. 2015, pp. 226–230.

[23] Q. Zheng, Y. Wang, and P. A. Heng, ‘‘Online robust image alignment via
subspace learning from gradient orientations,’’ in Proc. IEEE Int. Conf.
Comput. Vis., Oct. 2017, pp. 1771–1780.

[24] S. Xiao, M. Tan, D. Xu, and Z. Y. Dong, ‘‘Robust kernel low-rank
representation,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 11,
pp. 2268–2281, Nov. 2016.

[25] C. Lu, Z. Lin, and S. Yan, ‘‘Smoothed low rank and sparse matrix recovery
by iteratively reweighted least squares minimization,’’ IEEE Trans. Image
Process., vol. 24, no. 2, pp. 646–654, Feb. 2015.

[26] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, ‘‘Robust recovery
of subspace structures by low-rank representation,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 1, pp. 171–184, Jan. 2013.

[27] A. Vedaldi, G. Guidi, and S. Soatto, ‘‘Joint data alignment up to (lossy)
transformations,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2008, pp. 1–8.

[28] S.-H. Lai and M. Fang, ‘‘Robust and efficient image alignment with
spatially varying illumination models,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 1999, pp. 167–172.

[29] D. Hsu, S. M. Kakade, and T. Zhang, ‘‘Robust matrix decomposition
with sparse corruptions,’’ IEEE Trans. Inf. Theory, vol. 57, no. 11,
pp. 7221–7234, Nov. 2011.

[30] M. Rahmani and G. K. Atia, ‘‘Randomized subspace learning approach
for high dimensional low rank plus sparse matrix decomposition,’’
in Proc. 49th Asilomar Conf. Signals, Syst. Comput., Nov. 2015,
pp. 1796–1800.

[31] A. Podosinnikova, S. Setzer, and M. Hein, ‘‘Robust PCA: Optimization of
the robust reconstruction error over the stiefel manifold,’’ in Proc. German
Conf. Pattern Recognit., 2014, pp. 121–131.

[32] N. Shahid, N. Perraudin, V. Kalofolias, G. Puy, and P. Vandergheynst, ‘‘Fast
robust PCA on graphs,’’ IEEE J. Sel. Topics Signal Process., vol. 10, no. 4,
pp. 740–756, Jun. 2016.

[33] M. Shakeri and H. Zhang, ‘‘COROLA: A sequential solution to mov-
ing object detection using low-rank approximation,’’ Comput. Vis. Image
Understand., vol. 146, pp. 27–39, May 2016.

[34] Z. Hu, F. Nie, L. Tian, R. Wang, and X. Li, ‘‘A comprehensive survey
for low rank regularization,’’ 2018, arXiv:1808.04521. [Online]. Available:
https://arxiv.org/abs/1808.04521

[35] T. Zhang and G. Lerman, ‘‘A novel M-estimator for robust PCA,’’ J. Mach.
Learn. Res., vol. 15, no. 1, pp. 749–808, 2014.

[36] F. Zhang and J. Yang, ‘‘A linear subspace learning approach via low rank
decomposition,’’ in Proc. IEEE Int. Conf. Innov. Bio-Inspired Comput.
Appl., Dec. 2011, pp. 81–84.

[37] X. Zhao, G. An, Y. Cen, H. Wang, and R. Zhao, ‘‘Robust discriminant low-
rank representation for subspace clustering,’’ Soft Comput., vol. 23, no. 16,
pp. 7005–7013, 2019.

[38] Y. Ma, A. Yang, H. Derksen, and R. Fossum, ‘‘Estimation of subspace
arrangements with applications in modeling and segmenting mixed data,’’
SIAM Rev., vol. 50, no. 3, pp. 413–458, 2008.

[39] S. Rao, R. Tron, R. Vidal, andY.Ma, ‘‘Motion segmentation in the presence
of outlying, incomplete, or corrupted trajectories,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 32, no. 10, pp. 1832–1845, Oct. 2010.

[40] E. Elhamifar and R. Vidal, ‘‘Sparse subspace clustering,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 2790–2797.

[41] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, ‘‘Robust principal
component analysis: Exact recovery of corrupted low-rank matrices via
convex optimization,’’ in Proc. Adv. Neural Inf. Process. Syst., 2009,
pp. 2080–2088.

[42] J. Shi and J. Malik, ‘‘Normalized cuts and image segmentation,’’ Depart-
mental Papers (CIS), p. 107, 2000.

[43] Y.-X. Wang and H. Xu, ‘‘Noisy sparse subspace clustering,’’ J. Mach.
Learn. Res., vol. 17, no. 1, pp. 320–360, 2016.

[44] Q. Li, Z. Sun, Z. Lin, R. He, and T. Tan, ‘‘Transformation invariant
subspace clustering,’’ Pattern Recognit., vol. 59, pp. 142–155, Nov. 2016.

[45] J. Shen, P. Li, and H. Xu, ‘‘Online low-rank subspace clustering by basis
dictionary pursuit,’’ in Proc. Int. Conf. Mach. Learn., 2016, pp. 622–631.

[46] Y. Wu, Z. Zhang, T. S. Huang, and J. Y. Lin, ‘‘Multibody grouping via
orthogonal subspace decomposition,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Dec. 2001, p. II.

[47] Z. Ding and Y. Fu, ‘‘Robust multi-view subspace learning through
dual low-rank decompositions,’’ in Proc. Conf. Artif. Intell., 2016,
pp. 1181–1187.

[48] Y. Liu, Z. Long, and C. Zhu, ‘‘Image completion using low tensor tree rank
and total variation minimization,’’ IEEE Trans. Multimedia, vol. 21, no. 2,
pp. 338–350, Feb. 2019.

[49] Y. Liu, L. Chen, and C. Zhu, ‘‘Improved robust tensor principal component
analysis via low-rank core matrix,’’ IEEE J. Sel. Topics Signal Process.,
vol. 12, no. 6, pp. 1378–1389, Dec. 2018.

[50] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, ‘‘Tensor robust
principal component analysis with a new tensor nuclear norm,’’ IEEE
Trans. Pattern Anal. Mach. Intell., to be published.

[51] F. Wen, L. Chu, P. Liu, and R. C. Qiu, ‘‘A survey on nonconvex
regularization-based sparse and low-rank recovery in signal processing,
statistics, and machine learning,’’ IEEE Access, vol. 6, pp. 69883–69906,
2018.

[52] F. Wen, L. Adhikari, L. Pei, R. F. Marcia, P. Liu, and R. C. Qiu, ‘‘Noncon-
vex regularization-based sparse recovery and demixing with application to
color image inpainting,’’ IEEE Access, vol. 5, pp. 11513–11527, 2017.

[53] P. Jain and P. Kar, ‘‘Non-convex optimization for machine learning,’’
Found. Trends Mach. Learn., vol. 10, nos. 3–4, pp. 143–336, 2017.

[54] Z. Lin, R. Liu, and Z. Su, ‘‘Linearized alternating direction method with
adaptive penalty for low-rank representation,’’ in Proc. Conf. Adv. Neural
Inf. Process. Syst., 2011, pp. 612–620.

[55] Y. Li, Y. Lin, X. Cheng, Z. Xiao, F. Shu, andG. Gui, ‘‘Nonconvex penalized
regularization for robust sparse recovery in the presence of SαS noise,’’
IEEE Access, vol. 6, pp. 25474–25485, 2018.

[56] Z. Lin, M. Chen, and Y. Ma, ‘‘The augmented Lagrange multiplier
method for exact recovery of corrupted low-rank matrices,’’ 2010,
arXiv:1009.5055. [Online]. Available: https://arxiv.org/abs/1009.5055

[57] G. Liu, Z. Lin, and Y. Yu, ‘‘Robust subspace segmentation by low-rank
representation,’’ in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 663–670.

[58] C. Ding, D. Zhou, X. He, and H. Zha, ‘‘R1-PCA: Rotational invariant L1-
norm principal component analysis for robust subspace factorization,’’ in
Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 281–288.

[59] R. Li, X. Wang, L. Lei, and Y. Song, ‘‘L21-norm based loss func-
tion and regularization extreme learning machine,’’ IEEE Access, vol. 7,
pp. 6575–6586, 2018.

[60] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, ‘‘Distributed
optimization and statistical learning via the alternating direction method
of multipliers,’’ Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[61] Y. Zhang, D. Shi, J. Gao, and D. Cheng, ‘‘Low-rank-sparse subspace rep-
resentation for robust regression,’’ Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., vol. 6, Jul. 2017, pp. 2972–2981.

[62] L. Zhuang, H. Gao, Z. Lin, Y. Ma, X. Zhang, and N. Yu, ‘‘Non-negative
low rank and sparse graph for semi-supervised learning,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jul. 2012, pp. 2328–2335.

[63] J.-F. Cai, E. J. Candès, and Z. Shen, ‘‘A singular value threshold-
ing algorithm for matrix completion,’’ SIAM J. Optim., vol. 20, no. 4,
pp. 1956–1982, 2010.

[64] J. Yang, W. Yin, Y. Zhang, and Y. Wang, ‘‘A fast algorithm for
edge-preserving variational multichannel image restoration,’’ SIAM J.
Imag. Sci., vol. 2, no. 2, pp. 569–592, 2009.

[65] P. Courrieu, ‘‘Fast computation of moore-penrose inverse matrices,’’ 2008,
arXiv:0804.4809. [Online]. Available: https://arxiv.org/abs/0804.4809

[66] Y. LeCun, C. Cortes, and C. J. C. Burges. (1998). The MNIST
Database of Handwritten Digits. [Online]. Available: http://yann.
lecun.com/exdb/mnist/

[67] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, ‘‘Labeled
faces in the wild: A database forstudying face recognition in uncon-
strained environments,’’ Univ. Massachusetts, Amherst, MA, USA,
Tech. Rep. 07-49, 2007.

125020 VOLUME 7, 2019



H. T. Likassa et al.: Robust Image Recovery via Affine Transformation and L2,1 Norm

HABTE TADESSE LIKASSA received the B.Sc.
degree from the University of Gondar, Ethiopia,
in 2008, and the M.Sc. degree from Addis Ababa
University, Ethiopia, in 2011. He is currently pur-
suing the Ph.D. degree with the Department of
Electronic and Computer Engineering, National
Taiwan University of Science and Technology,
Taipei, Taiwan. He has been serving as a Graduate
Assistant (2009), and also a Lecturer with Debre
Birhan University, Ethiopia (2012–2013). He has

also worked as a Lecturer and the Head of the Department of Statistics with
AmboUniversity, Ethiopia, from 2014 to 2016. His research areas of interests
include robust methods, image processing, statistical signal processing, and
machine learning.

WEN-HSIEN FANG received the B.S. degree in
electrical engineering from National Taiwan Uni-
versity, in 1983, and the M.S.E. and Ph.D. degrees
from the University of Michigan, Ann Arbor, MI,
USA, in 1988 and 1991, respectively, in electrical
engineering and computer science. In fall 1991, he
joined the faculty of the National Taiwan Univer-
sity of Science and Technology, where he currently
holds a position as a Professor with the Depart-
ment of Electronic and Computer Engineering. His

research interests include various facets of signal processing applications,
including statistical signal processing, multimedia signal processing, and
machine learning.

JENQ-SHIOU LEU received the B.S. degree in
mathematics and the M.S. degree in computer sci-
ence and information engineering from National
Taiwan University, Taipei, Taiwan, and the Ph.D.
degree on a part-time basis in computer science
from National Tsing Hua University, HsingChu,
Taiwan. He was with Rising Star Technology, Tai-
wan, as an R&D Engineer, from 1995 to 1997,
and worked in the telecommunication industry
(Mobitai Communications and Taiwan Mobile),

from 1997 to 2007, as the Assistant Manager. In February 2007, he joined
the Department of Electronic and Computer Engineering, National Taiwan
University of Science and Technology (NTUST), as an Assistant Professor.
From February 2011 to January 2014, he was an Associate Professor. Since
February 2014, he has been a Professor. His research interests include het-
erogeneous network integration, mobile service and platform design, cyber-
security, distributed computing, green and orange technology integration.

VOLUME 7, 2019 125021


	INTRODUCTION
	RELATED WORKS
	PROBLEM FORMULATION
	PROPOSED METHOD
	CONVERGENCE ANALYSIS
	EXPERIMENTAL RESULTS AND DISCUSSIONS
	EXPERIMENTAL CONVERGENCE PERFORMANCE
	ABLATION STUDIES
	 COMPARISON WITH THE STATE-OF-THE-ART METHODS
	HANDWRITTEN DIGITS
	NATURAL FACE IMAGES
	VIDEO FACE IMAGES


	 CONCLUSIONS
	REFERENCES
	Biographies
	HABTE TADESSE LIKASSA
	WEN-HSIEN FANG
	JENQ-SHIOU LEU


