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ABSTRACT Geometric transformations of images are the predominant factor, which influences the effec-
tiveness of visual tracking and detection tasks in computer vision. Naturally, although it makes significant
sense to grasp the process of image geometric transformations, the numerical relationship of geometric
transformations cannot be revealed directly from images themselves. Even if the geometric transformation
matrices form the three-dimensional special linear group, Sl(3,R) group, it is difficult to comprehend the
manifold of this invisible visual motion, which resides in the high-dimensional space. Furthermore, the main
challenge is the deficiency of analytic expressions of the Riemannian logarithmic map to compute the
geodesic distance on the Sl(3,R) manifold. Facing these issues, this paper comes up with a novel approach
to visualize the geometric transformation in images by presenting a new metric, and then, computes a set
of coordinate-vectors in the three-dimensional state transition space for visualization using the Riemannian
stress majorization. The superiority of the presented framework for visualization, in terms of accuracy and
efficiency, is demonstrated through abundant experiments on aerial images and moving objects.

INDEX TERMS Geometric transformation, visualization, motion group, Riemannian manifold.

I. INTRODUCTION
In computer vision, the characteristics of visual patterns can
be described by some transformations whose state transi-
tions are regulated by action groups. Taking the geometry
of images into account, these action groups deriving from
visual data are always relevant to some particular matrix
manifolds [1] through the invariance correspondingly con-
strained on them. Most of these transformations have the
matrix structure of Lie group, which gives rise to the represen-
tation of matrix manifolds. Specifically, the image geometric
transformations have gained extensive attention in various
applications including object detection, visual tracking and
image registration [2]–[5]. Although the geometric transfor-
mations of images are the predominant factor which influ-
ences the effectiveness of visual tracking and detection tasks,
this crucial transformation may not be measured numerically
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from images directly. If the changing process of this motion
can be visualized from the abstract mathematical space, it will
provide more possibilities to obtain better effectiveness of
various visual tasks. Unfortunately, the relevant research of
the visualization of the image geometric transformations is
still in the blank stage, which becomes the obstacle to com-
prehend this motion group.

From the mathematical perspective, the geometric trans-
formations of visual data form the structure of Lie group,
Sl(3,R), which leads to the representation of the matrix
manifold. However, on the one hand, the logarithm of a real
invertible matrix may not exist generally, and if it exists it
may not be unique. Furthermore, as the exponential map isn’t
onto and one-to-one in general, its inverse map can be defined
only in a certain neighborhood of the identity element. In this
case, the matrix logarithm map may not be the best choice
to measure the geodesic length on the Sl(3,R) manifold if
the samples are beyond the neighborhood of the identity
element. Therefore, the distance defined by the simple matrix
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logarithmic operation may not measure the true geodesic
distance on the manifold so that the visualization purpose is
out of work. Based on these reasons, in this paper, we focus on
the geometric properties of the Sl(3,R) manifold to measure
the geodesic length instead of just using the simple matrix
exponential and logarithm maps.

On the other hand, Riemannian manifolds are topologi-
cally abstract mathematical definitions such that few rele-
vant concepts of manifolds exist in the visualization aspect.
Even if manifolds take advantages of the geometry of visual
data, realizing the changing process happened in the non-
Euclidean space is difficult. Considering this fact, we will
benefit a lot if the abstract manifolds can be visualized to
cause more intuitive results. Moreover, although we want to
take advantage of the Riemannian structure of the Sl(3,R)
manifold to solve the limitation of the algebraic exponential
and logarithm maps, the inexistence of the analytic expres-
sion of the Riemannian logarithmic map on the Sl(3,R)
should be considered.

This article is an extended version of our initial work
in the conference paper [6]. Here, we extend our work not
only by providing more mathematical backgrounds, but also
illustrating the details of Riemannian mean method. Last but
not least, we significantly define three objective evaluation
indicators and conduct more extensive experiments to pro-
vide a systematic analysis of different methods. In summary,
the main innovations and extensions of this article based on
our conference paper [6] are briefly concluded as follows,

• We define three objective evaluation indicators to
numerically measure the quality of visualization results.

• We add four state-of-the-art approaches of visualiza-
tion for comparison and report the relevant results
in Table.1-Table.3.

• We add extensive experiments to provide a systematic
analysis of our method with other compared algorithms.

• We provide the performance of the proposed method
with the increased number of experimental image
sequences.

The main contributions of this paper are listed as follows,

• We first explore the possibility of proposing a
Riemannian geometry-based framework to visual-
ize the Sl(3,R) group from the image geometric
transformation.

• For the essential metrics used in our method, comparing
with the conventional metric deriving from the simple
algebraic logarithmic map, we present a new method
to approximate the geodesic distance on the Sl(3,R)
manifold by derivating the analytic expression of the
corresponding Riemannian exponential map.

• For the quantitative evaluation of the proposed method,
we particularly define three objective evaluation indi-
cators to measure the quality of the visualization
performance.

The remainder of this paper is organized as follows.
In Section II, we provide the description of the related works.

In Section III, we briefly introduce the mathematical notions
of Riemannian manifolds and Lie groups. In Section IV,
we describe the details of the proposed visualization frame-
work for Sl(3,R) and its implementation. In Section V,
the experiments on the synthetic and real images demon-
strate the effectiveness of our proposed approach. Section VII
makes the conclusion of the whole paper.

II. RELATED WORKS
Nowadays, the deep learning methods have been developed
as the most popular techniques in computer vision, which
achieves many breakthroughs in the area of image classifica-
tion [7]–[9] and object detection [10]–[12]. In view of these
successful experience, some researchers extended deep learn-
ing algorithms into the visualization area to play an important
role. Firstly, in 2013, Simonyan et al. [13] visualized image
classification models and their corresponding class saliency
maps in the deep convolutional networks. Subsequently,
in 2014, Zeiler and Fergus [14] proposed a novel visualization
framework to understand the image classification models of
the convolutional neural network (CNN). They visualized
the features of each intermediate convolutional layers using
deconvolutional networks, which aims to find interpretations
and guidance for deep models. Recently, Bojarski et al. [15]
represented a new approach, VisualBackProp, to visualize the
most significant pixels of the input image for CNN-based
classification. They also provided the rigorous mathematical
analysis as the theoretical demonstration of the visualization
model. Moreover, deep feature representations learned from
CNNs were used to transform the image styles in [16], [17].
In a word, these literature mainly focus on the visualization
of the feature representations or gradient maps to interpret the
CNN model instead of the Riemannian manifolds.

Besides deep learningmethods, in recent years, the topic of
geometric dimensionality reduction algorithms for Rieman-
nian manifold has attracted more and more attention. As for
the research of dimensionality reduction from manifold to
manifold, the development of this topic can be summarized
as follows. Harandi first represented the manifold dimension-
ality reduction method on the Symmetric Positive Definite
(SPD) matrices in [18], which can be regarded as the begin-
ning work about this topic. Based on this conference paper,
Harandi extended his initial work to the journal paper [19]
by introducing an unsupervised dimensionality reduction
approach and deriving variants of corresponding unsuper-
vised/supervised dimensionality reduction algorithms based
on the Jeffrey divergence. And then, Huang also makes a
great contribution to the manifold dimensionality reduction
field. Huang proposed the Log-Euclidean Metric Learning
(LEML) on the SPD manifold in [20]. LEML transforms
the dimensionality reduction from the SPD manifold to the
corresponding tangent space, which aims to learn a tan-
gent map that can directly transform the matrix logarithms
from the original tangent space to a new tangent space of
more discriminability by the use of Log-Euclidean metric.
For the Projection Metric Learning (PML) in [21], Huang
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embedded the points on the Grassmannian into the points
on the SPD manifold under the projection framework by
embedding Grassmann manifolds onto the space of symmet-
ricmatrices, which is actually a special type of dimensionality
reduction for the SPD manifold by the use of the projec-
tion metric on the Grassmann manifold. Next, Liu proposed
a generalized Grassmannian framework of dimensionality
reduction for the Grassmannmanifold in [22]. His framework
is suitable for any metric on the Grassmann manifold rather
than being limited to the projection framework as PML.
In his model, he directly proposed a geometry-aware dimen-
sionality reduction for the Grassmann manifold to obtain a
lower-dimensional manifold where better classification can
be achieved. Because his model does not depend on any addi-
tional intermediary, in theory, any distance metric can be used
directly. However, these manifold dimensionality reduction
methods above are specially designed for SPD manifolds and
the Grassmann manifolds for better classification results. To
the best of our knowledge, there does not exist a manifold
dimensionality reduction method specially designed for the
Sl(3,R) manifold, which limits us to choose this kind of
approach for the visualization purpose.

On the other hand, several studies that investigated the
visual motion of the image geometric transformation have
attracted increasing attention. At first, E. Begelfor and M.
Werman in [23] presented a novel group-invariant Lie-normal
distributions on the Sl(3,R) group to enhance the accuracy of
object recognition. Moreover, the parameters of the probabil-
ities are estimated by a simple algorithm, which leads to the
easy computation of the density. Then, S. Benhimane and E.
Malis proposed a new homography-based approach to visual
tracking and servoing through the optimization of the second-
order minimization in [24]. They presented a real-time frame-
work without computing the Hessian matrix to improve the
tracking speed and reduce the computational complexity.
In [25], S. Lee andM. Choi proposed a geometric coordinate-
invariant approach designed for the image registration by
taking the geometry of Sl(3,R) groups into account. They
generalized the Nelder-Mead optimization to the Sl(3,R)
group and other Lie groups, whichmakes the geometric direct
search algorithms lead to superior performances by taking
advantages of the geometric properties. However, all these
literature just simply consider the algebraic exponential and
logarithmic maps as the approximation to the Riemannian
exponential and logarithmic maps respectively. In this case,
the matrix logarithm map may not be the best choice to
measure the geodesic length on the Sl(3,R) manifold if the
samples are beyond the neighborhood of the identity element.

To the best of our knowledge, this paper is the first attempt
to propose the approach which concerns about the geodesic
distance on Sl(3,R) manifold with the Riemannian metric
instead of the simple algebraic exponential and logarithmic
maps for visualization. In response to this limitation, we pro-
pose a new framework which not only present a newmetric to
measure the true geodesic distance on the manifold but also
visualize the process of the motion groups.

FIGURE 1. Conceptual illustrations of Riemannian exponential and
Riemannian logarithmic mapping.

III. RIEMANNIAN MANIFOLD AND LIE GROUP
REPRESENTATION
A. RIEMANNIAN MANIFOLD
From the geometric perspective, the manifold is the topolog-
ical space that is locally homeomorphic to a Euclidean space.
In other words, every point on the manifold is locally similar
as a Euclidean space. Given a concrete example, the earth can
be regraded as a manifold where each point is approxima-
tively treated as a Euclidean space. A Riemannian manifold
is a manifold which is equipped with the Riemannian metric,
a symmetric and positive-definite inner product. Due to the
space constraint, for the further related mathematical details,
readers can refer to the literature [26]–[28]. From now on,
we use manifolds to stand for Riemannian manifolds in the
rest of this article.

Mathematically, every point X on the manifold M has
a tangent space at X, denoted by TXM. Given any two
points X,Y ∈ M, the shortest path between them is the
geodesic curve on the manifold, which is denoted as γ (t)
with t ∈ [0, 1]. Comprehensibly, the tangent space TXM
can be regarded as the vector space including all tangent
vectors that correspond to all geodesics connecting to X. The
tangent space TXM consists of tangent vectors V ∈ TXM
which corresponds to the geodesic between X and Y on
the manifold. The Riemannian logarithmic map operator
RlogX : M→ TXM achieves the projection RlogX(Y) = V,
which projects the geodesic (i.e., the dashed line in Fig.1)
between X and Y from the original space of matrix manifold
M to the tangent space TXM. Correspondingly, the Rieman-
nian exponential map operator RexpX : TXM→ M realizes
the projection RexpX(V) = Y, which makes the tangent vec-
tor V go back into the manifold. Through this approach,
the length of geodesics is equivalent to that of the correspond-
ing tangent vector obtained by the Riemannian logarithmic
map. Conceptual illustrations of these operations are shown
in Fig.1.

B. LIE GROUP REPRESENTATION OF GEOMETRIC
TRANSFORMATION
In computer vision, the geometric transformation is repre-
sented by a linear equation in the homogeneous coordinates
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with a nonsingular 3×3 matrix, which is called homogra-
phy. More specifically, let I1 (p) denote the gray level of
an arbitrary image I1. The gray level of the transformed
image I2 which goes through the geometric transformation
from I1 can be represented as

I2 (T (p; r)) = I1 (p) (1)

where p = (x, y)T represents the position of pixels and
r = (r1, r2, · · · , r8)T is the parameter vector of the geometric
transformation matrix.

In this case, the relationship of pixels stemming from the
geometric transformation can be written as

T (p; r) =
1

r7 + r8y+ 1

[
r1x + r2y+ r5
r3x + r4y+ r6

]
(2)

Here, Eq.2 represents the geometric transformation from the
original image I1 to the transformed image I2.

Consequently, the homography can be defined correspond-
ingly by

H (r) =

 r1 r2 r5
r3 r4 r6
r7 r8 1

 (3)

Note that matrices differing only by scalar multiplication rep-
resent the same homography referred to [23]. For the sake of
removing the scale ambiguity of homogeneous coordinates,
we normalize Eq.3 with the unit determinant. Mathemati-
cally, referred to [2], homographies operated in this approach
own themanifold geometry with a special linear group, which
means the normalized homographies can be identified with
the three-dimensional special linear group Sl(3,R):

Sl(3,R) = {X ∈ Gl(3,R) : det(X) = 1} (4)

where Gl(3,R) is the general linear group consisting
of 3×3 invertible real matrices. As for the Lie group, it is
known that the matrix Lie group is endowed with a differen-
tiable structure of Riemannian manifold. Each element in the
Lie group corresponds to a tangent space where local neigh-
borhoods of that element may be expressed. More specifi-
cally, the tangent space of the identity point generates the
Lie algebra. The Lie algebra associated to Sl(3,R) group is
sl(3,R), which represents the set of 3×3 real matrices with
null trace. For more notions of Lie groups and Lie algebras,
readers can refer to [29], [30].

IV. THE PROPOSED METHOD
In this section, the content is organized as follows. Firstly,
we first derive the geodesic expression on the Sl(3,R) man-
ifold and then give the formulation of its Riemannian expo-
nential map in IV-A. Secondly, we describe the approach to
compute the mean point on the Sl(3,R) manifold in IV-B.
Last but not least, we present a novel approach to visualize
the geometric transformation of images in IV-C.

A. GEODESIC DISTANCE OF GEOMETRIC
TRANSFORMATION GROUP
LetX1,X2 ∈ Sl(3,R) be any two points on the Sl(3,R) group.
The shortest curve between X1 and X2 is the geodesic denoted
by γ (t) with t ∈ [0, 1], and then v(t) ∈ sl(3,R) denotes the
corresponding tangent vector. For any two tangent vectors
A,B ∈ sl(3,R), the inner product in the tangent space is
defined as

〈A,B〉 = Tr(ATB) (5)

The function exp (·) represents the ordinary matrix exponen-
tial, which is expressed as

exp (x) =
∞∑
m=0

xm

m!
(6)

And the symbol ‖·‖ denotes the matrix Frobenius norm.
Remark 1: If γ (t) is the geodesic on the Sl(3,R) group,

it satisfies that
dγ (t)
dt
= γ (t)v(t), with γ (0) = X1, γ (1) = X2 (7)

and the tangent vector v(t) which makes
1∫
0
〈v (t) , v (t)〉 dt

smallest satisfies that
dv(t)
dt
= [vT (t), v(t)]1 (8)

Proof: Here, we demonstrate this problem by the calcu-
lus of variations [31].

Given η(t) ∈ sl(3,R), the perturbation ε of γ (t) in the
direction of η(t) is exp (εη(t)), and then we can obtain

γ (t, ε) = γ (t) exp(εη(t)) = γ (t)(id + (εη(t)))+ o(ε) (9)

where the boundary conditions satisfy that

γ (0, ε)=X1, γ (1, ε) = X2, with η(0) = η(1) = 0 (10)

Similarly, the perturbation ε acts on v(t) is given by

v(t, ε) = v(t)+ ε
dv(t)
dt
+ o(ε) (11)

On the one hand, combining with Eq.7 and Eq.9, we have

dγ (t, ε)
dt

=
d (γ (t)+ εγ (t)η(t)+ o(ε))

dt
=

dγ (t)
dt
+ εγ (t)

dη(t)
dt
+ ε

dγ (t)
dt

η(t)+ o(ε)

= γ (t)v(t)+ εγ (t)
dη(t)
dt
+ εγ (t)v(t)η(t)+ o(ε)

(12)

On the other hand, according to Eq.9 and Eq.11, we have

dγ (t, ε)
dt

= γ (t, ε)v(t, ε)

= (γ (t)+ εγ (t)η(t))
(
v(t)+ ε

dv(t)
dt

)
+ o(ε)

= γ (t)v(t)+ εγ (t)
dv(t)
dt
+ εγ (t)η(t)v(t)+ o(ε)

(13)

1Here, for two arbitrary matrices A and B, we define the operator [·]
as [AT ,B] = ATB− BAT
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Comparing with Eq.12 and Eq.13, we find

dv(t)
dt
=
dη(t)
dt
− [η(t), v(t)] (14)

Furthermore, combining with Eq.14, the geodesic γ (t)
should have the property that

d
dε

1∫
0

〈
v(t)+ ε

dv(t)
dt

, v(t)+ ε
dv(t)
dt

〉
dt

∣∣∣∣∣∣
ε=0

= 2

1∫
0

〈
v(t),

dv(t)
dt

〉
dt

∣∣∣∣∣∣
ε=0

= 2

1∫
0

〈
v(t),

dη(t)
dt
− [η(t), v(t)]

〉
dt

= 2

1∫
0

〈
v(t),

dη(t)
dt

〉
dt + 2

1∫
0

〈[
vT (t), v(t)

]
, η(t)

〉
dt

= 2

1∫
0

〈
−
dv(t)
dt
+

[
vT (t), v(t)

]
, η(t)

〉
dt ≡ 0 (15)

Note that the second term of the formulation in the next-to-
last row and the first term in the last row of Eq.15 are obtained
from the integration by parts and the fact η(0) = η(1) = 0.

As η(t) is the arbitrary variation, according to Eq.15,
we have

dv(t)
dt
=

[
vT (t), v(t)

]
(16)

�
Combing with Eq.7 and Eq.16, we can get the formula of

the geodesic on Sl(3,R) group referred to [32]

γ (t) = exp
(
−tV0T

)
exp

(
t
(
V0 + V0T

))
X0 (17)

where γ (0) = X0, V (0) = V0 with V (t) ∈ sl(3,R).
Above all, we can naturally get the analytic expression of

the Riemannian exponential map on the Sl(3,R) group

Rexpe(X ) = Rexp(X ) = exp(−XT )exp(X + XT ) (18)

However, Eq.18 is only the analytic expression which mea-
sures the geodesic starting from the identity in the direction X
of length ‖X‖. It is generalized known that there does not exist
a closed-form formulation to measure the geodesic length
between I and points on the Sl(3,R) manifold due to the
inexistence of the analytic expression of Riemannian loga-
rithmic map. By virtue of Eq.18, the solution to this issue
is to calculate the geodesic arc length numerically by the
nonlinear least squared method [33] based on the Riemannian
exponential map.

B. MEAN ON THE RIEMANNIAN MANIFOLD
Now in this part, we need to compute the mean of data
points for the tangent space of the anchor point. Given the
set of points {Xi}i=1,2,··· ,n on a Riemannian manifold M ,
the Karcher mean [34] of them represented by u can be
written as

u = arg min
X∈M

n∑
i=1

d2(Xi,X ) (19)

where d (·) represents the geodesic distance on the manifold
and n is the number of data samples.

Considering the definition of Eq.19, the objective function
of our model which measures the Riemannian squared dis-
tance is defined by

L(X ) =
n∑
i=1

d2(Xi,X ) (20)

Remark 2: The gradient of the Riemannian squared dis-
tance function can be derived as

∇f (X ) = ∇Xd2(X ,Y ) = −2RlogX (Y ) (21)

Proof: This property is well known in the litera-
ture [35], [36]. For the details, please refer to the Theorem.1
in [37]. �

Differentiating Eq.20 with respect to X , according to
Remark.2, we can obtain that

∇X

(
n∑
i=1

d2(Xi,X )

)
= −2

n∑
i=1

RlogX (Xi) (22)

Thus, u is the solution of X to Eq.23
n∑
i=1

RlogX (Xi) = 0 (23)

The solution of Eq.23 can be obtained by iterative opti-
mization through the gradient descent method [38] on the
Riemannian manifolds:

ut+1 = Rexput

(
1
n

n∑
i=1

Rlogut (Xi)

)
(24)

Nevertheless, the method mentioned above mainly calcu-
lates the first-order approximations to u. Note that if Xi is
far away from the identity element, the error of this approx-
imation may be undesirable. Taking account of this issue,
we make the procedures as follows. Firstly, we left-multiply
every point by the inverse of u to compute the residual error
1Xi of each point according to Eq.26, and then project the
total residues of the original samples1u back into the tangent
space. The computation formula of 1u is written as

1u = Rexp

(
1
n

n∑
i=1

Rlog(1Xi))

)
(25)

where

1Xi = u−1Xi (26)

VOLUME 7, 2019 105535



T. Liu et al.: Visualization of the Image Geometric Transformation Group Based on Riemannian Manifold

FIGURE 2. Conceptual illustrations of Riemannian mean algorithm on Sl(3,R): (a) Remap each sample point by left-multiplying the inverse of initial u
(i.e.,X1), and then map them to the tangent space of u (i.e., 3(M)); (b) Compute the total residues of the original samples 1u and project it back into the
manifold M by Eq.25, and then update the mean point; (c)Remap all sample points by the newly updated mean, and then project them into 3(M);
(d) Repeat the procedure (b) until convergence.

The algorithm is described in the following and illustrated
by Fig.2. In practice, the value of the convergence parameter
ε is set to 10−4.

Algorithm 1 Riemannian Mean Method on Sl(3,R) Group
Input:
A set of Sl(3,R) points {Xi}ni=1, Xi ∈ Sl(3,R)
ε > 0
Output:
The mean point, u, on the manifold

Initialize u = X1
Repeat

1Xi = u−1Xi

1u = Rexp
(

1
n

n∑
i=1

Rlog(1Xi))
)

u = u1u
Until convergence: ‖Rlog (1u)‖ < ε

C. RIEMANNIAN STRESS MAJORIZATION
Although we have solved the issues of computing geodesic
distances and Riemannian mean on the Sl(3,R) manifold in
section IV-A and IV-B, visualizing manifolds is still a chal-
lenging problem due to requiring algorithms that faithfully
respect the non-Euclidean geometry.

In recent years, the stress majorization method deriving
from multi-dimensional scaling [39]–[41] is widely adopted
on graph layout [42], [43]. Based on the fact that stress
majorization has an improved mathematical basis and better
convergence properties [44], [45], we extend this method into
the Sl(3,R) group. Our main purpose is to provide visual
representations with the geometric property of the geometric
transformation group in the high dimensional space. Given
a set of data points {Xk , k = 1, 2, · · · , n}, the aim of our
framework is to obtain a set of Euclidean coordinate vectors
Z = {Zk , k = 1, 2, · · · , n} ⊂ Rm, form = 2 orm = 3, where
Zk is the vector corresponding to Xk . Taking advantages of

Riemannian metrics, the stress function on the Riemannian
manifolds can be defined as

stress(Z ) =
∑
i

∑
j<i

wi,j
(∥∥Zi − Zj∥∥− d(Xi,Xj))2 (27)

where d(·) represents the geodesic distance on the manifold
and Xi,Xj ∈ Sl(3,R).

Furthermore, similarly to [45], we adopt the weight value
as wi,j = d−2Xi,Xj , which always generates desirable results
in most cases. Moreover, if we simplify the stress function,
it will be obvious that the quadratic majorization is more
efficient and convenient than optimizing the original stress
function. Thus, we minimize Eq.27 by calculating its supre-
mum as follows. After expanding Eq.27, we can obtain that

stress(Z ) =
∑
i

∑
j<i

wi,jd2Xi,Xj +
∑
t

∑
j<i

wi,j
∥∥Zi − Zj∥∥2

− 2
∑
i

∑
j<i

δi,j
∥∥Zi − Zj∥∥

with δi,j = wi, jdXi, Xj for i, j = 1, 2, · · · ,N (28)

The first term of Eq.28 is a constant value of no importance.
The second term of Eq.28 is a quadratic sum so that it may be
converted to the matrix form of the weighted Laplacian Lw as
follows ∑

i

∑
j<i

wi,j
∥∥Zi − Zj∥∥2 = tr

(
ZTLwZ

)
(29)

where Lwi,j =

{
−wi,j, i 6= j∑
k 6=i

wi,k , i = j .

The third term in Eq.28 is more intricate and cannot be
easily rewritten in the matrix form. In this circumstance,
we can construct the boundary function of this term as fol-
lows. Concretely, taking advantage of the Cauchy-Schwartz
inequality, there exists

‖x‖ ‖y‖ ≥ xT y, with equality when x = y (30)
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Thus, given any n× d matrix U , we can obtain that∥∥Zi − Zj∥∥ ∥∥Ui − Uj∥∥ ≥ (
Zi − Zj

)T (Ui − Uj) ,
with equality when U = Z (31)

As for now, the third term can be bounded as∑
i

∑
j<i

δi,j
∥∥Zi − Zj∥∥

≥

∑
i

∑
j<i

δi,j
(
Zi − Zj

)T (Ui − Uj) 1∥∥Ui − Uj∥∥
= tr

(
ZTLUU

)
(32)

where LUi,j =

 −δi,j
(∥∥Ui − Uj∥∥)−1, i 6= j
−
∑
k 6=i

LUi,k , i = j.

Combining all these above, the supremum of the objective
function can be written as

FU (Z )=
∑
i

∑
j<i

wi,jd2Xi,Xj+tr
(
ZTLwZ

)
−2tr

(
ZTLUU

)
(33)

Thus, FU (Z ) is the supremum of Eq.27 defined as

stress(Z ) ≤ FU (Z ), with equality when U = Z . (34)

Obviously, FU (Z ) is a quadratic form which bounds the
stress. Subsequently, we differentiate it with respect to Z and
the solution of FU (Z ) can be optimized as

LWZ = LUU (35)

Or, equivalently, the optimization problem Eq.35 can be
transformed to the solution of p quadratic problems based
on [46], one for each axis:

Z(a)TLWZ(a) − 2Z(a)TLUU(a) (36)

The optimization of Eq.36 is convex because of the posi-
tive semi-definite property of LW . Equivalently, the convex
quadratic optimization problem can be written as,

min
Z(a)∈Rn

Z(a)TLWZ(a) + Z(a)T b (37)

where LW > 0 and b = −2LUU(a) ∈ Rn.
Finally, Eq.37 can be iteratively optimized by the conjugate

gradient descent method [46] as shown in Algorithm.2.
All in all, the whole algorithm of visualizing the Sl(3,R)

group is described in Algorithm.3:

V. EXPERIMENTS
In Section III-B, we have introduced that the Lie group
representations of the geometric transformation in images are
3×3 real matrices with 8 independent parameters. Because
we aim to visualize the changing process of the geo-
metric transformation of objects in images, the trajectory
which reflects this process should be expressed in the three-
dimensional space stemming from Sl(3,R)→ R3. In prac-
tice, we obtain the geometric transformation matrices based
on the implementation in [24].

Algorithm 2 Riemannian Stress Majorization on Sl(3,R)
Input:
the initial guess Z(a) ∈ Rn, 1 ≤ a ≤ p
ε > 0
Output:
the coordinate matrix Z

Initialize Z(a) ∈ Rn

Repeat
Set gradient γ = 2LWZ(a) + b
Set step size s = 1

2
γ T γ

γ T LW γ
update Z(a) = Z(a) − sγ
Until convergence: ‖sγ ‖ ≤ ε

Algorithm 3 Visualization of the Geometric Transformation
Group on Sl(3,R)
Input:
the image set I = {I1, I2, · · · · · · , In}
Output:
the coordinate matrix Z

Steps
1. Compute the geometric transformation matrices from the
image set I according to [24];
2. Compute the mean point, u, on the Sl(3,R) manifold
according to Algorithm.1;
3. Update all sample points on the manifold by left-
multiplying the inverse of u according to Eq.26.
4. Project all updated sample points on the manifold to the
unique tangent space of the identity element by virtue of
Eq.18 to obtain corresponding tangent vectors;
5. Compute the coordinates in three-dimensional state transi-
tion space based on Algorithm.2;
6. Visualization process.

FIGURE 3. The original image of a stadium for simulation.

A. SYNTHETIC EXPERIMENTS
As Fig.3 shown, the original image is an aerial photography
of a stadium online. In our simulation model, we assume
that the aerial object is to fly at about Mach 3.5 and we
obtain 50 frames of the object per second. Thus, the distance
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FIGURE 4. The relationship of magnified scale and frames.

that the object moves in every frame, v, can be computed as:

v =
3.5× 340m/s
50frame/s

= 23.8m/frame (38)

In this case, the distance from the aerial object to the ground
target at the j-th frame, L, can be computed as:

L = L0 − v× Frame = 560− 23.8× (j− 1) (39)

where L0 is the distance of the aerial detector to the ground
target in the first frame, which means the aerial object reaches
the target from the distance of 560 meters at the beginning.
And Frame denotes the time period of the aerial object at the
j-th frame.

In order to generate synthetic image sequences including
geometric transformations, we simulate the geometric trans-
formation during the tracking process of the aerial object
and impose the scale of magnification on the original image
in Fig.3 by making use of the relationship as follows:

s =
L0
L
=

L0
L0 − v× Frame

(40)

where s is the scale magnification coefficient of the relation-
ship between the j-th frame and the first frame.
As we can see, Eq.40 denotes the relationship of the

scale magnification parameter between two neighbor frames,
which is determined by the aerial distance of the target and
the detector. This relationship is illustrated in Fig.4 and the
corresponding generated images are shown in Fig.5(a). The
order of image sequences is from left to right, from top to
bottom and all the following order is similar. By using our
visualization framework, the smooth trajectory which visu-
alizes the process of the geometric transformation in image
sequences of Fig.5(a) is exhibited in Fig.5(b). Moreover,
in Fig.5(b), each number associated with the sample point
corresponds to the order of image sequences.

Combing with Fig.4 and Fig.5(b), we can conclude that
the curve visualizes the changing process of the geometric
transformation accurately. Because the geometric transfor-
mation is produced from the relationship of Eq.40 drawn
in Fig.4, the visualization curve coincides well with the
tendency in Fig.4. More specifically, it is obvious that the

relationship in Fig.4 increases rapidly from the 15-th frame
to the 20-th frame. Correspondingly, from the point #152 on,
the visualized trajectory also exist gradually dramatic trans-
formations in Fig.5(b). Moreover, the distance histograms
of pairwise points in the reproduced visualization space
in Fig.5(d) are almost coincident with the pattern of distances
between pairwise points on the original manifold in Fig.5(c),
which attributes to utilizing the geometric structure of the
manifold desirably.

B. EXPERIMENTS ON REAL IMAGES
1) VISUALIZATION OF AERIAL IMAGES
Recently, the aerial images obtained from drones and aerial
vehicles have attracted more and more attention with the
development of artificial intelligence. In this context, visu-
alization and comprehension of geometric transformations
of aerial images make significant sense. In this subsection,
we use the real aerial images obtained from the visual track-
ing task to conduct visualization experiments.

From the whole perspective, the visualization results are
shown in Fig.6. Firstly, Fig.6(a) shows the sequences of the
aerial images. Fig.6(b) visualizes the trajectory of the geo-
metric transformation computed by aerial images in Fig.6(a).
The initial point with label ’1’ represents the first frame, and
by this analogy, the final point marked as ’11’ denotes the last
sequence based on the map SL(3,R) → R3. The trajectory
reflects the changing process of the geometric transformation
correspondingly. For example, the distance between point #7
and point #8 is farther than its neighbors because the object
goes through an obvious geometric transformation, includ-
ing tremendous rotation transformation and violent distance
changes. The latter five images go through an obvious trans-
formation primarily on the rotation transformation, which
leads to the obvious change of trajectory from point #8 to
point #11. As the motion trajectory shown in Fig.6(b),
the visualization is consistent with the changing pattern of
the geometric transformation very well. Finally, comparing
to the results of Fig.6(c) and Fig.6(d), we can conclude that
our visualization result of Fig.6(b) has high equality because
the distances of points in the visualized space preserve the
original distances of pairwise points well.

2) VISUALIZATION OF IMAGES ON VISUAL TRACKING
In section V-B1, we conduct experiments on the aerial images
to visualize the geometric transformations during visual
tracking. Nevertheless, not only restricted to aerial images,
but also the geometric transformations of moving planar
objects play an important role in the visual tracking tasks of
computer vision.

In this part, we test our method on sequences3 of mov-
ing planar objects from [24] in order to observe whether
the visualized curve reflects the projective transformation

2Here, # stands for the order of numbers. For example, point #15 denotes
the point with the label of number 15.

3The dataset can be downloaded at the website ftp://ftp-
sop.inria.fr/evolution/malis/software/ESM/seq1.tar.gz
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FIGURE 5. Visualization results of the geometric transformations in the simulated image sequences: Fig.5(a) shows the experimental samples of the
simulated image sequences. Fig.5(b) illustrates the visualization trajectory of the geometric transformations in Fig.5(a). Fig.5(c) draws the pattern of
original distances among actual points on the manifold in Fig.5(a) and Fig.5(d) reflects the pattern of pairwise distances of the computed
coordinate-points in Fig.5(b), respectively.

correctly if the transformation processes are more compli-
cated relatively. For visual tidiness, we sample 20 images
with 10 stepsize from the total 200 image sequences for
the purpose of visualization. In this approach, the relevant
sampling image sequences are displayed in Fig.7(a). From
the visualization trajectory shown in Fig.7(b), we can observe
that the distance between point #1 and point #2 is longer than
that of point #2 and point #3. The distance between point #3
and point #4 is also longer than that of point #2 and point #3
obviously. From the perspective of transformation, analyzing
the reasons for the phenomenon mentioned above are that
the box between sequence #1 and sequence #2 undergoes an
apparent translation in contrast to the transformation existing

between frame #2 and frame #3. Analogously, the geometric
transformation between sequence #3 and sequence #4 expe-
riences an obvious rotation of large angle, which results in
the increment of distance in Fig.7(b). Furthermore, the trans-
formation between frame #11 and frame #12 goes through a
wide-angle rotation as opposed to its neighbors, which leads
to a long distance of points. Similarly, from point #15 to
point #20 of the trajectory, we can deduce there must exist
drastic geometric transformations and so it is judging from
the associated image sequences in Fig.7(a). According to
the comparison between Fig.7(c) and Fig.7(d), we can also
observe that the distribution of points on the manifold are
reconstructed perfectly in the visualization space.
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FIGURE 6. Visualization results of the geometric transformations in the aerial image sequences: Fig.6(a) shows the experimental samples of the aerial
image sequences. Fig.6(b) illustrates the visualization trajectory of the geometric transformations in Fig.6(a). Fig.6(c) reflects the pattern of original
distances among actual points on the manifold in Fig.6(a) and Fig.6(d) draws the pattern of pairwise distances of the computed coordinate-points in the
visualization space in Fig.6(b), respectively.

C. EVALUATION PERFORMANCE AND DISCUSSION
1) METHODS OF COMPARISON
In this section, to reflect the effective performance of the
proposed algorithm, we first select some other state-of-the-
art visualization methods for comparison:
• Principal component analysis (PCA) [47]: It is the most
widely used algorithm for the dimension reduction pur-
pose, which transforms a plurality of variables into a few
comprehensive variables (i.e., the principal components)
through the study of the correlation matrix of the orig-
inal variables or the internal structure of the covariance
matrix.

• Locally linear embedding (LLE) [48]: It is one of the
most classical methods of manifold learning, which
makes the data of dimensionality reduction maintain

the original manifold structure. This method regards
each data point and its neighbors being located in a
linear or approximately linear region of the manifold,
which converts the global nonlinearity to the local
linearity.

• Isometric Feature Mapping (Isomap) [49]: It constructs
the shortest path in the nearest neighbor graph to
obtain the approximate geodesic distance to replace
the Euclidean distance that cannot represent the inner
manifold structure, and then finds the low-dimensional
coordinates of points embedded in the high-dimensional
space.

• T-Distribution Stochastic Neighbor Embedding
(T-SNE) [50]: It transforms the similarity between
data points to the probability for visualization. In this
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FIGURE 7. Visualization results of the geometric transformations in the image sequences of moving object: Fig.7(a) shows the experimental samples of
the moving object. Fig.7(b) illustrates the visualization trajectory of the geometric transformations in Fig.7(a). Fig.7(c) is the pattern of original distances
among actual points on the manifold in Fig.7(a) and Fig.7(d) is the pattern of pairwise distances of the computed coordinate-points in the visualization
space in Fig.7(b), respectively.

approach, the similarity in the original space is repre-
sented by the joint Gaussian probability distribution, and
the similarity of the embedded space is represented by
the t-distribution. Through the optimization based on
the Kullback–Leibler divergence, the visualization of
similarity data in the two or three dimensional space is
obtained from the perspective of probability.

2) OBJECTIVE EVALUATION INDICATORS OF VISUALIZATION
Next, we provide a systematic evaluation of these
visualization methods on different quantitative and qualita-
tive measurements in respect of accuracy, utility, and effi-
ciency. Note that it is difficult to find some generalized
and widely-used measurements of visualization approaches

taking account of the subjective particularity and the deficient
literature in this research field. Facing this issue, we fairly
define some objective evaluation indicators to estimate the
quality of the visualization results combing with relevant
literature [51]–[53].

More specifically, we propose three objective evaluation
indicators including:

-1) accuracy (ACC);
-2) number of effective points (NEP);
-3) variance mutual information (VMI).

• The accuracy of visualization is defined to measure the
proportion that the reconstruction preserves from the
original pairwise distances. This measurement is the key
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indicator of our measurements, which can be computed
as:

ACC = 1−

n∑
i=1

∑
i6=j

(∥∥Zi − Zj∥∥− d (Xi − Xj))2
n∑
i=1

∑
i6=j
d2
(
Xi − Xj

) (41)

where d
(
Xi − Xj

)
represents the distance of point Xi and

Xj,
∥∥Zi − Zj∥∥ denotes the corresponding distance on the

visualization space and n is the number of sample points.
• The NEP reflects the number of effective points in the
total pairwise points, which is defined as

NEP =
TP

TP+ FP
(42)

where TP means the number of effective points and FP
corresponds to the number of invalid points. In order to
measure the validation of pairwise points, we also define
a parameter, α, in the following way:

NEP (i, j) =

1, if

∣∣∣∣∣
∥∥Zi − Zj∥∥− d (Xi − Xj)

d
(
Xi − Xj

) ∣∣∣∣∣ ≤ α
0, otherwise

(43)

where NEP(i, j) with 1 ≤ i, j ≤ n represents
whether the pairwise samples of point #i and point
#j belong to the effective points or not. Furthermore,
the value of parameter α is selected within the range of
{0.05, 0.1, 0.2, 0.3, 0.4, 0.5} in our experiments.

• The VMI computes the variance of the point distances
in the visualization results, which is given by

VMI = var(error) (44)

where error = (e1, e2, · · · , eN ) represents the error
vector and em =

∣∣∥∥Zi − Zj∥∥− d (Xi − Xj)∣∣ with 1 ≤
m ≤ N corresponds to the residual error of point #i
and point #j. N is the number of pairwise points and
var(·)denotes the function to compute the variance.

3) EVALUATION PERFORMANCE
In Section.V-A and Section.V-B, we exhibit the visualization
trajectories of image geometric transformations on different
datasets. In this part, we further provide numerical eval-
uations of objective indicators defined in SectionV-C2 to
measure quantitative performances of our method and other
visualization methods for comparison.

The objective evaluation indicators of visualization on the
stadium sequences are shown in Table.1. The corresponding
blue numbers represent the best experimental results of all
methods. From the ACC results in Table.1, we can observe
that although other comparison algorithms have achieved
desirable accuracies, our method still outperforms them than
at least 7%. Especially, the ACC of our method is more
than 17% higher compared to T-SNE. For the NMI, our
method also generates the best performance. As for the NEP

with various α, all the methods can obtain relatively good
results when α is larger than 0.3. Actually, according to the
definition of NEP, the higher amount NEP achieves with
the lower value of α, the better performance the approach
will possess for visualization. In this criterion, our method
always gets desirable performances when α is in the range of
small values. When α = 0.05, our algorithm obtains at least
21% increasement than other visualization methods. When
α = 0.1, our method also outperforms the best results of
comparison approaches about 5%.

Next, the objective evaluation indicators of visualization
on the aerial image sequences are shown in Table.2. From the
whole perspective, our approach performs best in terms of all
relevant indicators. The ACC of our method is at least 4%
higher than other methods, and the values of NEP with small
α are also nearly 25% higher than the other four comparison
methods. Particularly, our NMI is reduced in one order
of magnitude compared to other algorithms. Analogously,
we can obviously observe that our method also exhibits
desirable evaluation performances in the experiments of
SectionV-B1 from the experimental results reported
in Table.3. The details of the corresponding analyses based
on Table.3 will be given in the next part.

4) PERFORMANCE WITH DIFFERENT NUMBERS OF IMAGE
SEQUENCES
In this section, we aim to test the performance of our method
when the number of experimental image sequences used is
increased.

In practice, we conduct extensive experiments on the
same dataset in SectionV-B1 to provide the systematic
behavior of the proposed approach under different num-
ber of samples. In our experiments, we increase the num-
ber of experimental image sequences, n, from 20 to 200.
More specifically, the value of n is selected in the range
of {20, 50, 80, 120, 150, 200}. The corresponding objective
evaluation indicators of visualization under enhanced num-
ber of image sequences are reported in Table.3. From these
results, we can conclude that our method has strong robust-
ness even if the number of experimental image sequences is
raised in the one order of magnitude. From the measurement
of accuracy, the proposed algorithm always keeps in the high-
level performances that are upper than 96%. As for the NMI,
although this indicator grows obviously with n, it is still lower
than 0.1when n equals to 200, whichmeans ourmethod is sta-
ble with various numbers of samples. Similarly, the indicators
of NEPs with different α also perform acceptably under the
large amount of n.
All in all, the visualization results in Fig.5-Fig.7 and

the quantitative evaluation measurements in Table.1-Table.3
illustrate that our method not only leads to the high con-
sistency with the image geometric transformation, but also
obtains ranking behaviors on objective estimation indicators,
which demonstrates the effectiveness and robustness of the
proposed algorithm.
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TABLE 1. Objective evaluation indicators of visualization on the stadium sequences in SectionV-A.

TABLE 2. Objective evaluation indicators of visualization on the aerial image sequences in SectionV-B1.

TABLE 3. Performance of our method under different number of image sequences in SectionV-B2.

VI. FURTHER DISCUSSION
A. COMPUTATIONAL COMPLEXITY
As mentioned in Section IV, the main computational cost of
our proposed algorithm depends on the procedures to solve
the convex quadratic optimization problem by the conjugate
gradient descent method. In each iteration, the optimization
involves matrix-vector multiplication between matrices of
size n × n and n × 1, which takes n2 flops. Because the
optimization problem Eq.35 is transformed to the solution of
p quadratic problems, the optimization sums to pn2 flops for
each iteration. Let k denote the number of iterations.

Overall, our method mainly demands kpn2 extra flops,
which is linear in p (p ≤ 3) and causes all the steps to have
affordable computational complexity.

B. CONVERGENCE
For the related mathematical analysis and discussion of the
optimization algorithm of Section IV, readers can refer to
the literature [44], [45]. Furthermore, we conduct the addi-
tional experiment to perform the convergence behavior of our
method. Figure 8 illustrates the typical convergence behavior
of the proposed approach in the experiments of Section V-A.
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FIGURE 8. The convergence behavior of the proposed method.

In practice, the algorithm generally converges rapidly in
fewer than 80 iterations.

VII. CONCLUSION AND FUTURE WORK
In this paper, we presented a new framework to visualize
the changing process of geometric transformations in images
based on Riemannian manifold. In particular, we define
a distance metric to compute the geodesic length on the
Sl(3,R) group on account of the fact that the lack of analytic
expressions of Riemannian logarithmic map on the Sl(3,R)
manifold is the notorious obstacle for visualization. Once the
hard-core issue of the distance metric is solved, the geometric
transformations in images are further visualized based on the
Riemannian stress majorization. The experimental results on
diverse visual data demonstrate the effectiveness and perfor-
mance of our approach. Not only is our framework valuable
for analyzing motion groups of visual tasks, but also it will
provide experience for other applications including medical
imaging science and brain-computer interface.

In the future, we plan to extend our research in two direc-
tions. Firstly, we will explore the possibility of creating deep
representations of the manifold visualization with deep learn-
ing technology for better performance. Secondly, we will
focus on visualizing other types of manifolds that commonly
occur in visual tasks, such as rigid motion estimation on
a special Euclidean group SE(3) [54], [55], rotation group
SO(3) [56], [57] or subspace descriptors on the Grassmann
manifold [22], [53], [58], [59].
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