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ABSTRACT In this paper, we study blended representations of Boolean functions, and construct the
following two classes of Boolean functions. Two bounds on the r-order nonlinearity were given by Carlet
in the IEEE TRANSACTIONS ON INFORMATION THEORY, vol. 54. In general, the second bound is better than the
first bound. But it was unknown whether it is always better. Recently, Mesnager et al. constructed a class of
Boolean functions where the second bound is strictly worse than the first bound, for r = 2. However, it is
still an open problem for r ≥ 3. Using the blended representation, we construct a class of Boolean functions
based on the trace function and show that the second bound can also be strictly worse than the first bound,
for r = 3. The second class is based on the hidden weighted bit function, which seems to have the best
cryptographic properties among all currently known functions.

INDEX TERMS Boolean functions, blended representations, nonlinearity, algebraic immunity, higher-order
nonlinearity.

I. INTRODUCTION
Boolean functions have many applications in logic, electrical
engineering, reliability theory, game theory, combinatorics,
computational complexity, coding theory, cryptography,
etc [14]. A Boolean function can be represented using many
ways, e.g., the truth table, the algebraic normal form, the uni-
variate polynomial representation, etc [2], [15]. In this paper,
we combine the algebraic normal form and the univariate
polynomial representation, and construct Boolean functions
using blended representations.

The covering radius of the Reed–Muller code RM (r, n) is
the same as the maximum r-order nonlinearity of n-variable
Boolean functions. In [36], Schatz proved that the maxi-
mum 2-order nonlinearity of 6-variable Boolean functions
is 18. For n ≥ 7, the covering radius of RM (2, n) is still
unknown [4], [9], [11]. In 2019, Wang and Stănică proved
that the maximum 2-order nonlinearity of 7-variable Boolean
functions is at most 42 [43]. For n ≥ 7, the covering radius
of RM (3, n) is also unknown [9], [19]. In 2018, Wang et al.
proved that the maximum 3-order nonlinearity of 7-variable
Boolean functions with degree at most 4 is 20 [46].

The associate editor coordinating the review of this manuscript and
approving it for publication was Chien-Ming Chen.

For general n, two lower bounds on the r-order nonlinearity
of n-variable Boolean functions were given by Carlet in [5].
In general, the second bound is better than the first bound.
But it was unknown whether it is always better. In [31],
Mesnager et al. constructed a class of Boolean functions
where the first bound is tight and the second bound is strictly
worse than the first bound, for r = 2. However, it is still an
open problem for r ≥ 3. Using the blended representation,
we construct a class of Boolean functions based on the trace
function and show that the second bound can be strictly worse
than the first bound, for r = 3.

It is difficult to construct cryptographic Boolean func-
tions resisting all the main attacks [7], [8], [10], [16]–[18],
[23]–[27], [32]–[34], [37]–[39], [42], [44], [45], [48]–[50].
The hidden weighted bit function (HWBF) was introduced
by Bryant in [1] and revisited by Knuth in [22]. In 2014,
Wang et al. investigated the cryptographic properties of the
HWBF and found that it seems to be a very good candidate for
being used in real ciphers [40], [47]. Our second construction
is based on the HWBF and seems to have the best crypto-
graphic properties among all currently known functions.

The paper is organized as follows. In Section 2, the
necessary background is established. We then introduce
the blended representations in Section 3. In Section 4,
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we construct two classes of Boolean functions using
the blended representations. We end in Section 5 with
conclusions.

II. PRELIMINARIES
Let Fn2 be the n-dimensional vector space over the finite
field F2. An n-variable Boolean function f is a function from
Fn2 into F2, and it can be represented by the output column of
its truth table, i.e., a binary string of length 2n

f (0, . . . , 0), f (1, . . . , 0), f (0, 1, . . . , 0),

f (1, 1, . . . , 0), . . . , f (1, . . . , 1).

We denote by Bn the set of all n-variable Boolean functions.
Any Boolean function f ∈ Bn can be uniquely represented

as a multivariate polynomial in F2[x1, · · · , xn],

f (x1, . . . , xn) =
⊕

K⊆{1,2,...,n}

aK
∏
k∈K

xk ,

which is called its algebraic normal form (ANF). The alge-
braic degree of f , denoted by deg(f ), is the number of vari-
ables in the highest order term with nonzero coefficient.

A Boolean function is affine if there exists no term of
degree strictly greater than 1 in the ANF. The set of all affine
functions is denoted by An.

Let

1f = {x ∈ Fn2|f (x) = 1}, 0f = {x ∈ Fn2|f (x) = 0},

be the support of a Boolean function f , respectively, its
complement. The cardinality of 1f is called the Hamming
weight of f , and will be denoted by wt(f ). The Hamming dis-
tance between two functions f and g is the Hamming weight
of f ⊕ g, and will be denoted by d(f , g). We say that an
n-variable Boolean function f is balanced if wt(f ) = 2n−1.

Let f ∈ Bn. The nonlinearity of f is its distance from the
set of all n-variable affine functions, that is,

nl(f ) = min
g∈An

d(f , g).

The nonlinearity of an n-variable Boolean function is
bounded above by 2n−1 − 2n/2−1, and a function is said to
be bent if it achieves this bound. Clearly, bent functions exist
only for even n and it is known that the algebraic degree of a
bent function is bounded above by n

2 [2], [35]. The r-order
nonlinearity, denoted by nlr (f ), is its distance from the set of
all n-variable functions of algebraic degrees at most r .
For any f ∈ Bn, a nonzero function g ∈ Bn is called

an annihilator of f if fg (the function defined by fg(x) =
f (x)g(x)) is null, and the algebraic immunity of f , denoted
by AI(f ), is the minimum value of d such that f or f + 1
admits an annihilator of degree d [30]. It is known that
the algebraic immunity of an n-variable Boolean function is
bounded above by d n2e [13].

If we can find g of low degree and h of algebraic degree not
much larger than n/2 such that fg = h, then f is considered to
be weak against fast algebraic attacks [12], [20]. The higher
order nonlinearities of a function with high (fast) algebraic
immunity is also not very low [3], [29], [31], [41].

The Walsh transform of a given function f ∈ Bn is the
integer-valued function over the finite field F2n defined by

Wf (ω) =
∑
x∈F2n

(−1)f (x)+Tr(ωx),

where ω ∈ F2n and Tr(x) =
∑n−1

i=0 x
2i is the trace function

from F2n to F2. The nonlinearity of f can then be determined
by

nl(f ) = 2n−1 −
1
2

max
ω∈F2n

|Wf (ω)|.

III. BLENDED REPRESENTATIONS OF
BOOLEAN FUNCTIONS
Every function g : F2n → F2n can be uniquely represented
as a polynomial

∑2n−1
i=0 aix i (called its univariate representa-

tion), where ai ∈ F2n . Clearly, g is a Boolean function if and
only if

∑2n−1
i=0 aix i ∈ F2 for any x ∈ F2n .

Let g be the univariate representation of an n-variable
Boolean function and α ∈ F2n be a primitive element.
We define the function fα from Fn2 into F2 as follows

fα(x) =

{
lg(0) if x = 0,

g(α|x|−1) otherwise,
(1)

where x = (x1, x2, . . . , xn) ∈ Fn2 and |x| = x1+2x2+22x3+
. . .+ 2n−1xn.

Similarly, let f be the ANF of an n-variable Boolean func-
tion and α ∈ F2n be a primitive element. We define the
function gα from F2n into F2 as follows

gα(x) =

{
f (0) if x = 0,

f (i1, . . . , in) if x = αi,
(2)

where 0 ≤ i ≤ 2n−2 and i+1 = i1+2i2+22i3+. . .+2n−1in.
Example 1: Let g(x) = Tr(x) ∈ B3 and α3 + α + 1 = 0.

Then the truth table of fα defined by (1) is 01001011, and its
ANF is x1x2⊕ x1⊕ x3. Let f (x) = xn ∈ Bn. Then the support
set of gα defined by (2) is 1gα = {α

2n−1−1, . . . , α2
n
−2
}, which

can be viewed as a Carlet-Feng function [8].
Let g be the univariate representation of an n-variable

Boolean function. A natural question is whether fα and fβ
defined by (1) are affine equivalent, for different primitive
elements α, β ∈ F2n .
If α and β are roots of the same primitive polynomial, then

fα and fβ are affine equivalent, which can be seen from the
following proposition.
Proposition 1: Let α, β ∈ F2n be primitive elements and

β = α2
i
, where 1 ≤ i ≤ n− 1. Then fα and fβ defined by (1)

are affine equivalent.
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Proof: For 0 6= x ∈ Fn2, we have

fβ (x) = g(β |x|) = g(α2
i
|x|)

= g(αxn−i+1+...+2
i−1xn+2ix1+...+2n−1xn−i ) = fα(y),

where y = (xn−i+1, . . . , xn, x1, . . . , xn−i). Let A be the n× n
matrix with entries from F2 such that (x1, x2, . . . , xn)A = y.
Then A is nonsingular and fβ (x) = fα(xA). Hence, fα and fβ
are affine equivalent. �
If α and β are roots of different primitive polynomials, then

there exists an infinite class of g ∈ Bn such that fα and fβ
defined by (1) are not affine equivalent, which can be seen
from the following proposition.
Proposition 2: Let α, β ∈ F2n be primitive elements and

β 6= α2
i
, where 0 ≤ i ≤ n − 1. Let 1g = {α2j−1 | 1 ≤

j ≤ 2n−1}. Then fα and fβ defined by (1) are not affine
equivalent.

Proof: Since fβ and f
β2

i are affine equivalent, we only
need to prove the proposition for β = αd , where 3 ≤ d <
2n−1 is odd and (d, 2n − 1) = 1. Clearly, the truth table of
fα is

c0c1c2c3 · · · c2n−2c2n−1 = 0101 · · · 01

and fα(x1, . . . , xn) = x1. The truth table of fβ is

c′0c
′

1c
′

2c
′

3 · · · c
′

2n−2c
′

2n−1 = c0cdc2◦dc3◦d · · · c(2n−2)◦dc2n−1,

where k ◦ d = kd (mod 2n − 1), for k = 2, 3, . . . , 2n − 2.
Clearly, we have

c′i =


ci, if b

2k(2n − 1)
d

c + 1 ≤ i ≤ b
(2k + 1)(2n − 1)

d
c,

ci, if b
(2k+1)(2n − 1)

d
c+1≤ i≤b

(2k+2)(2n − 1)
d

c,

where k ∈ Z and ci = ci ⊕ 1.
Suppose fα and fβ are affine equivalent. Then fβ is an affine

function and for 1 ≤ m ≤ n − 2, it can be written as
f0||f1|| · · · ||f2m−1, where deg(fi) ≤ 1 for 0 ≤ i ≤ 2m − 1.
Claim 1: There exists an integer 2 ≤ t ≤ n − 2 such that
b
2n−1
d c = 2t − 1.
Proof: Suppose 2t−1 < b 2

n
−1
d c + 1 < 2t , where 2 ≤

t ≤ n − 1. We write fβ as f0||f1|| · · · ||f2n−t−1, where fi ∈ Bt .
Then

0 < wt(f0 ⊕ x1) = 2t − b
2n − 1
d
c − 1 < 2t−1.

Therefore, deg(f0) ≥ 2 which is a contradiction.
Claim 2: b k(2

n
−1)
d c = k2t − 1, for 2 ≤ k ≤ d − 1.

Proof: Let fβ = f0||f1|| · · · ||f2n−t−1. Suppose 2 ≤ k0 ≤
d − 1 is the smallest number such that b k0(2

n
−1)
d c 6= k02t − 1.

Then b k0(2
n
−1)
d c = k02t or k02t − 2. If b k0(2

n
−1)
d c = k02t − 2,

then wt(fk0−1 ⊕ x1) = 1 or 2t − 1, which is contradictory
to the fact that deg(fk0−1) ≤ 1. If b k0(2

n
−1)
d c = k02t , then

wt(fk0 ⊕ x1) = 1 or 2t − 1, which is contradictory to the fact
that deg(fk0 ) ≤ 1.

By Claims 1 and 2, we have

|0fβ⊕x1 | − |1fβ⊕x1 | = 2n − 1− b
(d − 1)(2n − 1)

d
c.

Therefore, 0 < wt(fβ ⊕ x1) < 2n−1 and deg(fβ ⊕ x1) ≥ 2.
Hence, deg(fβ ) ≥ 2 and the result follows. �
We now consider cryptographic properties of the functions

in the same blended representation. Let f be the ANF of an
n-variable Boolean function and α ∈ F2n be a primitive ele-
ment. Clearly, wt(gα) = wt(f ) and gα is balanced if and only
if f is balanced. If |wt(f )−2n−1| is sufficiently large, then gα
and f have the same algebraic degree, algebraic immunity and
nonlinearity. However, in general, cryptographic properties
of gα and f may be quite different. In fact, for any balanced
function f ∈ Bn, we can find an α ∈ F2n such that the function
gα defined by (2) has the optimum algebraic degree n − 1,
where 2n − 1 is a prime.
Proposition 3: Let f ∈ Bn be balanced and 2n − 1 be a

prime. Then there exists an α ∈ F2n such that the function gα
defined by (2) has the optimum algebraic degree n− 1.

Proof: Since 2n − 1 is a prime, there are exactly 2n−2
n

primitive polynomials of degree n and the product of these
polynomials is

∑2n−2
i=0 x i. Clearly,

2n−2∑
i=0

x i -
∑
j∈ 1f

x j.

Therefore, there exists a primitive element α ∈ F2n such that∑
j∈ 1f α

j
6= 0. Let gα(x) =

∑2n−1
i=0 aix i be the univariate

representation of the function defined by (2). Then gα is
balanced and deg(gα) ≤ n − 1. For every 1 ≤ i ≤ 2n − 2,
we have

ai =
2n−2∑
j=0

gα(αj)α−ij.

Therefore,

a2n−2 =
2n−2∑
j=0

gα(αj)α−(2
n
−2)j
=

2n−2∑
j=0

f (j)αj =
∑
j∈ 1f

αj 6= 0,

and the result follows. �

IV. CONSTRUCTIONS OF BOOLEAN FUNCTIONS USING
BLENDED REPRESENTATIONS
A. CONSTRUCTION 1
Let g = Tr(x) ∈ Bn and α ∈ F2n be a primitive element. Then
the function fα defined by (1) is

fα(x) =

{
0 if x = 0,
Tr(α|x|−1) otherwise,

where x = (x1, x2, . . . , xn) ∈ Fn2 and |x| = x1+2x2+22x3+
. . .+ 2n−1xn.
In Table 1, we give the cryptographic properties of fα ∈ B8,

where p(x) denotes the primitive polynomial with p(α) =
0 (p(x) is given in an octal representation, for example,
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TABLE 1. Cryptographic properties of fα ∈ B8.

the binary equivalent of 435 is 100011101 and the corre-
sponding polynomial is x8+x4+x3+x2+1). Clearly, fα has
the optimum algebraic degree and the optimum algebraic
immunity for all primitive polynomials of degree 8.

We do not knowwhether fα ∈ Bn always have the optimum
algebraic degree, which we leave as an open problem.

Let f ∈ Bn and Dc(f ) = f (x) + f (x + c), where c ∈ Fn2.
In [5], Carlet proved that

nlr (f ) ≥
1
2
max
c∈Fn2

nlr−1(Dc(f )), (3)

and

nlr (f ) ≥ 2n−1 −
1
2

√
22n − 2

∑
c∈Fn2

nlr−1(Dc(f )). (4)

In general, (4) can lead to efficient bounds. But it was
unknown whether the following inequality always holds:

2n−1 −
1
2

√
22n − 2

∑
c∈Fn2

nlr−1(Dc(f )) ≥
1
2
max
c∈Fn2

nlr−1(Dc(f )).

(5)

In [31], Mesnager et al. constructed a class of Boolean func-
tions to show that the inequality (5) can not always hold for
r = 2. However, it is still an open problem for r ≥ 3. In the
following, we show that the inequality (5) can not always hold
for r = 3.
Proposition 4: Let α ∈ F26 be a root of x

6
+ x + 1 and

fα ∈ B6 be defined by

fα(x) =

{
0 if x = 0,
Tr(α|x|−1) otherwise.

Let f ∈ Bn and f (x1, . . . , xn) = fα(x1, . . . , x6), where n ≥ 6.
Then

2n−1 −
1
2

√
22n − 2

∑
c∈Fn2

nlr−1(Dc(f )) <
1
2
max
c∈Fn2

nlr−1(Dc(f )),

for r = 3.

Proof: Let c = (c1, . . . , cn) ∈ Fn2. Then

Dc(f ) = f (x)⊕ f (x ⊕ c)

= fα(x1, . . . , x6)⊕ fα(x1 ⊕ c1, . . . , x6 ⊕ c6)= D̃c(fα),

where c̃ = (c1, . . . , c6). It is easy to calculate that

nl2(Dc(fα)) =


0 if c = 0,
8 if c ∈ B,
12 otherwise,

where B =

{(0,0,0,0,0,1),(0,0,0,1,1,0),(0,0, 0,1,1,1),(0,0,1,0,1,0),

(0,0,1,0,1,1),(0,0,1,1,0,0),(0,0,1,1,0,1),(0,1,0,0,1,0),

(0,1,0,0,1,1),(0,1,0,1,0,0),(0,1,0,1,0,1),(0,1,1,0,0,0),

(0,1,1,0,0,1),(0,1,1,1,1,0),(0,1,1,1,1,1),(1,0,0,0,0,0),

(1,0,0,0,0,1),(1,0,0,1,1,0),(1,0,0,1,1,1),(1,0,1,0,1,0),

(1,0,1,0,1,1),(1,0,1,1,0,1),(1,1,0,0,1,0),(1,1,0,0,1,1),

(1,1,0,1,0,0),(1,1,0,1,0,1),(1,1,1,0,0,0),(1,1,1,0,0,1),

(1,1,1,1,1,0),(1,1,1,1,1,1)}.

Therefore,∑
c∈Fn2

nl2(Dc(f )) = 2n−6 ∗ 2n−6
∑
c̃∈F62

nl2(D̃c(fα))

= (8 ∗ 30+ 12 ∗ 33) ∗ 22n−12 = 636 ∗ 22n−12,

and

max
c∈Fn2

nl2(Dc(f )) = 2n−6max
c̃∈F62

nl2(D̃c(f )) = 12 ∗ 2n−6.

Clearly,

2n−1 −
1
2

√
22n − 2 ∗ 636 ∗ 22n−12

= (32−
√
706) ∗ 2n−6 < 6 ∗ 2n−6,

and the result follows. �
Remark 1: Let f ∈ Bn and f (x1, . . . , xn) = fα(x1, . . . , x6).

Then by (3), nl3(f ) > 6∗2n−6.While by (4), we have nl3(f ) >
5.4 ∗ 2n−6. Clearly, the bound deduced by (3) is better than
the bound deduced by (4), and the difference between these
two bounds tends to infinity when n→∞.

B. CONSTRUCTION 2
Let hw ∈ Bn be the hidden weighted bit function. That is,

hw(x) =

{
0 if x = 0,
xwt(x) otherwise,

where wt(x) = x1+ x2+ . . .+ xn. Then the function defined
by (2) is

gα(x) =

{
0 if x = 0,
hw(i1, . . . , in) if x = αi,

(6)

where 0 ≤ i ≤ 2n−2 and i+1 = i1+2i2+22i3+. . .+2n−1in.
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TABLE 2. Cryptographic properties of gα and nonlinearities of functions
in [8], [37].

TABLE 3. Behavior of the function gα against Fast algebraic attacks.

In Table 2, one can find some cryptographic properties
of this function gα ∈ Bn. As a comparison, in that table,
we also give the nonlinearity of the Carlet-Feng function
which denoted by nl(CF), and the nonlinearity of the even-
variable balanced function proposed by [37] which denoted
by nl(MCF). Clearly, the function f has very good crypto-
graphic properties: balancedness, optimum algebraic degree,
optimum algebraic immunity and high nonlinearity (higher
than the Carlet-Feng function and the function proposed
by [37]).

Let deg(g1) = d < AI(gα) and gα · g1 = g2. To resist
the fast algebraic attacks, deg(g2) is expected to be as high
as possible for any g1 of low degree. Let deg(g2) = e. For
8 ≤ n ≤ 13, in Table 3, we give the lowest possible values of
(d, e). Clearly, d+e = n for n = 9, and d+e ≥ n−1 for n =
8, 10, 11, 12, 13. This is the optimum case for an n-variable
Boolean function to resist the fast algebraic attacks [28].
Example 5: Taking n = 12, we get the function gα ∈ B12,

where α is a root of x12 + x10 + x9 + x8 + x6 + x2 + 1.
We have deg(gα) = 11, AI(gα) = 6, nl(gα) = 1994 and gα
has the optimum behavior against fast algebraic attacks. As a
comparison, the nonlinearity of the Carlet-Feng function CF
is 1970, and the nonlinearity of the function MCF proposed
by [37] is 1982. The function gα is balanced and with the
optimum algebraic degree, optimum algebraic immunity and
optimum behavior against fast algebraic attacks. It has the
highest nonlinearity among all those known functions with
the above properties. The truth table of gα can be found in
Appendix, where the numbers are in hexadecimal.

V. CONCLUSION
In this paper, we study blended representations of Boolean
functions, and construct two classes of quite interesting
Boolean functions.We hope that our work would attract more
researchers to be interested in blended representations.

APPENDIX
The truth table of gα in Example 5:

72A9 337E A0E0 924B 92DE 235B
3C77 6F95 6CBB 4C01 F9F0 8C60
712F C441 67A5 B84D 428B 30B4
EA2A DE58 402C 58E5 2747 83A5
45F8 73A0 AE6E CF79 9B98 3B9C
2077 DD06 EFF3 BE31 F15F 954B
5361 E161 1619 9437 CB7E 732A
CD3B A64D BBD8 8790 3DE2 61C4
D7C6 0237 D0B8 79FF B6A6 43A2
0E85 C5B8 3678 3C2D F82A 2E0F
D6FE 61E4 AC0C 5BE2 8301 8175
10A2 D0F9 12AC 8C10 6E94 DD28
E8D4 E2D8 A2FD 6258 E49B B636
24D5 E2C2 4522 D049 88B0 B329
0B0D 5030 92E7 CA29 6222 0635
6FD8 3CBF F48C 8276 437C AB4F
0C98 1791 A7F9 B098 09DE 153E
603D 2485 6AD1 33D9 97A8 71B1
DA86 3F49 2EED B59E F5E7 449A
F00A D78C 5065 A379 B953 BF18
0943 0086 47FC A74B 7157 F54D
8630 13F9 2DA0 F7A4 75AE 9884
585F 13D7 A85E 803C F6B1 3B5F
7D17 E6EF C3A3 194A 8989 F21E
021A 2C4E 2777 A9BA 69AB 4A1C
81EB 9677 26EA 3910 11E3 D443
A19D 1CCC 51A1 1DE3 6E68 F372
ADDB 4B1D 3537 30BF 78AA F366
7E35 DBAD ECFB 707A 6EEB 4198
1579 E92C D9AB E1B9 E5C9 B894
43A1 AD3B 758E 9005 00D7 3F45
37E1 9289 EEF5 C10E 3235 EBA1
DF2F 3C9F FCE4 3D79 2B80 1A64
62EF 663D FF9D 8823 5C49 F4A2
93AF E25E F995 3F96 9B2B 06EC
BAB8 1C26 9860 12BB 4479 B15D
1C79 759B E20A 857C F287 A7AD
106D B822 4894 118A CF87 6469
047A DE13 AC60 1B8A 8CE5 899E
7BF2 DA2C 9138 6CF1 3400 F83B
5BBC 4E75 DB5E 1BE7 D7D8 020D
6B92 9F3A E1D8 6DE0 21ED 4A88
2783 A0F7 EEF2 4266
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