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ABSTRACT Accurate estimations of battery state of charge (SOC) are great of significance for achieving
stable and safe operation of electric vehicles. To meet the requirement of high robustness and real-time,
the sliding mode observer with linear time-invariant battery model is usually used to estimate SOC of
batteries. However, the observer for state estimation based on the time-varying model is rarely. In addition,
there is a lack of stability proof for observers with time-varying systems. The applicability of the observer in
different types of batteries is yet to be discussed. The application accuracy of the observer in the battery
management system (BMS) needs to be further verified. To solve these issues, an improved observer-
based estimation algorithm has been proposed. In this paper, a recursive fitting technology is used to
automatically update the variable parameters of the battery, then the time-varying-model-based discrete
sliding mode observer (TVDSMO) is proposed to build a SOC estimator. The stability condition is proposed
to online evaluate the presented observer. The presented estimator has been verified by LiFePO4 (LFP) and
Ni-Mn-Co (NMC) lithium-ion cells under different operating temperatures and working conditions. Finally,
a platform based hardware-in-loop is built to verify the proposed method. The result manifests that the
maximum estimation errors of SOC are both within 4% for NMC and LFP cells when the erroneous initial
value of SOC and capacity are both considered. Additionally, the results from the platform show that the
SOC estimation error is less 4.6% which fully meets the application of BMS.

INDEX TERMS Lithium-ion battery, state of charge, discrete stability condition, time-varying-model-based
discrete sliding mode observer, BMS.

I. INTRODUCTION
As the developing tendency of global energy energy turning
to new energy, lithium-ion batteries (LIB) are widely used
in the field of transportations and stored energy due to the
advantages of high energy density, high power density and
low cost [1], [2]. An accurate SOC is an essential indica-
tor for LIB safety and durability management in electric
vehicles. However, because of the uncertain noises and non-
linear behaviors affected by internal aging and external con-
ditions, a precise and reliable SOC estimation still remains
big challenges for BMS [3]. Therefore, it is practical and of
positive significance for the persistent improvement of SOC
accuracy.

The associate editor coordinating the review of this manuscript and
approving it for publication was Gaetano Zizzo.

A. STATE OF THE ART OF ESTIMATION APPROACHES
The existing methods for SOC estimation can be grouped
into four categories in view of calculation theories, namely,
ampere-hour integration, look-up table based methods,
modern control theory based estimation and data-driven
approaches [3], [4]. The most traditional method to estimate
SOC is the ampere-hour integration (AHI) with the least
computational complexity, whose evaluated error is more
than 20% due to the uncertain initial value, inaccurate maxi-
mum available capacity, and the noises of current sensors [5].
The open circuit voltage (OCV) is usually used to modi-
fied SOC because of the monotonous mapping relationship
existing between them. Whereas, the calculation error of
this methods is greater than 5%, comprehensively affected
by the aging, surrounding temperature, hysteresis behaviors
and measuring errors [6]. Currently, the impacts of tempera-
ture and aging on the OCV-SOC curve are studied by some

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 115463

https://orcid.org/0000-0002-4878-0910
https://orcid.org/0000-0003-2874-1858


K. Dai et al.: Improved SOC Estimator Using Time-Varying Discrete Sliding Mode Observer

researchers [7], [8]. This method has twomain disadvantages:
the long resting time and the high-accuracy measurement
of voltage [9], [10]. The data-driven methods are intelligent
methods by using the black-box model to accurately fit the
strong time-variable relationship between the states and input
variables [11]. The accuracy of these methods depends on the
completeness of training data. However, as the uncertainty of
application condition exists, these methods may be unfit for
real-time controllers in vehicles right now.

The modern control theory based methods for SOC esti-
mation are hot topics. The main core processes are feedback
and modification. These methods can be divided into Kalman
Filters (KF) based family and state observers based family
in view of the feedback gain [8], [12]. The KF family for
SOC estimation includes extended Kalman Filter (EKF) [13],
adaptive EKF [14], unscented Kalman filter [15], and H infin-
ity filter (HIF) [16]. After knowing the information of models
and measurement noises, the SOC error can be within 3%
with unknown true state value [13]. But the calculation time
of the KF algorithm is three times than the observer-based
methods. It will increase the cost of the BMS due to the
high-speed microcontroller used in circuit design. Conse-
quently, the observer-based methods are more suitable for
low-cost BMS.

B. LITERATURE REVIEW
Compared to the KF, the state observers not only have
the less computation, but can achieve the exact SOC esti-
mation considering the uncertain initial errors, measure-
ment errors and model errors. These approaches are able
to be split into three categories, in the case of observer
structure, namely, proportional-integral observer (PIO) [12],
Luenberger observer (LO) [16], sliding-mode observer
(SMO) [17]–[19]. The PIO and LO are both used to estimate
accurate SOC within 4% by using linear time-invariant bat-
tery models with the true capacity, which hardly meets the
actual condition of aging and variant temperatures in the EVs.
Because of the strong ability to suppress noise disturbance,
the SMO is especially suitable for battery SOC estimation
with nonlinear parameters [20]. Although the equivalent cir-
cuit model has been studied for more than 15 years, it still
has the research value due to its strong real-time perfor-
mance, great application potential and high fitting accuracy
in common SOC range. At present the research based on
equivalent circuit model and observer mainly focuses on the
improvement of observer structure andmode.W. Li et al. pro-
posed the discrete-time nonlinear observer to achieve SOC
estimation, however the model parameters are determined
by offline data [21]. J. Du et al. presented a sliding mode
observer with adaptive gain, the second order RC model
without updating parameters is used. The error of estimated
SOC is within 5% [22]. To improve the accuracy of SOC,
Q. Zhong et al. adopted the fractional order model. The
high precision estimation of SOC is realized by combining
sliding mode observation [23]. However, due to the nonlinear
characteristics of the fractional order, the off-line data can

only be used to build this model. Therefore, the applica-
tion in engineering is obviously restricted. B. Ning et al.
adopted a moving average filter to enforce the parameter
identification for the Thevenin model [24]. Compared with
the recursive least squares (RLS), this identification method
has the characteristics of big storage and high calculated
amount, so it does not improve the real-time performance of
the algorithm. Z. Wei et al. proposed the bias compensating
recursive least squares to achieve online parameter identi-
fication. The SOC is further estimated in real time by the
Luenberger observer [25]. However, there are few researches
on discrete SMO based on the strong real-time update of
model parameters.

C. MOTIVATION AND INNOVATION
Since the parameters of battery will change at different
temperatures and capacity degradation, it’s very necessary
to design an improved SMO with time-varying model to
increase the accuracy of SOC estimation. At the same time,
the application of proposed methods need be clearly illumi-
nated in the estimation accuracy of different battery material
systems. The proof of the stability of the time-varying system
should be done. In addition, the application accuracy of this
method in the real-time controller is also blurry.

To resolve the issues and validate the stability and per-
formance of engineering application. We have made the fol-
lowing efforts: (1) An improved time-varying-model-based
discrete sliding mode observer is proposed to build SOC
estimator. The details of the algorithm running process are
demonstrated. (2) we propose the sliding stability condi-
tion of the discrete system to validate the stability of the
TVDSMO and the online operation stability is firstly cal-
culated according to the working conditions. (3) In order to
validate the accuracy of this method, we compare it with
DSMO after considering the erroneous initial SOC, incorrect
capacity and cell types. To verify the engineering applicabil-
ity of the algorithm, we build a test bench based on the real
BMS.

D. ORGANIZATION OF THE PAPER
The organization of this paper is as follows. Section 2 illus-
trates the model of battery and the parameter online identi-
fication method. Section 3 describes the design processor of
TVDSMO. We also introduce more details about how to use
it in the BMS. Then, experiments of battery and validations
of presented approach are demonstrated in Section 4. Finally,
Section 5 demonstrate the main conclusions.

II. BATTERY MODELLING
A. LUMPED PARAMETERS BATTERY MODEL
The LiB has a very complex electrochemical behavior with
electro-thermal coupling processes and some nonlinear char-
acteristics. Its external characteristic behavior is described by
the following equations:

Ut = Uoc − UD − ILRo (1)
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U̇D = −
1
τD
UD +

1
CD

IL (2)

where Ut is the terminal voltage. Uoc denotes the OCV. UD
is the polarization voltage. Ro is the ohmic resistance. IL is
the load current (assumed positive for discharge, negative for
charge). The RC network including polarization resistance
(RD) and polarization capacitance (CD), is used to describe
electron diffusion and migration. τD is the diffusion constant,
τD = RDCD. The dynamic voltage is demonstrated by the
following equation.

UD = Ce−
∫ 1
τ
dt
+ e−

∫ 1
τ
dt
∫

IL
CD

e−
∫ 1
τ
dtdt (3)

where C is a constant value determined by the initial state.
Assuming UD,k+1 |1t=0 = UD,k as its initial value, Eq.(3)
can be deduced by the following equation.

UD,k+1 = UD,k exp
(
−1t

/
τD
)

+
[
1− exp

(
−1t

/
τD
)]
RDIL,k (4)

where 1t denotes the sampling interval determined by the
BMS. UD,k+1 and UD,k denote the polarization voltage at
time tk+1 and tk , respectively. We define Et = Ut − Uoc.
Uoc can be calibrated by the SOC estimation algorithm.
Consequently, Eq.(2) can be reconstructed by the following
equation.

Et,k = −UD,k − IL,kRo (5)

Combining with Eq.(4), the Eq.(5) can be deduced as Eq.(6).

Et,k+1 = −UD,k exp
(
−1t

/
τD
)

−
[
1− exp

(
−1t

/
τD
)]
RDIL,k − IL,k+1Ro (6)

With further derivation:

Et,k+1 = exp
(
−
1t
τD

)
Et,k − RoIL,k+1 + (exp(−1t/τD)Ro

− (1− exp (−1t/τD))RD)IL,k (7)

Then the following equation is derived :

Et,k+1 = a1Et,k + a2IL,k+1 + a3IL,k (8)

where a1, a2, a3 are shown as follows:

a1 = exp (−1t/τD) (9)

a2 = −Ro (10)

a3 = exp
(
−1t

/
τD
)
Ro −

(
1− exp

(
−1t

/
τD
))
RD (11)

Then the parameters of the battery model can be solved by
the following equations:

RD =
a1a2 + a3
a1 − 1

(12)

CD =
(1− a1)1t

(a1a2 + a3) log(a1)
(13)

Based on the format of the auto regressive exogenous
algorithm, the electrical equation of the battery model can be
reconstructed as follows:

yk = φkθk + σ (14)

where φk and θk denote data matrix and the parameter vector
respectively. σ is the model error determined by the measure-
ment noise. And the two vectors are shown by the following
equations:

φk = [Et,k−1 IL,k IL,k−1 ] (15)

θk =
[
a1 a2 a3

]T (16)

The state-space expression of the model can be described as:

UD,k+1 = exp (−1t/τD)UD,k
+ (1− exp (−1t/τD))RDIL,k (17)

Ut,k+1 = Uoc,k+1 − UD,k+1 − RoIL,k+1 (18)

B. IDENTIFICATION METHOD
The recursive least squares algorithm has been adopted to
execute the adaptive parameter identification for the model.
The detailed computational processes of the model parame-
ters are demonstrated in Table 1.

TABLE 1. The iteration procedure of recursive least squares algorithm [8].

III. BATTERY SOC ESTIMATOR
A. THE DESIGNING PROCESS FOR THE OBSERVER
The section introduces the necessary theory for the method
proposed in this paper. Consider the following discrete sys-
tem:

xk+1 = Akxk + Bkuk + ωk (24)

yk = Ckxk + Dkuk + νk (25)

where xk is the state vector, Ak is the system matrix, Bk
denotes the input matrix, Ck denotes the observer matrix
and Dk denotes the feedforward matrix. ωk denotes the sys-
tem noise, νk is the noise of measurement and disturbance.
Assume the discrete system is observable in this paper. The
traditional SMO has a dominant chattering, when reaching
the sliding boundary [26]. We use the Walcott-Zak form
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to abate the disadvantage. Its standard form is shown as
following:

x̂k+1 = Ak x̂k + Bkuk + Lẽy,k +Msat(ẽy,k/ϕ) (26)

ŷk = Ck x̂k + Dkuk (27)

ẽy,k = yk − ŷk (28)

where x̂k denotes the estimated value of state vector. ŷk
denotes predicted value of measurement. ẽy,k is the error
of output. L and M are feedback gain and saturation gain,
respectively. ϕ the means the sliding boundary. The sat() is
the saturation function.

sat(ε) =

{
ε, −1 < ε < 1
sgn(ε), ε < −1, ε > 1

where sgn() is the sign function.The error of estimated state
is defined by the following equations.

x̃k+1 = [A− LC]x̃k +1k −Msat(Cx̃k
/
ϕ) (29)

x̃k = x̂k − xk (30)

1k = ωk + Lνk (31)

For the DSMO shown by the equations above, the following
condition must be satisfied [27]:
(1) The 1k and νk must be bounded by a known quantity

1λ and νλ, respectively.
(2) The saturation gain M must satisfy this condition:

Mi ≥ 1λ,i, i = 1 . . . n.
(3) The sliding boundary ϕ must satisfy this condition:

ϕ ≥ νλ

According the stability condition for discrete sliding mode
system presented by Sarpturk et al. [28], the system must
satisfy the following condition:

[x̃k+1,i + x̃k,i]sgn(x̃k,i) ≥ 0, i = 1 . . . n (32)

B. TIME-VARYING-MODEL-BASED SOC
ESTIMATOR WITH DSMO
The standard form of the model is chosen to describe the
dynamic character for LIBs. According to the Eq.(4) and the
discrete SOC definition, the state equations is demonstrated
as following:

xk+1 = Akxk + Bk IL,k+ωk (33)

Ut,k = Ckxk + Dk + νk (34)

where xk= [UD,kSOCk ]T , Ak =

[
e−

1t
τDk 0
0 1

]
, Bk =

[ (1− e
−

1t
τD,k )RD,k −

ηi,k1t
Ca

]T , Dk = Uocv,k − Ro,k IL,k

Ck =
[
−1 ∂Uocv,k

∂z |z = zk
]
. As the coulombic efficiency

is up to 99.9% [29], the ηi,k is set to 1 in this paper. The
capacity of battery Ca is not the rated capacity in this paper,
because it will change as the aging, surrounding temper-
ature, loading conditions. Consequently, Ca is a dynamic
value. Additionally, we sometimes use z to denote SOC for
conciseness.

According to the form of DSMO designed in the last sub-
section, the TVDSMO-based SOC estimator is established.

x̂k+1 = Ak x̂k + Bk Ik + Lẽy,k +Msat(ẽy,k/ϕ) (35)

Ût,k = Ck x̂k + Ûocv,k − Ro,k IL,k (36)

ẽy,k = Ut,k − Ût,k (37)

To ensure the robustness, the designed observer must satisfy
the condition of stability. We take an example for analyzing
stability in term of SOC, one of the states in this model.
According to the stability condition for discrete system,
the battery SOC estimator must meet it to ensure the stability
during the algorithm operating.

zk+1 = zk −
1tIL,kηi,k
Ca,k

(38)

ẑk+1 = ẑk −
1tIL,kηi,k
Ca,k

+ L1ẽy,k +M1sat(
ẽy,k
ϕ

) (39)

ẽs,k = ẑk − zk (40)

[S(k + 1)+ S(k)] sgn [S(k)]

= [2ẽs,k + L1ẽy,k +M1sat(
ẽy,k
ϕ

)]sgn[ẽs,k ] (41)

The L1 and M1 must always meet the following conditions:

(1) If the ẽs,k > 0, the 2ẽs,k + L1ẽy,k +M1sat(
ẽy,k
ϕ
) > 0. (2)

If the ẽs,k < 0, the 2ẽs,k + L1ẽy,k +M1sat(
ẽy,k
ϕ
) < 0.

FIGURE 1. The implementation procedure of this joint framework.

C. MODEL-BASED ADAPTIVE PARAMETER
AND SOC JOINT ESTIMATOR
When the presented algorithm used in the real-time con-
troller, two essential steps must be paid attention, as shown
in Fig.1. Step 1 is to determine what the structure is in the
hardware system. Assuming that the typical BMS includes
two controller units, battery monitor unit (BMU) and battery
control unit (BCU). The BMU is responsible for information
measurements such as voltages and temperatures of cells.
Usually, battery packs are equipped with many BMUs for
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information monitoring. The SOC estimation algorithm and
other management strategies run in the BCU [30].

Normally, the BCU has an excellent processor, used to
execute algorithms and control strategies. The implementa-
tion of SOC algorithm exists two processes in BCU. Firstly,
the battery information is measured via BMU according to
a certain sampling frequency, such as 10Hz. Then the BMU
transmits these data to the bus of the controller area network
(CAN) according to a standard of communication protocol,
such as ISO11898 and ISO11519-2. Then, the BCU period-
ically accepts the CAN message including cell voltage and
temperature. It reads the current from busbar of battery pack.
Then the SOC algorithm in a timer process is implemented in
the light of a certain period such as 0.1s or 1s.

Step 2 is to implement the presented method to estimate
SOC. Firstly, the parameters adopted in this algorithm need
to be initialized. The θ̂0 equals to [0, 0, 0]. The covariance
matrix P0 is set to a diagonal matrix, whose diagonal values
are the same, set to 106. The forgettable factor of the RLS
is set to 0.985. The feedback gain and saturation gain are
optimized by the genetic algorithm, which simultaneously
meets the stability condition. The sliding boundary ϕ is
determined by the measurement error. It is set to 0.005 in
this paper. Secondly, the iteration of RLS is executed. The
voltage and current are collected to construct the data vector.
Then the gain and covariance matrix are calculated. Finally,
the parameter vector is updated. The iteration of TVDSMO
is carried out according to Eq.(38)-(40).

IV. VERIFICATION AND DISCUSSION
This section mainly verifies the proposed approach.
To acquire the battery date, we need to build a platform for
experiment.

A. EXPERIMENT
The battery testing bench consists of four parts: (1) Arbin
BT2000: it is employed to stimulate battery via using the
designed the loading profiles and collect the real-time data.
(2) Environmental test chamber: it is used to simulate opera-
tion temperature of the battery. (3) Battery: LiFePO4 lithium-
ion battery and Ni-Mn-Co lithium-ion battery are used to
validate the proposed approach. (4) Host computer: it is used
to control the Arbin instrument and monitor the measured
data.

The original specifications of the tested cells are listed
in Table 2. The LFP lithium-ion cell uses the graphite as its
negative electrode and lithium iron phosphate LiFePO4 as its
positive electrode. Different from LFP, the NMC cell uses
lithium iron phosphate Ni-Co-Mn as its positive electrode.
The lithium-ion cells are placed in the thermal chamber. The
characterization tests include standard capacity tests, OCV
tests and the driving condition tests. The driving schedules
are listed in Table 2. The aim of the capacity experiment is
to determine the maximum available capacity (MAC) of the
cell, which can be used to calibrate the reference SOC in
OCV test. It is noticed that the MAC is dependent on the

TABLE 2. Basic parameters and testing condition of lithium-ion cells.

FIGURE 2. The OCV tests for the two batteries.

current, temperature and cycle state. The OCV experiment
is used to determine the function between OCV and SOC.
This test usually takes a long time to acquire the accurate
function. Fig. 2 shows the OCV test results for the two types
of batteries. The OCV of LFP is very flat in the middle SOC
range, which is the main reason that the accuracy of SOC
estimation deteriorates.

FIGURE 3. The working condition tests for batteries.

B. VERIFICATION BASED ON EXPERIMENTAL DATA
To verify the presented method, we test two types of bat-
teries via some special current profiles which extract from
the driving cycles, named Chinese Typical City Driving
Cycle (CTCDC), New European Driving Cycle (NEDC),
Urban Dynamometer Driving Schedule (UDDS) shown
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in Fig. 3 [31], [32]. The operating SOC range is from 100% to
10% considering the practical application [33]. According to
the actual capacity influence for SOC estimation, the initial
capacity error in algorithm can be used to validate the robust-
ness and reliability. Additionally, the SOC initial error is
also taken into account to test the convergence of TVDSMO.
To prove the advantages of TVDSMO, we compare it with
ampere-hour integration and DSMO. Both of two observer-
based methods have the same erroneous parameters listed
in Table 3. For example, the true capacity of LFP under
temperature 25 ◦C is 28Ah. The values of Ca are both set
25Ah in three algorithms. The same batterymodel is also used
in the DSMO, whose parameters in Table 4 are determined
by the optimization algorithm, such as the genetic algorithm.
It is obvious that the maximum voltage errors (MVE) will
increase in lower temperature. [34]. The results are listed
in Table 4.

TABLE 3. The parameters in DSMO and TVDSMO.

TABLE 4. Parameters of the Thevenin model used in DSMO.

1) CASE 1: SOC ESTIMATION AT TEMPERATURE 25◦C
Figs. 4 and 5 present the comparison of the SOC estima-
tion results calculated by three methods TVDSMO, DSMO
and AHI at 25 ◦C. The root-mean square errors (RMSE),
mean absolute errors (MAE), and maximum absolute errors
(MAE) and convergence times (CT) are chosen to assess the
performance of algorithms. The estimation results of LFP
battery shown in Fig.5 indicate that the presented method can
well deal with the variable parameters during the TVDSMO
operation. The SOC estimation errors of CTCDC are within
±3.1%. The results of DSMO also can converge to the true
value, but the MAE is larger than TVDSMO. The MAE of
AHI is up to 10%. Additionally, the errors of TVDSMO
increase during the NEDC condition, because the maximum
discharge current (MDC) is different from the CTCDC. The
MDC may cause the measurement noise of current sen-
sors changing, which can lead errors to increase. This phe-
nomenon also appears in the NMC battery. Additionally,
the estimation errors of SOC do not increase when the initial
capacity value set in TVDSMO diminishes. It shows the
TVDSMO can well balance the model and measurement
to restrain the raising tendency of error, different from the

FIGURE 4. Experiments of an LFP battery from CTCDC under 25 ◦C:
(a) SOC estimation results; (b) the estimation error.

FIGURE 5. Experiments of an LFP battery from NEDC under 25 ◦C: (a) SOC
estimation results, (b) the estimation error.

ampere-hour integration. Although the errors of DSMO do
not increase during the testing condition, the MAE is worse
than TVDSMO. The main reason is that the time-invariant
model does not trace the dynamic behavior of LIBs.

Figs. 6 and 9 illustrate the stability of SOC estimation from
different batteries under temperature 25◦C , which shows
that whether the values of gain are suitable for the operat-
ing condition during the iteration procedure of TVDSMO.
The values are both positive during the whole process.
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FIGURE 6. The stability of SOC estimation from LFP under
temperature 25 ◦C.

FIGURE 7. Experiments of an NMC battery from UDDS under
temperature 25 ◦C: (a) SOC estimation results, (b) the estimation error.

Consequently, according to the condition of stability for dis-
crete system, the chosen gains meet this condition.

Figs.7 and 8 are the comparison of the SOC estimation
for NMC batteries estimated by three methods. The MAE
from TVDSMO under UDDS is bigger than NEDC, which
indicates the operation condition will change the accuracy for
this method. Before application in the onboard controller of
EVs, the working condition needs to be further investigated.
And the parameters of TVDSMO need be matched. The
CTs of the disparate operating conditions are very similar,
but it is different for LFP. The CT of the proposed method
may depend on the types of batteries. Because LFP has
a very flat OCV during middle SOC range. The estima-
tion errors of DMOS also are larger than TVDSMO. The
MAEs of DSMO under both working conditions are 3.469%
and 4.356%, respectively. Consequently, the TVDSMO
has a better performance than the DMSO. Especially, the

FIGURE 8. Experiments of an NMC battery from NEDC under 25 ◦C:
(a) SOC estimation results, (b) the estimation error.

FIGURE 9. The stability of SOC estimation from NMC under
temperature 25 ◦C.

distinctions are more obvious during the large scale current
loadings.

2) CASE 2: SOC ESTIMATION AT TEMPERATURE 10◦C
Figs. 10, 11 and 12 demonstrate the comparison results of the
SOC estimation calculated by TVDSMO, DSMO and AHI
at 10◦C. Fig. 10 shows the estimated results of LFP battery
under UDDS. The MAE from TVDSMO is 2.61%, MEE
is 1.12% and RMSE is 1.33%. The CT is about 1519 step.
Usually, the SOC initial value will be calibrated during the
battery system debugging. Consequently, the rest time is ade-
quate for TVDSMO to converge to the target value during the
application. However, the estimation results of DSMO suffer
from the divergence problem. The MAE is up to 18.76%.
Compared the SOC estimation during normal temperature,
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FIGURE 10. Verifications of LFP battery from CTCDC under 10◦C: (a) SOC
estimation results, (b) the estimation error.

this method is distinctly inapplicable for LFP cells under
lower temperature.

Fig. 11 shows the estimated results of NMC battery from
UDDS. TheMAE from TVDSMO is 3.1%,MEE is 0.6% and
RMSE is 0.83%. The CT is 261 step times for converging
to 3%. Fig. 12 shows the estimated results from NEDC. The
MAE is 3.51%, MEE is 1.1% and RMSE is 1.35%. The CT
is 227 step times for converging to the reference value. The
TVDSMO is appropriate for NMC to estimate SOC with
uncertain capacity and SOC initial error. It can be noticed that
the maximum error usually appears in the rear SOC range.
It is not a coincidence because the error of model raises
in this range [30]. However, the MAEs from DSMO under
two working condition are −3.543% and −3.135%, respec-
tively. The CT from TVDSMO is similar to DSMO, about
150 steps.

Consequently, based on the two cases under different tem-
peratures, we can conclude that the TVDSMO has stronger
robustness and is more accurate than DSMO under the same
uncertain errors. It is suitable for NMC and LFP battery SOC
estimation.

C. VERIFICATION BASED ON HARDWARE-IN-LOOP
In order to fully verify the effectiveness of the proposed algo-
rithm, a platform of algorithm verification is built, as shown
in Fig. 13. The experimental platform includes: the Arbin
BT2000, an ambient thermotank, the upper computer, a bat-
tery management system, Lithium-ion battery cells, and a
power supply. The host computer mainly realizes the control
of the Arbin instrument and monitor BMS data. The BMS
includes BMU, BCU and current sensor. The BMS used in

FIGURE 11. Verifications of NMC battery from UDDS under 10◦C: (a) SOC
estimation results, (b) the estimation error.

FIGURE 12. Verifications of NMC battery from NEDC under 10◦C: (a) SOC
estimation results,(b) the estimation error.

this paper was developed by our research group. Among
them, the voltage acquisition chip adopts the mainstream
LT6804 developed by Linear Technology. The maximum
measurement error of the chip is less than 2mV. The core chip
of BMU is MPC5644 from NXP. The calculation frequency
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FIGURE 13. Hardware-in-loop verification platform.

FIGURE 14. The results from the verification platform: (a) SOC results
based on CTCDC, (b) SOC results based on NEDC.

used in this paper is 150Mhz. The BMU includes three-
channel CAN bus, which can communicate with the vehicle
controller, instrument and BMU. The presented algorithm to
be verified is embedded in the controller.

The LFP battery cell mentioned above is adopted in
the platform and the experiment temperature is 45◦C. The
OCV-SOC curve used in the BMS is the same as 25◦C.
The error of capacity is 10%. The real capacity is 27.98Ah
and the value in BMS is set to 25Ah. To verify the
convergence of the algorithm, the SOC of the battery is
adjusted to 90%. CTCDC and NEDC conditions are per-
formed during experiment. The estimation result of the
CTCDC condition is shown by Fig. 14 (a). The initial value
of the SOC in the algorithm is set to 70%, and the true
value is 90%. The results show that the maximum error of

this condition is 4.6%. The estimated SOC of the NEDC
condition is shown in Fig. 14(b). The initial value of the
SOC of the algorithm is 80%, and the true value is 90%.
The results show that the maximum error of this condition is
1.9%. Since the OCV of the battery is relatively flat at 90%,
the convergence speed is slow. In general, the algorithmmeets
the application of the BMS, and the calculation accuracy
meets the requirements of the real vehicle.

V. CONCLUSIONS
In this paper, an improved time-varying-model-based discrete
sliding mode observer is designed to estimate SOC. After the
detailed discussion and analysis, We come to the following
conclusions:

(1) The proposed method is applicable for different operat-
ing conditions and temperatures. The SOC simulation errors
of LFP data under two temperatures are both within 3.1%.
The SOC simulation errors of NMC cell are within 3%. Due
to the slight difference of estimation results under differ-
ent conditions and cells, it’s a suggestion that parameters
of TVDSMO should be further debugged under different
working conditions before applying the algorithm. As the
parameters of battery depending on the capacity degradation,
the inaccurate capacity and SOC initial value need be consid-
ered. In this paper, the results of the show that the TVDSMO
has better robustness and accuracy than DSMO at different
temperatures. Its accuracy is still within 4% with the 10%
capacity error.

(2) The stability of the presented algorithm should be
validated before using it. For the discrete system with time-
varying parameters, we suggest using the proposed stability
condition to validate stability.

(3) To test the applicability of the proposed algorithm,
we build a hardware verification platform. The verification
results of the actual BMS show that the SOC errors are less
than 4.6%.
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