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ABSTRACT Divergence measure is widely used in many applications. To efficiently deal with uncertainty
in real applications, basic probability assignment (BPA) in Dempster-Shafer evidence theory, instead of
probability distribution, is adopted. As a result, an open issue is that how to measure the divergence of BPA.
In this paper, a new divergence measure of two BPAs is proposed. The proposed divergence measure is the
generalization of Kullback-Leibler divergence since when the BPA is degenerated as probability distribution,
the proposed belief divergence is equal to Kullback-Leibler divergence. Furthermore, comparedwith existing
belief divergence measure, the new method has a better performance under the situation with a great degree
of uncertainty and ambiguity. Numerical examples are used to illustrate the efficiency of the proposed
divergence measure. In addition, based on the proposed belief divergence measure, a combination model is
proposed to address data fusion. Finally, an example in target recognition is shown to illustrate the advantage
of the new belief divergence in handling not only extreme uncertainty, but also highly conflicting data.

INDEX TERMS Kullback-Leibler divergence, Dempster-Shafer evidence theory, basic probability assign-
ment, target recognition.

I. INTRODUCTION
Kullback-Leibler divergence [1] is a measure of how one
probability distribution is different from another probability
distribution, which is widely used in uncertain information
processing [2]–[4]. Kullback-Leibler divergence can be mod-
elled by Shannon entropy [5], [6]. To deal with fuzzy data,
divergence measure between fuzzy sets is presented [7]–[9].
One of the most important applications of divergence mea-
sures may be statistical data processing and a short review is
given in [10]. Someworks aim to extend the classical measure
to handle more complex data [11]–[14]. For example, a typ-
ical work is to extend Jensen-Shannon divergence in Hilbert
space. The discussion of divergence measure does not yet
stop [15] and more recent progress can refer [16].

The real world is very complicated with different types of
uncertainty [17]–[20]. Not only the probabilistic information,
but also the fuzziness exists in complex system [21]. Hence,
lots of math tools such as fuzzy sets [22]–[27], Z-numbers
[28]–[30], D numbers [31]–[33], belief structures [34]–[36],
game theory [37]–[41], entropy function [42]–[44], Bayesian
network and other network methods [45]–[47] are presented.

The associate editor coordinating the review of this manuscript and
approving it for publication was Daniel Benevides Da Costa.

Among these tools, the basic probability assignment(BPA)
in Dempster-Shafer evidence theory [48], [49] has many
merits to deal with uncertainty. For example, compared with
probability distribution, it can allocate masses not only to the
propositions consisting of single objects [50], [51]. Due to
its efficiency to model and combine uncertain information,
evidence theory is applied to a lots of real engineerings such
as target recognition [52], [53], fault diagnosis [54], [55],
sensor data fusion [56]–[58], risk and reliability analysis
[59], [59]–[61] conflicting management [62]–[67], decision
making [68]–[71], pattern recognition [72]–[75], uncer-
tainty modelling [76], [77] and uncertainty measurement
[65], [78]–[81]. These real systems often need to calculate the
difference between two BPAs. As a result, it is necessary to
develop the divergence measure of BPA, similar to Kullback-
Leibler divergence of probability distribution.

Some typical works have been done [82]. Fei and Deng
[83], [84] proposed a divergence measure based on Deng
entropy [85], defined as relative entropy of Deng entropy.
Xiao proposed a new belief divergence, named as belief
Jensen-Shannon(BJS) divergence [86] to deal with sensor
data fusion. However, all of the existingmethods fail to reflect
the effect of different kinds of subsets so BPA is allocated to
single subsets and multiple subsets in the same way. In some
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real applications under high uncertain environment, the com-
bination results given by combination based on it could be
unreliable in some degree.

To address this issue, a new belief divergence is proposed
and numerical examples are given to illustrate the properties.
The proposed divergence measure is the generalization
of Kullback-Leibler divergence for probability distribution
since when the basic probability assignment (BPA) is degen-
erated as probability distribution and the belief is only
assigned to single subsets, the proposed belief divergence is
equal to Kullback-Leibler divergence. One of its advantages
is to illustrate the effect of the multiple subsets in BPAs when
the measuring belief divergence among them. In order to
indicate the efficiency of handling uncertain data in highly
ambiguous environment, a combination model based on the
proposed belief divergence measure is proposed to handle
data fusion issues. Moreover, a real application in target
recognition is given. From the results of the application,
the combination modal based on new belief divergence can
give a higher supporting degree to the target than existing
classical methods.

The remainder of this paper is organized as follows.
Section 2 introduces some preliminaries. In Section 3, a new
divergence measure for BPA is proposed. The real application
in target recognition is illustrated to show the advantage of the
new method in Section 4. Finally, the conclusion is given in
Section 5.

II. PRELIMINARIES
In this section, some basic preliminaries on Kullback-Leibler
divergence [1], Dempster-Shafer evidence theory [48], [49],
pignistic probability transformation [87] and belief Jensen-
Shannon divergence [86] are introduced.

A. KULLBACK-LEIBLER DIVERGENCE
Kullback-Leibler divergence divergence [1] is widely used in
information theory to measure the different degree between
two probabilities.
Definition 1: Given two probability distribution A =

{A(x1),A(x2), . . . ,A(xn)} and B = {B(x1),B(x2), . . . ,B(xn)},
Kullback-Leibler divergence between A and B is defined
as [1]

DivKL(A,B) =
n∑
i=1

A(xi)log2(
A(xi)
B(xi)

) (1)

One of the properties of Kullback-Leibler divergence is not
symmetric [1].

DivKL(A,B) 6= DivKL(B,A)

So in some situations, the symmetric way is used as Jessen-
Shannon divergence [88], shown as follows.

DKL =
DivKL(A,B)+ DivKL(B,A)

2
(2)

In addition, in the calculation ofKullback-Leibler divergence,
to avoid the denominator to be zero, a very small value such
as 10−8 is used to replace zero.

B. DEMPSTER-SHAFER EVIDENCE THEORY
The basic concepts of evidence theory, including BPA and
Dempster combination rule, are introduced as follows.
Definition 2: 2 is the set of N elements which represent

mutually exclusive and exhaustive hypotheses. 2 Let be the
frame of discernment [48], [49]:

2 = {H1,H2, · · · ,Hi, · · · ,HN } (3)

The power set of 2 is denoted by 22, and

22={∅, {H1}, · · · , {Hn}, {H1,H2}, · · · , {H1, · · · ,HN }}

(4)
where ∅ is an empty set.
Definition 3: A mass function m, also called as BPA, is a

mapping of 22, defined as follows [48], [49].

m : 22→ [0, 1] (5)

which satisfies the following conditions:

m(∅)=0
∑
A∈22

m(A) = 1 0 ≤ m(A) ≤ 1 A ∈ 22 (6)

The mass m(A) represents how strongly the evidence
supports A.

The Dempster combination rule can be used to obtain the
combined evidence.
Definition 4: Given two BPAs m1 and m2, Dempster com-

bination rule is shown as follows [48].
m(∅) = 0

m(A) =

∑
B

⋂
C=A

m1(B)m2(C)

1− K

(7)

where K =
∑

B
⋂
C=∅

m1(B)m2(C).

It is markable that K is the coefficient to measure the conflict
between evidence in evidence theory, and the combination
rules could only be used when K < 1.

C. PIGNISTIC PROBABILITY TRANSFORMATION
Pignistic probability transform [87] is defined to transfer a
BPA into a probability distribution.
Definition 5: Let m be a basic belief assignment on the

frame of discernment 2. Its associated pignistic probability
function BetP on 2 is defined as [87]

BetP(A) =
∑

W⊆2,A⊆W

1
|W |

m(W )
(1− m(φ))

, ∀A ⊆ 2 (8)

where |W | is the number of elements of 2 in W . The
transformation between m and BetP is called the pignistic
transformation.

D. BELIEF JESSEN-SHANNON DIVERGENCE
BPA is generalization of probability distributions, to some
degree. As a result, it is obvious that an open issue is to
propose the divergence measure of BPA. Recently, a belief
Jessen-Shannon divergence is applied to deal with target
recognition based on sensor data fusion [86].
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Definition 6: Let Ai be a hypothesis of the belief func-
tion m, and m1 and m2 be two BPAs on the same frame of
discernment 2, containing n. mutually exclusive hypothesis.
BJS divergence between m1 and m2 is defined as [86]

BJS(m1,m2)

=
1
2
[DivKL(m1,

m1 + m2

2
)+ DivKL(m2,

m1 + m2

2
) (9)

Belief Jensen-Shannon divergence utilizes the mass func-
tions by taking place of probability functions in the Jessen-
Shannon divergence. When all hypothesis are assigned to
single elements, the belief Jessen-Shannon divergence will
degenerate as Jessen-Shannon divergence [86].

III. A NEW DIVERGENCE MEASURE OF BPA
In Dempster-Shafer evidence theory, how to measure the
divergence degree among evidences is still a hot issue. A new
divergence measure of belief function is proposed in this
section.

A. THE PROPOSED DIVERGENCE
In this section, a new divergence measure is defined as
follows.
Definition 7: Given two BPA m1 and m2, the divergence

between m1 and m2 is defined as follows.

D(m1,m2) =
∑
i

1
2|Fi|−1

m1(Fi) log(
m1(Fi)
m2(Fi)

) (10)

where |Fi| is the cardinal number of Fi.
where m is a mass function defined on the frame of dis-

cernment 2, and Hi is the focal element of m, |Hi| is the
cardinality of Hi.
As the formula of belief divergence measure shows,

the belief for each focal element Hi is divided by a term
(2Hi−1) which represents the potential number of states inHi.
Compared with Kullback-Leibler divergence in probability
theory, elements in D-S evidence theory is consisting of mul-
tiple subsets, so the belief and relevant measures are allocated
in multiple subsets.

For the sake of symmetry, a symmetrical divergence based
on the proposed method is defined as follows.
Definition 8:

D(m1,m2) = D(m2,m1) =
Div(m1,m2)+ Div(m2,m1)

2
(11)

In the following of this paper, the symmetrical divergence
is used as the belief divergence measure.

The divergence measure is the generalization of
Kullback-Leibler divergence for probability since when BPA
is degenerated as probability, divergence measure is equal to
Kullback-Leibler divergence. The new divergence measure
could allocate masses not only to the propositions consisting
of single elements, but also to the unions of such objects so
it has a better performance in modelling both of uncertainty
and imprecision.

B. NUMERICAL EXAMPLES
Some numerical examples are used to illustrate the properties
of the proposed measure.
Example 9: Assuming a frame of discernment is � =
{A,B,C} which is complete and two BPAs m1 and m2 are
given as follows.

m1 :

m1(A) = 0.5000,m1(A,B) = 0.4000,m1(A,B,C) = 0.1000
m2 :

m2(A) = 0.6000,m2(A,B) = 0.2000,m2(A,B,C) = 0.2000

The belief divergence between m1 and m2 is

D(m1,m2) =
Div(m1,m2)+ Div(m2,m1)

2
= 0.0372.

From Example 9, we could know that the belief divergence
between m1 and m2 is equal to that between m2 and m1.
This property is important for divergence to determine the
difference among bodies of evidences.
Example 10: Assuming a frame of discernment is � =
{A,B,C} which is complete and two BPAs m1 and m2 are
given as follows.

m1 :

m1(A)=0.6000,m1(A,B)=0.1000,m1(A,B,C)=0.3000

m2 :

m2(A)=0.6000,m2(A,B)=0.1000,m2(A,B,C)=0.3000

The belief divergence between m1 and m2 is

D(m1,m2) =
Div(m1,m2)+ Div(m2,m1)

2
= 0.0000.

From Example 10, for the same BPA, its corresponding
divergence is zero.
Example 11: Assuming a frame of discernment is � =
{A,B,C} which is complete and two BPAs m1 and m2 are
given as follows.

m1 :

m1(A) = 0.5000,m1(B) = 0.4000,m1(C) = 0.1000

m2 :

m2(A) = 0.3000,m2(B) = 0.5000,m2(C) = 0.2000

Kullback-Leibler divergence between m1 and m2 is:

DKL(m1,m2) = 0.0968

The belief divergence between m1 and m2 is:

D(m1,m2) = 0.0968
It can proved that when BPA is degenerated as probability

and the belief is only assigned to single subsets, the proposed
belief divergence is equal to Kullback-Leibler divergence.

C. PROPERTIES
Significant properties of the proposed divergence are shown
as follows. Some remarkable properties of Kullback-Leibler
divergence are preserved.
(1) D(m1,m2) is symmetric.
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(2) D(m1,m2) is always nonnegative.
(3) D(m1,m2) = 0 if and only if BPA m1 and m2 are

identical.
(4) When basic probability assignments m1 and m2

are degenerated as probability distributions, D(m1,m2) is
equal to DKL(m1,m2), Kullback-Leibler divergence between
m1 and m2.

D. JUSTIFICATION OF PROPOSED DIVERGENCE MEASURE
In this section, the rationality of proposed divergence is
explained with the use of pignistic probability transformation
(PPT ). After transforming BPA into probability distribution,
pignistic probability can be seen as probability distribu-
tion and then the classical Kullback-Leibler divergence is
calculated.

A comparison experiment is given to illustrate the rea-
sonability of new divergence. The experiment is about how
Kullback-Leibler divergence between pignistic probability
and proposed divergence between BPAs varies when the
subset sizes ofBPA changes. The result shows that the varying
trend of Kullback-Leibler divergence consistent with our
new method and thus explains that our method is reasonable
intuitively.

E. A JUSTIFICATION EXPERIMENT
Assume there are two sensor reports in Table 1. There are n
possible targets and Xi means ith target.

TABLE 1. The value of two BPAs.

The result for proposed divergence is showed in Figure 2.
As the the value of Num increases, the value of the pro-

posed divergence varies as shown in Figure 1. It shows that
value of proposed divergence decreases as the number of
focal elements increases. This advantage illustrates that the
proposed divergence can show the effect of multiple sets,
while the classical BJS divergence fails to reflect the variance
of the multiple sets.

The proposed method shows that divergence measure
decreases in Figure 1.

A divergence measure based on PPT is used to justify
the varying trend is reasonable. BPA can be transformed into
probability distribution and then the divergence between two
probability distributions can be obtained by Kullback-Leibler
divergence. Table 2 shows the transformed probability
distribution.

The calculation of Kullback-Leibler divergence between
the two pignistic probability distributions is shown as follows.

DivKL(PPT1,PPT2) =
n∑
i=1

PPT1(xi)log2(
PPT1(xi)
PPT2(xi)

)

The PPT method shows that the divergence measure
decreases in Figure 2.

FIGURE 1. The value of new belief divergence for different sizes of BPA.

FIGURE 2. The value of Kullback-Leibler divergence for transformed
probability distribution.

The Kullback-Leibler divergence between two trans-
formed probability distribution can be obtained as above.
As the the value of Num increases, the value of Kullback-
Leibler divergence varies as shown in Figure 2. It shows that
value of proposed divergence decreases as the number of
focal elements increases. It can be seen that the trend is sim-
ilar applied with Kullback-Leibler divergence and proposed
divergence. In this way, the rationality of proposed divergence
can be proved to some degree.

IV. APPLICATION IN DATA FUSION
In this section, an application of the proposedmethod in target
recognition is used to illustrate its efficiency. First, the data
fusion algorithm is briefly introduced. Then, the results and
comparisons are shown.

A. DATA FUSION ALGORITHM
Target recognition is a typical sensor data fusion system [89].
Assume that there are n alternatives, denoted as Ai (i =
1, 2, . . . , n), and k sources of evidence, indicated by mj(Ai)
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TABLE 2. Value of two PPT probability distributions.

is expressed as a BPA reported by sensor j (j = 1, 2, . . . , k).
The data fusion algorithm is detailed as follows.
Step 1: Calculate the divergence measure matrix (DMM )

as follows.

DMM =

 0 · · · · · · D1i · · · · · · D1k
Di1 · · · · · · 0 · · · · · · Dik
Dk1 · · · · · · Dki · · · · · · 0

 (12)

where Dij is the belief divergence between mi and mj.
Step 2: Calculate the supporting degree for mi based on

divergence measure matrix as follows.

Supi =
1

k∑
j=1,j 6=i

Dij

k−1

(13)

Step 3: Normalize the supporting degree to obtain the
credibility degree, as the weight of each BPA.

Wi =
Sup(mi)
k∑
i=1

Sup(mi)

(14)

The credibility degree is a weight which shows the relative
importance of the collected evidence.
Step 4: Obtain the weighted average BPA as follows.

M (Aj) =
k∑
i=1

mi(Aj)Wi (15)

wheremi(Aj) is the BPA from sensor i about the alternative Aj.
Step 5: Use Dempster rule to combine the averaged

weighted evidence N − 1 times.

B. RESULTS AND COMPARISON
In a target recognition system, possible targets are
� = {A,B,C}. Four sensor reports are collected in Table 2.
First, pieces of evidence are combined by the fusion model

proposed in the previous subsection and then make decision
about the recognition target. The calculation steps of the
proposed method are detailed as follows.
Step 1: Obtain belief divergence measure among pieces

of evidences and then built the divergence measure
matrix (DMM ).

DMM =


0.0000 2.2984 1.0788 2.2539
2.2984 0.0000 0.0906 0.0293
1.0788 0.0906 0.0000 0.0731
2.2539 0.0293 0.0731 0.0000


In the calculation of divergence measure matrix, 10−8 is used
to replace zero to avoid the denominator is zero.

Step 2: Calculate the supporting degree for each mi from
the divergence measure matrix above.

Sup1 =
1

4∑
j=1,j6=i

D1j

4

= 0.1776

Sup2 =
1

4∑
j=1,j6=i

D2j

4

= 0.4135

Sup3 =
1

4∑
j=1,j6=i

D3j

4

= 0.8048

Sup4 =
1

4∑
j=1,j6=i

D4j

4

= 0.4244

If a body of evidence is supported by other bodies evidence
greatly, its supporting degree is high and this evidence has
more effect on the final combination results.
Step 3: The weight of each evidence is normalized of Supi

as follows.

W1 =
Sup1
4∑
i=1

Supi

= 0.0976

W2 =
Sup2
4∑
i=1

Supi

= 0.2272

W3 =
Sup3
4∑
i=1

Supi

= 0.4421

W4 =
Sup4
4∑
i=1

Supi

= 0.2331

It is obvious that the credibility weight for the first evidence
is very low, indicating that it conflicts a lot among evidences.
Step 4: The average weight for each evidence is calculated

as follows.

M (A) =
4∑
i=1

mi(A1)Wi = 0.2044

M (B) =
4∑
i=1

mi(A2)Wi = 0.0750

M (C) =
4∑
i=1

mi(A3)Wi = 0.0906
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TABLE 3. The sensor reports.

TABLE 4. Supporting degree of possible targets based on different methods.

FIGURE 3. Comparison of reliable degrees based on different methods.

M (A,C) =
4∑
i=1

mi(A4)Wi = 0.1448

M (A,B,C) =
4∑
i=1

mi(A5)Wi = 0.4851

The averaged weighted evidence shows that the uncertain
degree to alternatives is large since the value of BPA of
{A, B, C} is larger than any single ones.
Step 5: Combine the weighted average BPAs by 3 times.

Finally, the combining multi-sensor result of the system is
obtained as Table 3.

In this experiment, three typical data fusion models,
including Dempster rule, Deng et al.’s method and belief
Jessen-Shannon divergence are selected to compare with
the proposed one. Dempster rule is the widest used method
based on evidence theory of data fusion and Deng et al.’s
method is one of the most typical and efficient method to
handle conflicting data. Compared with these two methods,
the efficiency of fusion model based on new divergence can
be convincingly illustrated. The reason to compare with beief
Jessen-Shannon divergence is that beief Jessen-Shannon
divergence is a typical method to measure divergence
between BPAs and only difference between the two fusion
model is the calculation of divergence measure. So the effi-
ciency of handling highly uncertain and conflicting date can
be well illustrated for this comparison.

As can be seen from Table 3, the proposed method has
the best performance since our method can get the highest

reliability to the correct target (0.5114). Although the dif-
ference is not large, only our method can correctly identify
the target if we set the threshold at 0.5, which is common
in engineering. So it is obvious that in this kind of uncertain
environment, target recognition method based on new pro-
posed divergence shows great performance at least it is not
worse than any other classical methods.

This application illustrate the efficiency of the new belief
divergence measure, not only in conflicting environment, but
also in extreme uncertainty. The comparison of values can be
intuitively reflected in the Figure 2. The reliability for targetA
is the most and the value for A,C and A,B,C is the least,
which show its great performance in reducing the uncertainty
of the final target.

V. CONCLUSION
In order to address the problem of measuring the
divergence degree among different evidence, a new
belief divergence measure of BPA is proposed in this paper.
The divergence measure is the generalization of Kullback-
Leibler divergence for probability distribution since when
the BPA is degenerated as probability distribution and the
belief is only assigned to single subsets, the proposed belief
divergence is equal to Kullback-Leibler divergence. One of
the advantages is that the number of elements in subsets
is considered. Furthermore, compared with existing belief
divergence measures, the proposed divergence can show a
better performance under the situation of a greater degree of
uncertainty and high conflicts. A real application in target
recognition based on sensor data fusion is illustrated the
efficiency of the new divergence. Our future work will focus
on the exploring efficient data fusion models based on the
proposed divergence and its application in engineering to
handle uncertain information.
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