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ABSTRACT Video scene understanding is leading to an increased research investment in developing
artificial intelligence technologies, pattern recognition, and computer vision, especially with the advance in
sensor technologies. Developing autonomous unmanned vehicles, able to recognize not just targets appearing
in a scene but a complete scene the targets are involved in (describing events, actions, situations, etc.)
is becoming crucial in the recent advanced intelligent surveillance systems. At the same time, besides
these consolidated technologies, the Semantic Web Technologies are also emerging, yielding seamless
support to the high-level understanding of the scenes. To this purpose, the paper proposes a systematic
ontology modeling to support and improve video content analysis, by generating a comprehensive high-
level scene description, achieved by semantic reasoning and querying. The ontology schema comes from
as an integration of new and existing ontologies and provides some design pattern guideline to get a high-
level description of a whole scenario. It starts from the description of basic targets in the video scenario,
thanks to the support of video tracking algorithms and target classification; then provides a higher level
interpretation, compounding event-driven target interactions (for local activity comprehension), to reach
gradually an abstraction high level that enables a concise and complete scenario description.

INDEX TERMS Ontologies, situation awareness, scene understanding, semantic Web technologies, UAV.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are extensively used for
research, monitoring and assistance in several fields of appli-
cation ranging from defense, emergency and disaster man-
agement to agriculture, delivery of items, filming and so on.
Their performance is often estimated about how accurate and
precise is the provided scenario description, ranging from the
basic identification of fixed and mobile targets, to recognize
target actions that constitute events occurring in the real-
time scenario. Especially when a high-level description of
the scenario is strongly desired, UAVs should be able to
process the initial tracking data and, by adding environmental
information, interpret the scene captured by the on-board
camera. Although the human remote control of these vehicles
is often decisive to clearly understand the scene and make
an action, UAV equipped with such abilities could support
human operators in many situations, especially if they are
dangerous for humans.

The associate editor coordinating the review of this manuscript and
approving it for publication was Juan Liu.
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The scenario comprehension requires to analyze low level
data and then build knowledge on different aspects of
the scene, collecting distinct feature data and merge them,
increasingly, to get a complete picture of what it is happen-
ing [8]. A straightforward interpretation of the road scenario
requires to firstly detect the principal actors of the scene,
such as people, vehicles moving in the scene. Then, there is
the need to understand their movements and interactions to
recognize events or actions. Combinations of events involv-
ing one or more objects depict higher-level activities or sit-
uations. This process gradually transforms primitive data
(e.g., from sensors or tracking) into high-level information
to reach a high-level view of the scenario.

Figure 1 shows an incremental multi-layer knowledge
extraction schema that depicts this process. Each layer pro-
duces a knowledge ‘“‘granule” that is used and integrated
in the upper layer with additional features to increase the
knowledge granularity on the initial entities. In the figure,
the original video frames are processed by tracking methods
(in the figure, the focus is on a zoomed frame portion),
obtaining target bounding boxes. The Raw sensor data layer
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FIGURE 1. Multi-layer knowledge schema: An incremental design process
to video scene description.

constitutes the level of primitive data from tracking, such as
object dimensions, positions, width and height of bounding
boxes, etc., and also possible sensing data if sensors are
involved to collect data in this phase. Tracked targets are
the output of the initial data transformation step. The next
level is defined on the scene object detailed features, obtained
through the tracking process. The Object layer is composed
of all the recognized targets, including the target identifica-
tion and classification activities. In Figure 1, for example,
the targets identified in the video frames are classified and
labeled as Person. In other words, Person is the (class) label
associated with the bounding boxes identified as idl, id2.
The Activity layer describes the relations between the objects
appearing on the scene: moving objects can interact with
other (moving or fixed) objects, involving actions, move-
ments, or any change of the scene. For example, people’s
movements and interactions state that the objects labeled
as Person are walking. The upper layer represents, at high
level, the interpretation of the scene, through the activities
carried out by the named objects in the scene. The layer
Situation abstracts the object movements in the environment,
to achieve a final human-like interpretation of the scene.
In this case, the revealed situation People Crossing is a higher
level description of the activity Person Walking of the pre-
vious layer, carried out by the recognized Person objects.
The situation People Crossing explains what is happening on
the scene, straightforwardly and concisely. The multi-layer
knowledge extraction schema, depicted in Figure 1, shows
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a methodological infrastructure to incrementally recognize
objects and activities they are involved in and systematically
describe a video frame scenario. The logic behind this schema
needs solid formal modeling that finds its solution in the use
of a thorough ontological design. Ontologies provide indeed
formal models to describe axiom-based knowledge and infer
new knowledge through semantic reasoning. Bearing in mind
one of the focal principles of the Semantic Web, viz., the data
re-usability, the multi-layer knowledge schema is achievable
by integrating existing upper and domain ontologies, align-
ing similar concepts and extending them, in order to bridge
different domain knowledge.

Ontology integration is not an easy task to fulfill, due to
the difficulties to relate distinct domains (ontology align-
ment). Poor ontology integration can result in excessive
redundancy of information, with a consequent reduction in
performance [14], that inevitably affects semantic reasoning
and query processing [22].

To address this issue, this work proposes a novel and
systematic ontology design to support Computer Vision
methods in the video scene comprehension. The idea is to
add an ontology-based semantic support to the well-known
approaches and methods for Video Analysis, in order to
increase the effectiveness in video content analysis. Basically,
the output of video tracking and target classification (and
labeling) is encoded in ontological assertions to infer new
enhanced knowledge that describe target interactions, events,
activities and finally situations appearing on the scene.

The multi-layer knowledge schema shown in Figure 1
provides a systematic design process to increasingly yield
a scenario description of the video content, formally sup-
ported by ontology modeling. The knowledge, produced by
each layer, is modeled as ontology concepts corresponding
to the main scene actors, and their relationships constituting
movements, event, activities, and finally, situations on the
scene. At each layer, higher-level knowledge is built from the
information of the previous layer, thanks to the corresponding
ontology model, that describes the conceptualization at that
layer. By semantic reasoning, new assertions, inferred on the
previously generated knowledge, enable high level view of
the video content.

The remaining of the paper is structured as follows.
Section II presents an overview of the main literature in video
content analysis with a focus on semantic knowledge-based
approaches; Section III describes the individual ontology
models used in this approach as well as the final ontology
model resulting as an integrated design model of the previ-
ous ones. Finally, Section IV shows an illustrative example,
that highlights step-by-step the whole process, in an actual
scenario. Conclusions close the paper.

Il. RELATED WORK

This section provides literature review about situation recog-
nition by analyzing the proposed Machine Learning and
knowledge-based methods. The section also discusses the
main ontologies designed for situation modeling.
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A. COMPUTER VISION AND DEEP LEARNING

Situation interpretation has been a highly debated topic in
literature to support devices, such as smart cameras, robots
and unmanned vehicles, to accomplish complex surveillance
and monitoring tasks. As first step, scenario interpretation
from mobile cameras requires the detection and tracking of
the main actors of the video scene, such as people, vehicles
and animals. To this purpose, tracking algorithms [20], [31]
have been proposed in literature. Object tracking from mobile
cameras is a challenging topic because there is no fixed
scene [5], [11], [12], [21], then, traditional techniques, such
as the background subtraction [29], can not be applied to
accomplish the task. After scene object detection has been
performed, scenario interpretation requires the identification
of object identity, as well as the recognition of the envi-
ronment and specific features of the scene that can sup-
port activity and event detection. To this purpose, Machine
learning and, especially, Deep Learning methods [30], [34]
have been widely investigated to recognize object identity,
scene elements or event, and even activities from egocentric
videos [34]. These methods exhibit very good performances,
but the training phase is quite expensive, due to the huge num-
ber of training samples; they are often ad-hoc designed for
a specific domain (e.g., pedestrian event) [33]. Furthermore,
a camera-equipped UAV flying over outside areas can take
different types of environments and objects, doing various
activities, with different light conditions and angles. These
conditions can significantly increase the number of training
samples required for a good-performing object and event
detection. The implementation of Deep Learning methods
is driven by the availability of high-performance computing
GPU and software frameworks. Additionally, the training,
classification and validation of Deep Learning have been
demonstrated to be not always a trivial case. [28]

B. KNOWLEDGE-BASED SYSTEMS APPLIED TO
SURVEILLANCE

Recent literature [7], [9] focuses on enhancing UAVs as
knowledge-based systems to become aware of situations
occurring in a real-world scenario. Knowledge-based meth-
ods have been used to perform sensor fusion to integrate
heterogeneous data and support various applications [2], [32],
such as UAV-driven object detection in video scenes [6], [18].
Cognitive models have been proposed to improve object
detection and tracking by fusing information on the scene
to catch tracking faults such as occlusion, ID lost and
motion blur. Other researchers [10], [17], [26] proposed new
models to cope with UAV-based event detection both in
inside and outside environments. They proposed ontology-
based approaches to model knowledge on the scene and
objects. Some approaches focus on a robust interpretations
of events over time to abstract higher-level knowledge on a
scene and provide refined descriptions of the whole scenario
[6], [26], [27]. In [27], the authors propose a novel reasoning
mechanism to deal with uncertainty in activity detection.
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In [6], the ontology-based model introduced in [7] is extended
by considering a query-based temporal window to analyze
spatio/temporal relations among tracked people and detect
events over time. In [26] an ontology-based system, namely
iKnow, detects activities of daily-living by merging depen-
dencies among low-level and high-level concepts, such as
locations and objects involved in activities. This model intro-
duces the telicity criteria, which is applied to group already
detected activities for situation interpretation. Qur previous
approach [10] employs an ontology-based modeling of UAV-
recorded video scene to detect activities carried out by people
and vehicles in various environmental contexts. The approach
detects simple activities carried out by tracked scene objects,
then, compositions of these activities over time enable the
definition of higher-level complex activities. The knowledge
modeling is achieved by ontology axioms and applying rea-
soning on them.

The knowledge-based system proposed in [17] introduces
a context layer over tracking, that employs an ontology com-
posed of several sub-ontologies, each one devoted to a spe-
cific aspect/layer of the scene, from the lowest to the highest
level (i.e., tracking data, scene objects, situations).

The approaches [7], [9], [10], [17], [26] employ
knowledge-based methods to detect activities and situations,
but they do not provide a methodological approach to achieve
a scene description; this work presents an ontology design
pattern that provides the incremental steps (in form of
ontological models) to describe a scene, at different levels
of detail. Coding design patterns into ontologies has been
proven to be useful for supporting and improving Semantic
Web ontology engineering [15]. In [15], content-oriented
patterns are shown to be useful to abstract knowledge and
support composition. This paper introduces a multi-ontology
process design pattern to support knowledge acquisition and
reuse about a UAV-taken scenario. The employment of a
knowledge-based approach does not prevent the use of a
statistical-based or probabilistic approach. In fact, in [16],
ontologies and Markov Logic Networks are used synergisti-
cally to accomplish activity recognition.

C. ONTOLOGIES FOR SITUATION MODELING

Recent studies evidence the role of ontology for modeling the
features arisen from the UAV-observed scene [1], [7], [23].
In [7], the ontology, namely TrackPOl, is proposed to rep-
resent scene mobile objects (i.e., people, vehicles, etc.) and
environments (roads, buildings, etc.) by starting from tracked
scene data. Activity Ontology Design Pattern (ODP) [1]
introduces a core ontology for activity modeling that can
be used in different contexts. The activity is modeled along
with its features (time duration, people involved, etc.). This
ontology also allows the modeling of an activity as composed
by simpler activities. An ontology similar to ODP is proposed
in [25], the authors present a core ontology to model the activ-
ity and its features. Then, the model is extended with a spe-
cialization pattern and a composition pattern to, respectively,
specialize the core ontology to model a specific domain and

VOLUME 7, 2019



D. Cavaliere et al.: Toward an ODP for UAV Video Content Analysis

IEEE Access

build complex activities from simpler ones. Situation Theory
Ontology (STO) [23] concerns the modeling of concepts in
Situation Theory (additional details will be provided in the
next sections).

In the Situation Awareness domain, ontologies often com-
bine classes modeling sensor-related information with classes
modeling high-level features, such as relations among scene
objects, events, and situations. The ontologies proposed in the
literature are upper ontologies, representing general relations
among the data, that can be specialized to accomplish a
specific application. In [24], a novel method to knowledge
representation for Situation Awareness is discussed. It uses
RuleML-based domain theories and proposes the Situation
Awareness (SAW) ontology. The ontology models a situation
as a collection of goals, entities or objects and relations
among these objects. The ontology also models events as
acquired by sensors and allows the definition of dynamic
representation over time by updating specific properties. The
ontology is a core ontology, but its classes can be extended
to represent situations occurring in specific domains. In [17],
several connected upper ontologies are proposed to describe
different aspects of the scene, such as tracked entities, scene
objects, activities, etc.

ill. THE ONTOLOGY MODEL

This section presents the whole ontology design: firstly, indi-
vidual ontologies involved in the integrated formal model are
introduced, according to the multi-layer knowledge schema
introduced in Figure 1; then the whole model, with the relative
conceptual alignments is presented along with the generated
semantic knowledge.

A. RAW SENSOR DATA LAYER

This layer represents the basic level, namely, 0-layer, to high-
light the fact that it is an initial processing step, on which the
ontological model is based. It indeed collects the input data
from the UAV-recorded video, sensing the main actors of the
scene and the environmental context. Video Analysis tech-
niques are widely employed to accomplish this task: video
tracking is performed to track the movements of the mobile
scene objects, such as people, vehicles, etc.; also target clas-
sification information are returned about each detected scene
object.

The output is an XML-based file including the information
on the scene objects detected frame by frame. To detect the
environment type, area classification is also provided for the
types of ground areas present in the video. The classification
results annotate each tracked object along with the area where
they appear and the areas in its surroundings. In general,
the XML file collects information types such as bounding
boxes dimensions and positions, speed, direction as well
as object identity and area classification, etc. The ontology
modeling approach supposes that the generated XML file
is the result of accurate video tracking as well as object
recognition and classification activities, to guarantee an effec-
tive nested knowledge generation layering. Deep learning,
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as reinforcement learning are established techniques used in
Video Analysis and represent a solid basis on which to build
our ontological modeling.

The output results of Raw sensor data Layer are roughly
the main mobile and fixed objects present in the scene, anno-
tated with the class label. These data are the raw knowledge
on the scene, on which our approach incrementally builds
higher-level knowledge on the UAV-monitored scene.

B. OBJECT LAYER: TRACKPOI ONTOLOGY

The output of tracking, along with target classification tasks,
needs to be coded in semantic assertions. The TrackPOI
ontology [7] is designed to describe road scenarios, where
mobile and fixed objects move and interact with each other.
Figure 2 shows the main classes and relations of the TrackPOI
ontology. Our videos usually show road scenarios, but the
layered knowledge process could be easily customized for
different scenario types, replacing on this layer, the appro-
priate domain ontology.

TrackPOl:Person

\

TrackPOl:Vehicle
TrackPOI:Highway
/ TrackPOI:Route

\ J

TrackPOl:Park
TrackPOIl:Parking_lot

FIGURE 2. TrackPOI ontology schema: The main classes and subsumption
relations.

TrackPOI:Track

OWL:Thing

TrackPOI:POI

The mobile objects in the TrackPOI ontology are tracks
annotated as people, vehicles, animals or things moved by
the people. The Track class indeed, represents the bounding
box marking the detected object (viz., the track) in each
frame of the video. Therefore, each detected object in a frame
sequence is modeled as a collection of instances of Track
class, identified by the same ID value. Track is a general class
of the TrackPOI ontology and includes all the recognized
moving objects. It is specialized to identify instances of its
subclasses, such as the classes Person and Vehicle. Thus,
according to classification results, a Track instance can also
be a Person, Vehicle or Unknown instance.

The fixed objects include environmental features, such as
rivers, buildings, stores, etc. The fixed objects are coded as
Points of Interest (POIs) retrieved by Google Maps service.
In Figure 2, some fixed objects, namely Highway, Route,
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Park and Parking_lot, are represented as the sub-classes of
the class POL.

TrackPOI imports GeoRSS ontology' to model POI GPS
data and also employs Time ontology? to represent the instant
of a track instance.

TrackPOI defines also the spatio/temporal relations
between tracks and POIs in a video scene. Relation modeling
allows to describe the interactions among tracks, and the track
movements in the environment. According to the layered
knowledge schema of Figure 1, TrackPOI models a first-layer
knowledge, dedicated to describe the mobile objects of the
scene. It is in charge of generating assertions on tracking
and classification data to describe targets and the elementary
movements involving them.

TrackPOI provides the formal model to describe what
appears in each frame, frame-by-frame. As stated, track
objects, identified by an ID and appearing in a frame
sequence, represent the same physical object. Moreover,
in terms of ontology coding, the axioms related to the object
presence in a time interval are replicated as many times as
the frame number is. To this purpose, TrackPOI provides
a further class namely TrackPOI:ThingObject, that supports
the conceptual abstraction of the object presence over time,
by a digest, time-based axiom. Figure 3 shows the class
TrackPOI:ThingObject that is related to the class Track-
POI:Track by the relation TrackPOI:hasTrack, or conversely,
each TrackPOI:Track is part of (TrackPOI:trackOf) a Track-
POI:ThingObject.

hasTrack
A
TrackPOI:ThingObject TrackPOl:Track
~ 0@ - J
A
trackOf

FIGURE 3. TrackPOI ThingObject class: The high-level dynamic object
model.

In other words, an instance of TrackPOI:ThingObject is the
actual object appearing in the scene, described by a sequence
of TrackPOI:Track instances (identified by the same ID) over
time.

C. ACTIVITY/EVENT LAYER: ODP ONTOLOGY

The activities carried out by the main actors in the scenes
are modeled by using an ontology design pattern [1] (briefly,
ODP) to model the common core of activities in different
domains.

Figure 4 shows the Activity ODP schema with classes and
properties. According the schema in the figure, a generic
activity has a starting and finishing time (respectively,
described by the properties hasStart and hasEnd), represented

1 http://www.georss.org/georss/geo_2007.owl
2h[tpS2//WWW.W3.Ol‘g/TR/OWl-time/
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foaf:Agent

xsd:duration

Activity:Outcome

Activity:Requirement

FIGURE 4. Activity OPD ontology for high-level activities modeling.

by xsd:time; it lasts over time, the range of property has-
Duration is xsd:duration which represents the activity time
duration. Moreover, a generic activity can be composed of
other activities. In fact, an activity individual, represented
as an instance of the Activity:Activity class, can be related
to its component activities through the hasPart property.
The Activity:Activity class is connected by relations Activity:
hasRequirement and Activity:produces to the two main
classes that characterize the activity, the Activity: Requirement
and Activity:Outcome classes, that represent the input and
the output of the activity, respectively. These classes enable
modeling logical order among the activities.

Classes from external ontologies are also used to contextu-
alize the activity. Accordingly, in the figure, the POI:place
class models the place where the activity occurred. The
foaf:Agent class represents the participants in the activity.

The ODP ontology has been employed to model knowl-
edge on detected activities (that specialize this generic class)
and support the definition of higher-level complex activities.

D. SITUATION LAYER: STO ONTOLOGY

In common sense, a situation is often represented by a com-
bination of circumstances in which someone or something
finds itself or a specific status with regard to conditions and
circumstances. A situation can be a simple people’s activ-
ity, or the effect caused by some complex events. In Situation
Awareness [13], situation is defined as the perception of some
situational elements, the comprehension of their meaning
and the projection of their state in the future. The Situation
Theory Ontology (STO) models the fundamental concepts
involved in the situation theory [23]. Situation theory con-
cerns the situation semantics developed by Barwise and Perry
[31, [4], [19] to reason over common-sense and real world
situations. In this theory, a situation is composed of infons,
elementary units of information that characterize a situation.
More formally, it is defined on an n-ary relation R among n
objects or individuals ay, ..., a,, therefore, it is written as
follows: ((R,ay,...,a,,0/1)). The infon represents a fact
that can be true or false and it is represented by the last
argument in the infon definition (0/1) that expresses its own
polarity. The relation (R) in the infon represents the type
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of event or action involving one or more individuals. The
individuals (ay, ..., a,) are entities (i.e., people, animals,
etc.) that participate in the situation.

Figure 5 shows the core ontology schema of STO. The
root class is STO:Situation which represents the situa-
tion. The classes STO:Elementarylnfon, STO:Relation and
STO:Individual are involved in the situation definition.
More specifically, the STO:Situation class is related to the
STO:Elementarylnfon class by the supportedinfon relation.
An STO:Elementarylnfon is an STO:Relation existing among
one or more STO:Individual instances. The STO:Attribute
class describes attributes that can be associated with both
individuals and situations. The class is devoted to repre-
sent locations and time instants related to the situation or

individuals.
STO:Situation

STO:Relation

STO:Attribute

J

FIGURE 5. Situation theory ontology (STO): It models situation theory.

E. ONTOLOGY INTEGRATION AND LAYERED

KNOWLEDGE GENERATION

The ontologies are the building blocks of our layered knowl-
edge schema, shown in Figure 1. They contribute to provide
a high-level abstraction of the scene in a dynamic environ-
ment. Conceptual alignments or, more in general, portions of
ontology merging and integration need to be harmonized in a
comprehensive ontology model that reflects our schema.

Figure 6 shows the final ontology schema, with the inte-
gration model design (additional relations connecting the
individual ontologies) in evidence. The figure strictly reflects
the layered knowledge schema, namely from the bottom layer
Raw sensor data (layer 0), Scene object (layer 1), activity/
event (layer 2), Situation (layer 3).

The layer O provides the xml-based data describing bound-
ing boxes and their positions, as well as their class label
(e.g., if the bounding box represents a person, a car, etc.),
as described in Section III-A.

At the layer 1, the data, generated at the previous
layer, are translated into semantic assertions that describe
the recognized mobile and fixed objects as instances of the
TrackPOI:Track and TrackPOI:POI, respectively, from the
ontology TrackPOI. The track identifiers and class names
are coded into semantic assertions: for example, the triple
<t_1_2 a TrackPOI:Person> states that the track with ID:1
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in the second frame (numbered as 2) represents a Person
(in other words, #_1_2 is an individual of the class Person).
POIs collected by Google Maps service, or detected by area
classification at layer 0, are described by ontology assertions
in a similar way.

Interactions between fixed (e.g., POIs) and moving objects
are also identified in this layer. To this purpose, object
positions, with respect to a specific area or just generic spatio-
temporal relations occurring in the scene are detected. There-
fore, triples representing spatio-temporal relations among
tracks are generated. Furthermore, in this layer, the identi-
fication of the scene object, as composed of tracks appearing
in a frame sequence, is accomplished as individuals of the
TrackPOI:ThingObject class. Spin rules help the consolida-
tion of the object movements and interactions, as well as
the merging of the tracks associated to the same object (see
Section III-B for details). For instance, the generated triple
<s_1 a TrackPOI:ThingObject> represents the mobile scene
object s_1 composed of tracks with ID equals to 1 from the
video frame sequence, such as <¢_1_1 a TrackPOI:Person>,
<t_1_2 a TrackPOI:Person>,<t_1_3 a TrackPOI:Person>,
etc.

In the layer 2, SPARQL queries are designed to elicit activ-
ities, that are based on the generated TrackPOI:ThingObject
instances and spatio-temporal relations among tracks. More
specifically, the queries allow the detection of high-level
activities over time [10]. The detected activities are repre-
sented as instances of the Activity:Activity class, then, new
triples are generated. These triples relate the activity with the
thing objects who carried out or participate to the activity
and the place where it happened. In the figure, for instance,
a generic activity act_I is characterized by the participant (the
thing object named s_J) in that activity, the place where it
occurs (the POI o_2) and the starting and ending times (at
the second 0.12 and 0.42, respectively).

Let us notice that the layer 1 and layer 2 are joined by
new additional relations (isEquivantTo), that connect similar
concepts from the ontologies TrackPOI and ODP, respec-
tively. More specifically, the TrackPOI:ThingObject instance
is the high-level object that carries out the activity; since it
represents the main participant of the activity, it is equivalent
to the foaf:Agent class.

In this way, through the Activity:hasParticipant property
(that connects the Activity:Activity class to the foaf:Agent
class), the activity (i.e., Activity:Activity instance) is related
to the object doing it (i.e., TrackPOI:ThingObject instance).

Similarly, the TrackPOI:POI and POIl:place classes are
equivalent and related to the Activity:Activity class through
the property Activity:takesPlaceAt.

At layer 3, the high level ontology STO is in charge
of situation description. Figure 6 shows the connection
with the two underlying layers. As stated in Section III-D,
the STO:Individual class, in the STO ontology, models enti-
ties (i.e., people, animals, etc.) that carry out activities or are
involved in events and situations. The TrackPOI:ThingObject
class represents the same concept (i.e., it is assumed to
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Ontology integration

STO:Situation
supportedlnfon

STO:Relation

Situation
(Layer 3 - STO)

hasPart

isEquivalentTo

Activity/event
(Layer 2 —

Knowledge generation

Sit 1

Infon, A Infon,

Spin rules

on infons

Infon, Infon,
<Activity 1,s_1, 1> <Activity_2,s_2,s_3, 1>

Activity_1 Activity_2
<act_2, a, Activity:Activity>
<act_2, Activity:hasParticipant, s_2>
<act_2, Activity:hasParticipant, s_3>
<act_2, Activity:takesPlaceAt, o_2>
<act_2, Activity:hasStart, 0.32>
<act_2, Activity:hasEnd, 0.48>

<act_1, a, Activity:Activity>
<act_1, Activity:hasParticipant, s_1>
<act_1, Activity:takesPlaceAt, 0_2>
<act_1, Activity:hasStart, 0.12>
<act_1, Activity:hasEnd, 0.42>

SPARQL queries
on activities

/ Thing objects

<s_1, a, TrackPOI:ThingObject>
<s_2, a, TrackPOL:ThingObject>
<s_3, a, TrackPOL:ThingObject>

Spatio/temporal relations

<t_1_1, TrackPOl:inArea, o_2>
<t_2_1, TrackPOl:inArea, o_2>
<t_3_1, TrackPOl:inArea, o_2>

Scene object

(Layer 1 - TrackPOI)

<object framespan="1:903" id="3" name="PLAYER">
<attribute name="Location">

Frame 1 <data:bbox framesp: height="146"

1d:3 width="184' 5" direction="N"
realwidth=" 4" realHeight="3.65499"

D speed="0.32" inArea="Route"
type="Person" nearestPlace=""/>

Raw sensor data
(Layer 0 — XML-based tracking output)

Tracks
<t_1_1, a, TrackPOl:Person> s
<t 2 1, a, TrackPOIl:Person> .
<t7371, a, TrackPOl:Person> <0 1a, TrackPQI.I?QI>
<12, a, TrackPOI-Person> <o_1, a, TrackPOl:building>
<t7272, a, TrackPOl:Person> <0_2, a, TrackPOI:POI>
<32 <0_2, a, TrackPOl:Route>

, &, TrackPOl:Person>

FIGURE 6. The whole ontology model and an example of knowledge generation. The colored lines are the added

relations connecting the three ontologies.

be equivalent) to STO:Individual. The Activity:Activity class
exclusively represents activities carried out by one or more
scene objects. Activities are also modeled in the STO ontol-
ogy by the STO:Relation class. The Activity:Activity class
is designed as a subclass of the STO:Relation class, that
connects directly the ODP ontology to the STO ontology.
When new Activity:Activity instances have been generated
at layer 2, the same instances are also of type STO:Relation.
At layer 3, Infons on each generated STO:Relation instance
are produced. Precisely, an instance of STO: ElementaryInfon
is yield, for each detected activity type in Activity:Activity,
equivalent to STO:Relation. These instances represent the
detected activities along with time, location and the partic-
ipants to the activity. Concatenations of infons, defined by
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Spin rules, allow defining high-level situations. For instance,
given the infons Infon, Infon, and the situation Sit; defined
by the rule R : Infon; A Infon, =— Sit_1; if the two
infons Infon| and Infon, are generated, the rule R allows the
detection of the situation Sit;.

IV. A CLOSER LOOK AT THE INCREMENTAL ONTOLOGY
MODELING: A SCENARIO EXAMPLE

This section presents a case study showing the applicability
of the proposed ontology modeling and effectiveness in the
scene description, on a real-world video. Figure 7 shows the
generation of the ontology population, through the layers of
the knowledge schema, starting from the initial raw data to
yield a high level description scenario. The video frames,
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STO:_0_VehiclesStopToLetPeopleCross

Infon_2

Situation (Layer 3)

I Activity:_0_vehicleStopping I

I Activity:_1_manOnTheRoad I

| Activity:_2_manOnTheLawn I

Activity/event (layer 2)

TrackPOl:inArea

| TrackPOI:Route_0 I

I TrackPOI:ThingObiject_1 I I TrackPOI: ThingObject_2 I

| TrackPOl:.Lawn 0 I TrackPOL:inArea

| TrackPOI:ThingObject_0 I

|

TrackPOl:Track_0_1 TrackPOl:Track_1_1 TrackPOl:Track_2_1
(Vehicle) (Person) (Person)

\ \ \

TrackPOl:Track_0_3 TrackPOl:Track_1_3 TrackPOl:Track_2_3
(Vehicle) (Person) (Person)

/

(Vehicle) (Person)

| TrackPOl:Track_0_2 | | TrackPOl:Track_1_2

TrackPOl:Track_2_2 |

| |

(Person)
\

Scene object (layer 1)

I Frame 3

FIGURE 7. Knowledge augmentation through the ontology-driven layered schema: An illustrative example.

at the layer 0, show a typical outside scenario recorded by
a camera-equipped UAV. A vehicle is running while a person
is crossing and another person is walking on the lawn beside
the road. As stated, data retrieved by sensors and tracking
algorithms allows us to recognize targets in the scene. The
tracking algorithm used in this case study estimates cam-
era movements for background scene extraction and iden-
tifies object position. Moreover, feedforward control [7] has
been used to improve trajectory tracking of objects through
frames. In the example, the tracking algorithm returns the
objects identified by id:0, id:1 and id:2. Then classifica-
tion algorithms have been employed to object and back-
ground area annotations. Our object classifier considers three
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object categories: people, vehicles and unknown objects. The
object classification is performed frame-by-frame and, then,
the object label is got through a majority voting approach [7].
The classification results are used to annotate each detected
scene object, adding a class-type field, expressing its identity.
Identity and area annotations on scene objects are added
as attributes to tags, expressing the tracked objects, in the
original tracking output file.

The area classifier detects the main background environ-
ments (e.g., lawn or road) where the objects stay or places
they get close to [10]. Identity and area annotations on scene
objects are added as attributes to tags, expressing the tracked
objects, in the original tracking output file. Tracking and
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classification data are then encoded into ontology asser-
tions [7], generating actual instances of TrackPOI ontology.
At layer 1, for each frame, the instances of Vehicle and
Person are created. In the frame numbered 1, the gener-
ated instances TrackPOI:Track_0_1, TrackPOI:Track_1_1
and TrackPOI:Track_2_1, represent the tracks produced
at the layer 0 and are individuals of TrackPOI ontol-
ogy TrackPOI:Vehicle, TrackPOI :Person. Considering video
frames, it is possible to seek the same track through frames.

Tracks with the same ID are grouped in a unique dynamic
entity (i.e., thing object) representing the mobile object in
the scene. For instance, the instances TrackPOI:Track_1_1,
TrackPOI:Track_1_2 and TrackPOI:Track_1_3 represent
the tracks with the ID equals to 1 in frames 1, 2 and 3,
respectively. These tracks, representing the same instance of
the TrackPOI:Person class through the frames, are grouped
to build the TrackPOI:ThingObject_1 instance of the class
TrackPOI:ThingObject. At the same time, the generated
TrackPOI:Track instances are related to TrackPOI:POI
instances, representing the environments where they move,
through the TrackPOI:inArea property. Through this prop-
erty, tracks of the vehicle and the person with ID:1 are found
in the area of the route, while the other person with ID:2 is
found on the lawn besides the route. These spatial relations
are also timed because related to a specific frame. Therefore,
the generated spatio/temporal relations support the contextu-
alization of the object movements and interactions with other
objects. The outcome of layer 1 is the identification of three
objects (belonging to the class TrackPOI: ThingObject), and
their relation with the places where they appear (i.e., the route
and the lawn).

At the layer 2, some rules are designed on the TrackPOI:
ThingObject instances and the spatio/temporal relations.
Collecting data on objects and their spatio-temporal rela-
tion, by SPARQL reasoning, activities are detected. In the
figure, some specialized activities are shown: they are car-
ried out by the two people and the vehicle arise at layer 2
of Figure 7. More precisely, the following activities are
elicited: Activity:_0_vehicleStopping, Activity:_I_ManOn
TheRoad, Activity:_2_ManOnTheLawn. At high level of
description, the observed scenario shows a vehicle which
is stopping (Activity:_0_vehicleStopping) when the person
crosses the route (Activity:_I_ManOnTheRoad). Then,
the other person is simply walking in the lawn area (Activity:_
2_manOnTheLawn).

As a SPARQL query example for activity definition, let
us consider the query to detect the activity instance Activ-
ity:_1_ManOnTheRoad shown in Listing 1. The SPARQL
query detects people walking on the road over video time.
This query makes possible to create an instance of a specific
class Activity:ManOnTheRoad, subclass of Activity:Activity,
for each track who carried out this activity. The query returns
a list of tracks ordered by their ID and time when they appear
in the video. The TrackPOI:trackOf property supports the
identification of the person (TrackPOI:ThingObject instance)

105350

1 SELECT ?ob ?track ?time ?poi

2 WHERE {

3 ?track a trackpoi:Person .

4 ?track trackpoi:inArea ?poi .
5 ?poi a trackpoi:Route .

6 ?track trackpoi:hasTime ?time .
7 2track trackpoi:track_ID ?id .
8 ?track trackpoi:trackOf ?ob .
9 } ORDER BY ?id ?time

Listing 1. manOnTheRoad activity: SPARQL query for detecting people on
the road.

walking on the road, while its track time serves the detection
of the times of entrance and exit on the road.

At the layer 3, the scene description becomes concise,
and reaches a very high level of abstraction. Situation The-
ory is applied to the detected activities and scene objects
to abstract knowledge from them and provide high-level
situations describing the whole scene. Infons are generated
on the detected activities and scene objects to relate all the
information and build situations. The situations are Spin
rule-defined as concatenations of infons. The outcome of
the layer 3 is the infons Infon_I and Infon_2 in corre-
spondence with activities Activity:_0_vehicleStopping and
Activity:_l_ManOnTheRoad, respectively. The Spin rules
define a situation, namely STO:_0_vehicleStopToLetPeople
Cross, that comes from the concatenation of these infons,
in the road context. This situation exactly captures the main
action happening in the road scenario, and provides a human-
oriented, high-level view of the scene.

The proposed ontology modeling provides a systematic
way to feed a knowledge base describing a video, ranging
from the identification of the individual objects to the occur-
ring activities, till to incrementally achieve a general, high-
level scenario description.

In order to assess the applicability of this approach and its
effectiveness in terms of scenario description, some videos
have been processed, as described in the case study. Three
videos® recorded in our campus have been processed: they
show people and vehicles carrying out some activities in
different environments, such as roads, lawns and heliports.
Table 1 shows the results of the application of the proposed
ontology model, according to the multi-layer knowledge
schema. The table provides the video content description:
specifically, for each video, the situations and the activities,
that compound these situations, are shown in the time interval
when they occur. Then, each activity includes the thing object
who carried out the activity, the thing object type, the POI
where the activity happened and the activity beginning and
ending times. Figure 8 shows one of the situations recog-
nized in each of the three videos (i.e. people grouping from
Video #1, people crossing from Video #2, people moving on
a heliport from Video #3). Situations are described exactly
by the time interval they occur, expressed by the starting and

3 https://tinyurl.com/yygg282c
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TABLE 1. Situations and activities recognized in the videos.

Video Situations Activity Thing Object Type POI Start End
Sit_0_ObjectNearer 0_ObjectNearer TO_0 Person 00:00:00 00:01:15
Sit_1_Grouping 5_Gr0up%ng TO_3 Person Lawnl 00:00:40 00:00:45
- 6_Grouping TO_1 Person Lawnl 00:00:40 00:00:45
Video #1 Sit_2_ObjectNearer 4_ObJ:ectNearer TO_3 Pergon Lawnl 00:00:12 00:01:11
Sit_3_ObjectNearer 3_ObjectNearer TO_2 Vehicle Routel 00:01:09 00:01:12
- 3_ObjectNearer TO_1 Person Routel 00:01:09 00:01:12
Sit_4_Grouping 0_Grouping TO_1 Person Lawnl 00:00:15 00:00:24
Sit_5_Grouping 4_Grouping TO_3 Person Lawnl 00:00:23 00:00:25
Sit_3_ManCrossing 0_ManCrossing TO_1 Person Routel 00:00:50 00:00:55
Sit_1_Grouping 0_Grouping TO_3 Person Lawnl 00:00:58 00:01:00
- 1_Grouping TO_1 Person Lawnl 00:00:58 00:01:00
Video #2 Sit 2 Groupin 3_Grouping TO_3 Person Lawn2 00:00:29 00:00:31
- = ping 2_Grouping TO_1 Person Lawn2 00:00:29 00:00:31
Sit_0_VehicleStops- 4_Stopping TO_2 Vehicle Routel 00:00:50 00:00:55
toLetPeopleCross 1_ManOnTheRoad TO_1 Person Routel 00:00:50 00:00:55
Sit_2_ManMoving 0_ManMoving . . N1,
InTheHeliport InTheHeliport TO_0 Person Heliport 00:00:09 00:01:00
Sit_3_ManMoving 1_ManMoving . N, on.
Video #3 InTheHeliport InTheHeliport TO_3 Person Heliport 00:00:18 00:00:46
Sit_4_Grouping 1_Grouping TO_2 Person Heliport 00:00:05 00:00:16
Sit_5_Grouping 0_Grouping TO_1 Person Heliport 00:00:05 00:00:16
Sit_0_ObjectNearer 4_ObjectNearer TO_2 Person Heliport 00:00:00 00:00:16
- 5_ObjectNearer TO_3 Person Heliport 00:00:00 00:00:16

Video #1 Video #2 Video #3

(h. 00:00:40) (h. 00:00:50) (h. 00:00:18)

(h. 00:00:45) (h. 00:00:55) (h. 00:00:46)

FIGURE 8. Situation detection: Frames from video #1: People grouping;
Video #2: People crossing; Video #3: People moving on a heliport.

ending frames. Let us notice that by comparing situations,
objects and times in the figure with the table results, the
detected situations correspond to those found in the videos.
For instance, looking at Video #2, in Table 1, the recog-
nized situations are Sit_3_ManCrossing, Sit_I_Grouping,
Sit_2_Grouping, and Sit_0_VehicleStopstoLetPeopleCross.
The Video #2 shows a road scene with people grouping,
and a crossing happening in presence of an oncoming
vehicle (see Figure 8). In Table 1, for Video #2, the sit-
uation Sit_3_ManCrossing is produced by the individual
activity 0_ManCrossing (in the Activity column); the situa-
tions Sit_I_Grouping, Sit_2_Grouping are described by the
grouping activities (identified as 0_Grouping, 1_Grouping,
2_Grouping, 3_Grouping). Each grouping activity can be
carried out by only one thing object, so there are as many
grouping activities as there are thing objects involved in the
grouping. The thing objects namely 7O_3 and TO_1 are both
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recognized as persons (Type column) and participate to the
situations Sit_2_Grouping and Sit_I_Grouping. More inter-
esting is the situation Sit_3_VehicleStopstoLetPeopleCross
that represents a vehicle stopping to let people cross the road,
described by the activities /_ManOnTheRoad and 4_Stop-
ping. The two activities involve two thing objects recognized
as aperson (70O_1) and a vehicle (TO_2). Situations and activ-
ities last a certain amount of time, from a starting to ending
time (Start and End columns, in the table). The starting and
ending times allow us to describe the temporal succession
of the situations detected in the video. The Video #2 indeed
shows initially two people grouping (Sit_2_Grouping), then
moving away from each other, and one of them crosses the
street (Sit_3_ManCrossing) while an oncoming vehicle stops
to let the person cross (Siz_0_VehicleStopstoLetPeopleCross);
in the end, the people meet again (Sit_I_Grouping)
(see Figure 8).

V. CONCLUSION

This paper introduces a novel knowledge modeling of a video
scenario, recorded by a UAV. Rather than using only the
tracking and classification methods to detect targets and their
movements, the use of Semantic Web technologies provides
support for enriching the scenario description, reflecting the
way the human observes a scene. The approach presents
a systematic ontology-based design process based on the
introduced multi-layer knowledge schema, that composes the
scene increasingly at a high level of abstraction.

The layered knowledge model indeed allows feeding
knowledge on the scene incrementally, from tracked data
to the situations describing the scene. The integrated ontol-
ogy model exploits the features of several well-known
ontologies to thoroughly model different aspects of the scene

105351



IEEE Access

D. Cavaliere et al.: Toward an ODP for UAV Video Content Analysis

and achieve complete scene comprehension. Data tracking
along with activity and situation (theory) modeling sup-
port the three levels underpinning the Situation Awareness:
Perception (collecting row sensing data), Comprehension
(seeking main actors in the scene: e.g., objects and carried
activities), Projection (assessing possible critical issues on
the detected situations).

The proposed ontology design is a kind of guideline that,
reflecting the multi-layer knowledge schema, produces a
formal knowledge modeling as well as arise the semantic
description on an observed scene.

In the light of the recent literature on situation comprehen-
sion, the main benefits of the proposed approach are briefly
listed below.

« An ontology design pattern for scenario understand-
ing. The whole ontology can be considered as a sort
of ontology design pattern, coming from the modeling
and integration of ontologies intended to portray the
layering of our proposed knowledge schema described
in Figure 1. In particular, the ontologies ODP and STO
are indeed ontology design patterns, in charge of cover-
ing the Activity and Situation layers, respectively. The
Object layer is the only one achieved with a domain
ontology, and, for this reason, it can be easily replaced
with another ontology, if a different video context (for
example, the video scenes take place in a environment
other than a road scenario) appears.

+ A modular design process for easy methodological
integration. The ontology design not only offers seam-
less extensibility at the ontology design level, but the
modular layering also guarantees high flexibility and
interchangeability of the methodological approaches for
target tracking and classification in the Raw sensor data
layer. The employment of high-performance Machine
and Deep Learning methods for target tracking and clas-
sification tasks, for example, can enhance the effective-
ness of the global system. Depending on the computer
vision methods, used in the Raw sensor data layer, the
ontology model can combine/compound more or less
accurately detected scene objects, in order to produce
higher-level scene descriptions.

« A knowledge base to support video content analysis.
The ontology model allows populating a knowledge base
describing the video content, collecting, depending on
the layering of the knowledge schema, the information
granule associated with the corresponding knowledge
layer. The knowledge base is accessible by SPARQL
queries: objects, activities, and situations appearing in
a video (or in a portion of it) can be recovered by
a query easily. The collected knowledge becomes a
flexible repository to facilitate video content analysis
targeted, for instance, at surveillance and monitoring
applications.

o A human-oriented scenario description. The role of
semantics is crucial in the scenario description: model-
ing a situation as a composition of activities and, in turn,
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an activity as spatio-temporal relations among objects
and between the object and the environment, enables
the logical “‘thinking” process, for understanding what
really is happening in a scene and explaining why partic-
ular conclusion is achieved. The logics behind a situation
can yield human-like video content description along
with the reasoning steps that build a situation.
The proposed approach provides a semantic support for
object detection and scenario description, if used in com-
bination with Machine and Deep Learning methods, whose
synergy provide a solid performance.

Future directions will focus on knowledge synthesis meth-
ods to analyze the collected information over time to reduce
the knowledge base dimensions and, consequently, speed up
system performances.
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