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ABSTRACT As an important part of power system, power transformer plays an irreplaceable role in the
process of power transmission. Diagnosis of transformer’s failure is of significance to maintain its safe
and stable operation. Frequency response analysis (FRA) has been widely accepted as an effective tool
for winding deformation fault diagnosis, which is one of the common failures for power transformers.
However, there is no standard and reliable code for FRA interpretation as so far. In this paper, support vector
machine (SVM) is combined with FRA to diagnose transformer faults. Furthermore, advanced optimization
algorithms are also applied to improve the performance of models. A series of winding fault emulating
experiments were carried out on an actual model transformer, the key features are extracted from measured
FRA data, and the diagnostic model is trained and obtained, to arrive at an outcome for classifying the fault
types and degrees of winding deformation faults with satisfactory accuracy. The diagnostic results indicate
that this method has potential to be an intelligent, standardized, accurate and powerful tool.

INDEX TERMS Transformer, winding faults, FRA, SVM.

I. INTRODUCTION
Large power transformers constitute very expensive and vital
components in electric power systems [1]. The reliability
of power transformers, which are critical core equipment in
power transmission and distribution systems, dictates the safe
and reliable performance of the entire electrical system [2].
Most importantly, the stable and safe operation of power
transformer is of significance to the normal operation of
power system. The faults of power transformers will have
serious impact on the safety of power grids [3]. It is necessary
to pay attention to higher reliability of power transformers,
due to possible failures of an electric system and because of
their cost [4].

Due to above reasons, condition monitoring of trans-
former operation status has attracted more and more attention
throughout the world [5]. Winding mechanical deformation

The associate editor coordinating the review of this article and approving
it for publication was Canbing Li.

faults are one of common fault types of transformers.
At present, many winding mechanical fault diagnosis meth-
ods are proposed theoretically and practically, for instance,
the short-circuit impedance (SCI) method based on the
principle of short-circuit impedance measurement, the low-
voltage impulse (LVI) method based on the principle of signal
analysis, the frequency response analysis (FRA) method, etc.
In SCImethod, measured SCI of a phase winding is compared
to the value that appears at the nameplate or factory test
results [6]. In LVI proposed by Lech, W. and Tyminski, L.
in 1966 [7], time domain signals of winding before and after
fault are compared and analyzed to present the information
of winding deformation.

Above all, FRA method has been widely accepted because
it’s economic, accurate, simple and fast. FRA, firstly intro-
duced by Dick and Erven [8], has adopted sweep frequency
sinuous signal to excite transformer windings and measured
the response signal in the frequency domain to construct a
frequency response signature [9]. The transformer winding
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is proven to be equivalent of an electrical network consisting
of resistance, capacitance and inductance in high frequency
range, and its frequency response signature can represent the
status of the winding [10]. The frequency response signa-
ture of the transformer after the factory production can be
regarded as the mostly original, standard and healthy signa-
ture of the transformer, which is frequently called fingerprint.
By comparing the frequency response curve of the subsequent
transformer in fault status with its fingerprint, the specific
fault type and severity of windings could be diagnosed [11].

Frequency response signatures of transformers with the
same fault type always present the similar characteristics and
patterns. On this basis, after comparing frequency response
signatures with the fingerprint, the common characteristics
of the certain fault type can be extracted. Based on this
principle, it is only need to extract the different characteristics
of frequency response signature with different faults; as a
result, the types of transformer winding mechanical faults
can be diagnosed. The same is true for the diagnosis of fault
degree. However, as so far, there is still no standard and
reliable code for interpretation of FRA signature [12], [13], in
which, the analysis of FRAmainly relies on visual inspection
or mathematical calculation. The diagnosis result by visual
inspection is easily affected by the subjectivity of personnel,
while the winding fault type and degree are not easily recog-
nized by simple mathematical calculation.

Recently, artificial intelligence (AI) has developed as an
advanced technique which was successfully used in many
fields. Some relevant researches on the application of FRA
and AI algorithm in transformer fault diagnosis have been
successively conducted. For instance, A. J. Ghanizadeh and
G. B. Gharehpetian trained the neural network classifiers by
processing the FRA data [14]. Bigdeli used SVM to diagnose
transformer winding fault on the basis of transfer function
(TF) [15]. Zhao combined SVM with impulse frequency
response analysis (IFRA) to diagnose transformer fault [16].
Deng classified the transformer winding deformation based
on SVM and finite element analysis (FEA) [17]. However,
in reference [14], the neural network is not fit for the small
sample data of transformer winding faults, sometimes it is
easy to fall into the local optimal solution, which leads to
premature maturity. What’s more, the required data for train-
ing and testing are obtained by the simulation in this study,
instead of the FRA data measured in the actual transformers.
In reference [15], only a few feature quantities have been
extracted and applied to the fault diagnosis, which can be
further improved. Reference [16] only diagnoses the fault
types, without further classifying and predicting the degree
of fault. In reference [17], the identification of winding fault
is based on the short circuit impedance method, not the FRA
signature; what’s more, the data for training are obtained by
FEA. The optimization algorithm of SVM parameters can
still be further improved.

In view of above background, this study proposes the iden-
tification of actual transformer winding deformation faults
by combining FRA and SVM. SVM is popular and powerful

due to its unique advantages in solving small sample, non-
linear and high-dimensional pattern recognition problems; it
has good generalization ability in the case of limited samples.
This is of great practical significance for the fault diagnosis
and prediction of power transformer, which, the identifica-
tion of winding deformation faults is always the problem
of sample shortage and high nonlinearity between the fault
phenomena and fault reasons [18].

In this study, the SVM model is trained by FRA data. The
parameters of the SVM model are optimized by the particle
swarm optimization (PSO) algorithm. The characteristics of
transformer FRA signatures with different fault types and
degrees can be obtained by the SVMmodel, which is used for
fault classification. Besides, some characteristic features are
introduced by statistical analysis of FRA signatures. Both the
fault types and degrees are comprehensively discriminated.
In addition, to compare the proposed method with the current
state of the art of SVMon discriminating FRA signatures, two
common parameter optimization algorithms-the grid search
algorithm and genetic algorithm are also discussed in this
study.

The rest of this paper is organized as follows. Firstly, the
experimental setup and the experimental results are intro-
duced in the Section II. The key tools and procedures used
in this study are described in the Section III. The classifying
results and analysis are presented in the Section IV. Refer to
Section V for the details of conclusions of this study and
further research work. All the data tables supporting this
article can be seen in Section VI.

II. EXPERIMENTAL SETUP AND RESULT
A. EXPERIMENTAL SETUP
In this paper, a specially manufactured model transformer is
adopted to perform all experiments. Detailed parameters of
the model transformer are shown in Tab. 1. Three common
transformer faults are simulated by experiments, namely,
disk space variation (DSV), inter-disk short circuit (SC) and
radial deformation (RD). More information about the model
transformer and the detailed experimental setup can be found
in [16], [19], [20].

The DSV fault has been revealed that the capacitance
parameter dominates the effect and this fault could be emu-
lated by changing the inter-disk capacitance parameter [11].
The influence of DSV fault on transformer is simulated by
connecting several disks with paralleled capacitors. The mag-
nitude of capacitance indicates the degree of fault, including
50 pF, 67 pF, 100 pF, 200 pF, 400 pF, 600 pF and 800 pF. The
influence of SC fault on transformer is simulated by shorting
the connectors between the adjacent disks. The transformer
manufacturer also produced some windings with variable
deformations, which are used to replace the middle 10-disk
windings to simulate the RD faults [16]. The image of the
winding RD fault is shown in Figure 1. In Figure 1 (a),
d represents the amount of RD, which is a variable, θ rep-
resents the angle which is fixed at 45◦, the ratio of d and the
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FIGURE 1. Diagrammatic sketch of winding RD fault: (a) diagram and image of RD; (b) 3D visualization of winding RD with faults
manufactured at different directions.

TABLE 1. Design specifications of specifically manufactured model
transformer.

winding radius r are set to be 3%, 5%, 7% and 10% to emulate
the different degree of RDs produced at one direction [20].
There are also other RD fault windings in which the faults are
manufactured at different directions, but the ratio of d and r
is fixed at 5%, as shown in Figure 1(b) [16].

Figure 2 (a) shows the schematic diagram of transformer
experiment and Figure 2 (b) indicates the image of measure-
ments of the research.

All fault emulated experiments are performed using FRA
end to end open circuit connection. Two sets of FRA data
under transformer healthy status are measured and taken as
the standard FRA signatures. The reason why two sets of
FRA data are chosen as the fingerprints is that the measure-
ment errors were taken into account. In the process of FRA
measurement, there are a number of unavoidable factors that
can interfere with themeasurement results to varying degrees.

Taking two sets of FRA data as the fingerprints can weaken
the influence of measurement error on the diagnosis results
to a certain extent. The two sets of data were named normal 1
and normal 2.

B. EXPERIMENTAL RESULT
In the case of SC fault, 15 groups of different frequency
response data were measured. In the case of DSV fault,
21 groups of different FRA data were obtained. RD fault
experiments were carried out with 18 different conditions.
Figure 3∼ 5 show the comparison between the newmeasured
FRA traces and the fingerprint of transformer with different
fault status, including variable fault degrees and locations,
respectively.

III. APPLICATION OF SVM TO DIAGNOSE
WINDING FAULT
A. BRIEF INTRODUCTION TO THE KEY TOOLS
SVM has been in existence for a couple of decades, but it
has been developed as a powerful tool since it was firstly
proposed by Vapnik in the field of machine learning. The
application of SVM in fault diagnosis has attracted an increas-
ing attention in recent years due to its good classification
performance. The SVM is based on the statistical learning
theory [21]. Generally speaking, it is a two-classification
model. Its basic model is described as a linear classifier with
the largest spacing in feature space. Namely, the learning
strategy of the SVM is to maximize the spacing, which can be
ultimately transformed into a convex quadratic programming
problem.

SVM is a classification method based on structural risk
minimization (SRM) criterion. The learning strategy is to
maximize the interval, and the solution of the optimal hyper-
plane can ultimately be transformed into the solution of a
convex quadratic function problem [22]. It has particular
advantages of solving the classification problem of small-
scale samples, non-linearity, and high-dimension. According
to Statistical Learning Theory (SLT), which is the theory of
finite sample statistics put forward by Vapnik et al [23]–[26],
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FIGURE 2. Image of measurements of the research: (a) schematic diagram of transformer experiment; (b) image of the
testing ground.

FIGURE 3. Visualization of DSV Fault Experiment Data (the solid line is
fingerprint and the dotted line is new trace which corresponds to
different fault status).

FIGURE 4. Visualization of SC Fault Experiment Data (the solid line is
fingerprint and the dotted line is new trace which corresponds to
different fault status).

the so-called structural risk minimization is to reduce
the Vapnik-Chervonenkis (VC) dimension of the learn-
ing machine while ensure the classification accuracy rate

FIGURE 5. Visualization of RD Fault Experiment Data(the solid line is
fingerprint and the dotted line is new trace which corresponds to
different fault degree).

(empirical risk), so as to control the expected risk of the learn-
ing machine on the whole sample set [25]. The relationship
between the expected risk and the empirical risk is shown by:

Rexp ≤ Remp +8
(n
h

)
(1)

where Rexp and Remp represent the expected risk and the
empirical risk (the classification accuracy rate), and 8 is the
confidence interval that is related to the number of samples
and the VC dimension, where n is the number of samples and
h represent the VC dimension.
The confidence interval 8 in the above formula decreases

monotonously with the increase of ratio of n to h. In order
to make the model has better generalization ability, it is
necessary to reduce the VC dimension while minimizing the
empirical error. Define the classification interval as ρ. At the
ρ interval, the VC dimension h of the hyperplane sets satisfies
the following relationship:

h = f
(

1
ρ2

)
(2)
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where f is a monotonic increasing function. It can be seen
from Equation (2) that h is inversely proportional to the
square of ρ. Thus, maximizing the sample interval can mini-
mize the VC dimension to make the generalization ability of
the model stronger.

In summary, the principle of SVM is to maximize the
interval between two classes of samples in the process of
sample classification, so that the training model has strong
generalization ability.

The most widely used radial basis function (RBF) is
selected as the kernel function of the SVM algorithm in this
study. The expression of the function is as follows:

K (x, xi) = exp

(
−
‖x − xi‖ 2

g2

)
(3)

The LibSVM provides complete functions for training and
testing of SVM models [27].

The parameters of the SVM model are optimized by the
PSO algorithm. The PSO algorithm was firstly proposed by
Eberhart and Kennedy in 1995 [28], [29]. Its basic concept
stems from the study of foraging behavior of birds. The
PSO algorithm emulates the behavioral characteristics of this
biological population and is used to solve the optimization
problem.

The initialization of the PSO algorithm is a group of ran-
dom particles, and then the optimal solution is found through
multiple iterations. In each iteration, the particle updates itself
through the optimal solution it calculates (namely the individ-
ual optimum) and the optimal solution currently calculated
by the entire population (namely the global optimum). The
formula for updating the velocity and position of particles is
introduced by Equation (4) and Equation (5).

Vi = W ∗ Vi + C1 ∗ R1 ∗ (Ebest − Pi)

+C2 ∗ R2 ∗ (Gbest − Pi) (4)

Pi = Pi + Vi (5)

where Pi and Vi are the position and velocity of the i th
particle, respectively. C1 and C2 are acceleration constants,
also known as learning rates. W is an inertia constant, and
R1 and R2 are random numbers in the range of 0 to 1.
Ebest represents the individual optimum and Gbest represents
the global optimum.

PSO algorithm can be used in many fields because of its
superior optimization performance, which plays an important
role in swarm intelligence algorithm.

B. STRUCTURE OF DATA SETS
Extracting the representative fault features is an important
prerequisite for accurately discriminating the various types of
faults. At present, the mainstream feature extraction methods
from FRA signatures are divided into two categories, the sta-
tistical indicators and FRA signature waveform features [30].
In this study the feature extraction based on statistical indica-
tors is used to quantify the difference between the fingerprint
and the measured new trace. Calculating statistical indicators

is easy and fast, and the noise has little influence on the
calculation results [30].

The data used for training and testing of SVM model are
experimental FRA data of transformer as mentioned above.
The following Tab. 2 shows the eight different mathematical
features [31]–[33] of the measured data extracted by a series
of mathematical operations between the new trace and the
fingerprint, the calculate expression of the features is also pre-
sented. These mathematical features include the Correlation
Coefficient (CC), the EuclideanDistance (ED), themaximum
of difference (MAX), the Integral of Absolute difference (IA),

TABLE 2. Extracted mathematical index.
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the Sum Squared Error (SSE), the Sum Squared Ratio Error
(SSRE), the Sum Squared Max-Min Ratio Error (SSMMRE)
and Root Mean Square Error (RMSE).

The reasons why these 8 features are chosen can be seen
below. CC describes whether the relationship between two
independent variables is close. To a certain extent, it is to
describe the similarity. ED is a commonly used definition
of distance, which is the actual distance between two points
in m-dimensional space. Its geometric meaning is clear.
The correlation coefficient and Euclidean Distance are the
two frequently used features of FRA signature for pattern
recognition. MAX represents the maximum range of data
changes. IA determines the gap between the new trace and
the fingerprint. Intuitively speaking, it is the sum of the areas
enclosed by two curves. The actual error can be reflected by
this index. Additionally, SSE and RMSE are similar, which
explain the dispersion between finger print and the new trace
in different ways, and measure the deviation between them.
At last, SSRE and SSMMRE are similar, which highlight the
impact of relatively large errors and weaken the impact of
relatively small errors. In practical situations, the transformer
is most likely diagnosed as a healthy state when the curve is
slightly offset. However, when there is a large deviation in
the curves, the transformer may be identified as a fault state.
The characteristics of SSRE and SSMMRE conform to this
common fault diagnosis criterion.

The form of data set is 111-by-8, where 111 represents 111
groups of data and 8 is the feature number. Additionally, it’s
not difficult to understand that the form of data label matrix
is 111-by-1. In other words, each group of data contains
eight components. The details are shown in the Tab. 3 and
Expression (6).

τ1,1 τ1,2 · · · τ1,8
τ2,1 τ2,2 . . . τ2,8
...

...
. . .

...

τi,1 τi,2 τi,j τi,8
...

... . .
. ...

τ110,1 τ110,2 . . . τ110,8
τ111,1 τ111,2 . . . τ111,8


(6)

Expression (6) shows the detail structure of the data set,
where τi,j represents the j th feature of the i th data group.

When transformer fault types are classified, 1-3 rows of
data label matrix were set to 1 to represent health status,
and 4-45 rows of data label matrix were set to 2 to represent
DSV fault, 46-75 rows of data label matrix were set to 3 to
represent SC fault, 76-111 rows of data label matrix were
set to 4 to represent RD fault. 4,6,8,10. . . rows of data set
were taken as training set, and the corresponding rows of data
label matrix were taken as training label matrix. Accordingly,
5,7,9,11. . . rows of data set were taken as testing set, and the
corresponding rows of data label matrix were taken as testing
label matrix.

When classifying the degree of fault, because of the dif-
ficulty in quantifying the degree of the fault in the case of

TABLE 3. Structure of data set and details of each group.

SC fault, the SVM algorithm is only used to classify the
cases of DSV fault and RD fault. In the case of DSV fault,
4-24 rows of data set were taken as the training set and
25-45 rows of data set were taken as the testing set. Data label
matrix can be determined by the fault level of corresponding
rows. In addition, considering that the experimental FRA data
are limited in the case of RD fault, only a few samples were
taken randomly as the testing set and the rest as the training
set.

C. PROCEDURE OF PROPOSED METHOD
The procedure of the proposedmethod is depicted in Figure 6.
The original data is used to plot the corresponding FRA
signatures, and then the features of the curves are extracted
as the input of SVM. The input is divided into two parts, one

FIGURE 6. Block diagram of the proposed method.
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for training and the other for testing. Only when the training
accuracy meets the requirement, the model completes the
training and is used for testing, and finally the diagnostic
results are obtained.

D. RESULT OF PROPOSED METHOD FOR FAULT
DIAGNOSIS
After training the SVM model, the model is tested with the
testing set. The detail result of model testing is shown in
following Tab. 4-10.

TABLE 4. Classification results for DSV.

TABLE 5. Classification results for SC.

TABLE 6. Classification results for RD.

When the aim of the classifier is fault types, half of the
data set is extracted as a training set and the other half as
a testing set. In order to make the SVM model to identify
the various fault types, the training set learned by the model
contains samples of various fault types, DSV, SC andRD. The

TABLE 7. Summary of diagnostic results about fault types.

TABLE 8. Classification results for the level of DSV.

TABLE 9. Classification results for a typical testing set for the level of RD.

training accuracy of the model is 100% (54/54). The testing
results of various fault types are given in Tab. 4-6.

Table 7 is a summary of the testing results from
Tab. 4 to Tab. 6. From Table 7, it is clear that the proposed
method is capable of discriminating fault types. The com-
prehensive classification accuracy can reach up to 96.30%.
In particular, DSV and SC fault can be identified without
error.

When the aim of the classifier is fault level, two groups of
experiments were carried out, namely, DSV level classifica-
tion and RD level classification.
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TABLE 10. Processing result of 1000 groups of randomized trials for
discriminating RD fault degree in 3 times.

When it comes to DSV level classification, similarly,
the DSV fault data was divided into two equal parts, one
for training and another for testing. The training accuracy of
model is 100% (21/21). The result of classifying the levels of
DSV faults are presented in Tab. 8.

As shown in Tab. 8, basically, the fault degree of DSV can
be accurately identified by the model. It is remarkable that
in the only wrong set of data, there is not much difference
between what the model predicts (67pF) and what it actually
is (50pF). Therefore, the model is capable of detecting the
fault degrees of DSV fault.

When classifying the degree of RD fault, testing set and
training set are randomly extracted from data set. The follow-
ing tables are the classification results of a typical training set
and its testing set. The diagnostic accuracy rate varies with
the selection of testing sets and training sets. Anyway, it is
not difficult to conclude that the classification accuracy rate
must obey the statistical law. Based on this idea, 1000 groups
of randomized trials were conducted for 3 times. In each
of the randomized trials, 5 groups of FRA data of RD fault
are selected randomly from the data set and taken as the
testing set, and the selected testing set cover all of the fault
degree. The rest of data are taken as the training set and cover
all fault degrees, too. The average training accuracy of the
above 3000 random trials equals to 96.79%. The diagnostic
accuracy rates of experimental data are listed in Tab. 10.
It can be concluded that the diagnostic accuracy rate for
discriminating the winding RD fault degree is around 70%
by the statistical law. The experimental data are visualized
in Figure 7.

E. COMPARISON OF PARAMETER OPTIMIZATION
ALGORITHMS BETWEEN PROPOSED METHOD AND
CURRENT LITERATURE
The penalty coefficient and kernel function parameters (C, g)
of SVM model have a crucial impact on the performance of
the model. In other words, the quality of model parameters
determines the performance of themodel. In this study, except
for the PSO algorithms, the other two frequently used algo-
rithms - the grid search and genetic algorithm are also used
to optimize the (C, g).

The traditional parameter optimization method in the most
of existing literatures is the grid search algorithm. In fact,
the grid search algorithm is essentially an enumeration
method. In a given interval, many small mesh intervals are

FIGURE 7. Visualization of randomized trails result.

FIGURE 8. Result diagram of grid search algorithm.

divided according to the given step size. By calculating
whether the parameters in each mesh interval can reduce the
training error of the model, the optimal parameters can be
determined.

In addition, both of genetic algorithm and PSO algorithm
are popular at the moment. They are quick and accurate to
obtain the optimal parameters with greater probability.

In order to illustrate the differences of these three algo-
rithms in optimizing parameters for the SVM model, taking
the classification of fault types as an example, each method
is debugged three times to calculate the most appropriate
parameters. The debugging results of each optimization algo-
rithm method are shown in the Tab. 11. Similar results were
obtained for classification of fault degree.

Figure 8∼ 10 show the result diagrams of above parameter
optimization methods, respectively.

When the grid search algorithm is used to optimize the
SVM parameters, the parameters are first searched in a large
interval. The search interval and step size are then man-
ually adjusted referring to the results of parameter opti-
mization. Thus, this method is often time-consuming in the
early search stage and the human intervention is needed.
When genetic algorithm is used to optimize the parameters,
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TABLE 11. The differences between three methods of parameter
optimization.

FIGURE 9. Result diagram of genetic algorithm.

genetic algorithm involves operations such as crossover and
mutation, which has strong randomness. Occasionally, the
appropriate parameters cannot even be found. In most cases,
genetic algorithm can converge to an approximate optimal
solution as quickly as possible.When PSO is used to optimize
the SVM parameters, the convergence speed of the algorithm
is fastest among the three methods, and the quality of the
solution is the best.

In summary, among the three methods of model parameter
searching algorithms, the traditional grid search algorithm is
far inferior to the current popular genetic algorithm and PSO.

FIGURE 10. Result diagram of PSO algorithm.

Among them, the PSO algorithm is the best, which demon-
strates the advantages of the proposed method.

IV. CONCLUSION
In this paper, a method of combining SVM with FRA has
been evaluated for discriminating fault types and degrees
of transformer deformation faults. A series of experiments
were carried out on an actual transformer. Eight features
are extracted from FRA raw data by mathematical statistical
calculation. FRA Data is used to train SVM model, and then
PSO algorithm is used to optimize SVM model parameters.
The data processing result shows that the comprehensive
accuracy rate of the diagnosis reaches up to 96.3% when the
classifier is used to discriminate the fault types of winding
DSV, SC and RD. When the trained classifier is used to
classify the fault degree of DSV, the accuracy rate reaches up
to 95.24%. In addition, the accuracy rate is around 70%when
the classifier is applied to discriminate the fault degree of RD.
The applicability and effectiveness of the method has been
already demonstrated, the comparison result of the proposed
method with other two parameter optimized methods demon-
strates the advantages of PSO method. Overall, the combina-
tion of SVM and FRA has reached significant potential for
transformer winding deformation fault diagnosis. In further
research, fault locationwill be analyzed. Phase information of
frequency response can also be considered for fault diagnosis.
It is also practical and meaningful to use massive data of
FRA to solve the actual fault diagnosis problems when more
reliable SVM models are trained and obtained.

APPENDIX
See Tables 1–11.
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