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ABSTRACT GPUs have become important solutions for accelerating scientific applications. Most of the
existing work on climate models now use code rewritten using CUDA to achieve a limited speedup. This
restriction also greatly limits followup development and applications. In this paper, we designed and imple-
mented a GPU-based acceleration of the LASG/IAP climate system ocean model (LICOM) version 2, called
LICOM2-GPU. Considering the extremely large codebase of the model and the occasional need to modify
the code, we implemented the model completely in OpenACC. Several accelerated methods, including
OpenACC data locality optimization, loop optimization, and interprocess communication optimization are
presented. Developing for GPUs using OpenACC is substantially simpler than using the CUDA port. Thus,
the OpenACC is a suitable GPU programming model for complex systems, such as the earth system model
and its components. Our experimental results using 4 NVIDIA K80 cards achieved up to a 6.6x speedup
compared with 4 Intel(R) Xeon(R) CPU E5-2690 v2 GPUs.

INDEX TERMS High performance computing, parallel algorithm, GPU, LICOM, parallel acceleration.

I. INTRODUCTION
There is a growing need for ever more accurate climate
and weather simulations to be delivered at higher resolu-
tion and shorter timescales. Recently, the highest resolution
has been approximately ten kilometers to one kilometer, but
this is expected to decrease to hundreds of meters soon.
One serious problem with high resolution modeling is that
executing high-resolution climate models is more time con-
suming, and supercomputer and CPU time are expensive
[19], [20]. The charges and execution times associated with
these applications are two main concerns of the supercom-
puter users; thus, parallel implementations that can improve
application execution speeds are important [18]. GPUs are
increasingly used to construct complex distributed computing
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systems [22]–[25], such as SUMMIT and SIERRA, which
are Top-1 and Top-2 in the TOP500 supercomputer list,
respectively. Hardware acceleration, such as using GPUs, can
potentially result in much shorter runtimes or in simulations
with higher accuracy. Researchers have spent a great deal of
energy porting GPU-compatible computer code well-suited
to GPUs because GPUs have become a feasible approach to
accelerating high -resolution models.

Many works have discussed porting only portions of
model codes to GPUs with CUDA to obtain substantial
speed improvements. For instance, Xiao H. et al. acceler-
ated the Weather Research Forecast (WRF) Single Moment
6-class (WSM6) microphysics scheme, achieving a speedup
of nearly 100x compared with a serial CPU version run-
ning on 1 CPU core [11]. Mielikainen J. et al. accelerated
the Goddard solar radiative transfer module and achieved
a speedup of 112x [13]. Michalakes et al. accelerated a
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computationally intensive microphysics process in the WRF
model and achieved a speedup of nearly 25x compared with
the MPI version running on 1 CPU [1]. R. Farina et al.
accelerated the elliptic kernel for NEMO-OPA, which a sped
it up by 53x compared with the serial version executing on
1 CPU core [21].

However, works to recode entire models is far less com-
mon; moreover, the achievable speed improvements are much
smaller. For instance, Vanderbauwhede W. et al. accelerated
the scalar advection module, achieving a speedup of 7x, but
the speedup of the entire WRF model was less than 2x [10].
In [17] the authors accelerated a complete large operational
weather forecasting model named COSMO and achieved a
speedup of 2.8X speedups for its dynamical core. S. Xu et al.
ported the Princeton Ocean Model to GPUs and achieved a
6.9x speedup [16].

According to our analysis, these results stem from two
reasons. First, the cost of data transfer limits the performance
of the entire application. Many scientific models suffer from
a flat performance profile and boundary communication syn-
chronization overhead during GPU acceleration. In CAM [3],
the most single expensive subroutine accounts for less than
5%, and the synchronization overhead accounts for more
than 15%, and the same is true for LICOM. According
to Amdahl’s law, it is not possible to speed up the whole
model significantly, for example, the GPU acceleration of
CAM [3], ROMS [4], WRF [4] and HOMME [5], especially
their dynamical cores. Second, climate models have huge
codebases and are mostly coded in FORTRAN and by mul-
tiple people, which makes it very difficult to understand the
algorithms involved. Porting code to a GPU is arduous work
and extremely difficult. However, because models develop
fast and there is a need to change the code occasionally,
readability is also very important.

Developing using the OpenACC for GPUs is substan-
tially simpler than developing ports in CUDA; moreover,
OpenACC is compatible with CUDA, which is sometimes a
necessary compromise because of the huge codebase. Several
good studies exist concerning porting models with Ope-
nACC. For instance, Norman M. et al. accelerated the CAM-
SE climate model in OpenACC and achieved an acceptable
speedup [9]. Demeshko I. et al. accelerated the NICAM
atmospheric model using OpenACC and achieved a speedup
of 3x [12]. The authors of [7] showed that large parts of
COSMO were ported based on OpenACC but its dynamical
core was ported with CUDA, achieving a speedup of 2.8x.

The objective of our study is to shorten the computation
time required to execute high resolution ocean models by par-
allelizing their current model structures using GPUs through
OpenACC. Using LICOM as a representative oceanic model,,
we demonstrate how to parallelize an oceanic model to make
it run effectively on GPU architecture. We designed and
implemented several different optimization methods, includ-
ing OpenACC data locality optimization, loop optimization,
algorithm implementation improvement and interprocess
communication optimization, and also used conventional

optimization methods such as Cuda for local memory block-
ing, loop fusion and subroutine fusion, and so forth.

The experimental results demonstrate that using 4NVIDIA
K80 cards can achieve up to a 6.6x speedup compared with
4 Intel(R) Xeon(R) E5-2690 v2 CPUs.

The rest of this paper is organized as follows. Section II
introduces the LICOM model and its control flow.
In Section III, the OpenACC programming model is intro-
duced. Section IV discusses the detailed optimizations that
we employed for the LICOM model. Section V describes the
experimental setups and the performance of the optimized
model. Finally, Section VI provides conclusions concerning
our optimization work of porting the LICOM model onto
GPUs.

II. THE LICOM
The ocean plays a major role in regulating weather and cli-
mate on the earth. LICOM is a global ocean general circula-
tion model (OGCM) developed since the 1980s by scientists
at LASG, the Institute of Atmospheric Physics (IAP), and the
Chinese Academy of Sciences (CAS). The goal of LICOM is
to develop an oceanic component of a climate system model
and a numerical tool to study the ocean circulation mech-
anism at different time scales. The first version of OGCM
was established in the late 1980s (Zhang and Liang, 1989).
Since then, the group of LASG/IAP ocean models has been
expanded successively over the past 20 years. The LASG/IAP
Climate systemOceanModel (LICOM)was developed based
on the third version of the LASG/IAP OGCM (Jin et al.,
1999). A new version of LICOM, version 2, was released
in 2012 for coupled models, whose simulations were submit-
ted to IPCC AR5 [15], and included improvements to several
physical process models. The performance of LICOM2.0 has
been extensively evaluated in [15]. Here, we implemented the
LICOM2.0 model for GPUs. According to the Navier-Stokes
formula, LICOM2.0 was written using modular Fortran code,
and it can be executed on in different computer configu-
rations. LICOM2.0 can predict the 3D ocean temperature,
salinity, circulation and sea level undulations.

The primary features of LICOM include the η-coordinate,
free surface, primitive equation, and mesoscale eddy parame-
terization from Gent andMcWilliams (1990). Figure 1 shows
a diagram of LICOM. The major processes in integral loop
include barotropic, baroclinic and thermohaline processes,
among others, and the Euler forward or leapfrog scheme is
used. There are severalmoduleswith lengthy execution times,
including READYT (compute density, baroclinic pressure
and the relevant variables), READYC (compute momentum
advection, diffusion and their vertical integrals), BARTOR
(prediction of barotropic mode), BCLINC (prediction of
baroclinic mode), TRACER (prediction of passive tracer),
etc.

III. THE OpenACC
OpenACC is a directive-based programming model designed
to provide a simple yet powerful approach to accelerators
without significant programming effort. Using OpenACC,
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FIGURE 1. The diagram of LICOM.

FIGURE 2. OpenACC’s abstract accelerator model.

developers insert compiler hints in the form of OpenMP-
like directives that are used to manage data movement, ini-
tiate parallel execution and optimize loop mapping into the
compute-intensive portions of even the largest, most com-
plex Fortran or C applications. The compiler automatically
maps such code to an accelerator, including NVIDIA GPUs,
to achieve higher performance. OpenACC is fully compatible
and interoperates with OpenMP, CUDA and MPI.

At its core, OpenACC supports offloading both compu-
tation and data from a host device to an accelerator device.
When the two devices have different types of memories,
the OpenACC compiler and runtime will analyze the code
and handle accelerator memory management and transferring

FIGURE 3. The map of gang, worker, vector.

data between host and device memory. Figure 2 shows a high-
level diagram of the OpenACC abstract accelerator.

The OpenACC execution model has three levels: gang,
worker and vector, which respectively correspond to the
block, wrap and thread operations of CUDA. Figure 3 shows
this mapping to any architecture consisting of a collection of
processing elements (PEs), where each PE is multithreaded,
and each thread can execute vector instructions.

IV. THE OPTIMIZATIONS
In addition to conventional optimization methods such as
local memory blocking, loop fusion and communication
optimization, we implemented four key optimizations in
LICOM2-gpu.

A. LOCAL MEMORY BLOCKING
Locating global parameters and data on the GPU to reduce the
overhead of data exchange between the host and the GPU is
important. In this paper, we use OpenACC to accelerate one
iteration cycle within the month-cycle. The host executes the
constant initializations, parameter readings, and initializes
the MPI calculation grid, and then transmits the required
data to the GPU. After the GPU completes the computation,
it transfers the results back to the host. To avoid the sys-
tem overhead caused by frequent memory copy operations
between the CPU and the GPU, we need to allocate a fixed
memory space on the GPU and ensure that it remains in the
GPU’s memory space during the LICOM2-gpu lifetime.

As shown in Listing 1, we generate the corresponding
mapping variables on the GPU of the global variables used
in LICOM2-gpu by calling !$acc declare create(list of vari-
ables). Then, we use the present clause to indicate the stor-
age address on the GPU, thus avoiding duplicate memory
requests and data copies. Within one iteration cycle, except
for halo communications, no data is transferred between the
CPU and the GPU. We use !$acc update device(list of vari-
ables) and !$acc update self(list of variables) to manage data
transfers between iteration cycles.
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Listing 1. Data Management of global parameters.

Listing 2. Typical loop acceleration.

B. LOOP FUSION
Themain work involves accelerating the LICOM2-gpu loops.
A typical code diagram is shown in Listing 2. The logical
structure of each loop layer is relatively simple; there are
two statements in the innermost loop (i loop), and there is
no dependency between the variables, which makes this loop
highly suitable for acceleration via OpenACC. There is a
correspondence between OpenACC’s and CUDA’s threading
model. In OpenACC, the loop decorated by a gang is com-
piled into blocks in CUDA, and the inner loop of the gang
loop is compiled into a CUDA thread.

As shown in Listing 2, by decorating the outer loop (k loop)
with a parallel loop gang, the OpenACC compiler generates
the corresponding number of blocks based on the number of
outer loop iterations (for example, 30 blocks in this case). The
loopcollapse(2) clause is used to merge two inner layers into
one because the two inner loops are independent; thus, they
can be merged. If the inner loops are not merged this way,
then there one layer of the two inner cycle must be directed
to run sequentially, which greatly reduce that the effect and
wastes GPU computing resources. The vector_length(1024)
clause indicates that 1024 threads are used for each block.

As shown in Listing 3, some code diagrams consist of
several loop tiers with statements that execute in the mid-
dle. At this point, the code should be observed carefully

Listing 3. Refactoring source code 1A.

Listing 4. Refactoring source code 1B.

Listing 5. Refactoring source code 1C.

to determine whether it can be refactored to use a collapse
clause. The code is refactored by moving statements from
the intermediate layer loop (k loop) to the innermost loop
(i loop). As shown in Listing 4, if we run this code as a
serial program, the moved code will be executed extra times
because its execution is only related to the loop variable k ,
regardless of the loop variable i. As shown in Listing 5, it is
necessary to refactor to merge the two-tier loops (k loop and i
loop) using the loop collapsemechanism (2); then, we can use
the configuration of 1024 threads per block to run the merged
loops.

The number of cycles in the inner loop is larger than
the number of cycles of the outer loop, and is also a very
common code pattern, as shown in the diagram in Listing 6.
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Listing 6. Refactoring source code 2A.

Listing 7. Refactoring source code 2B.

We need to examine whether it can be split into a number
of independent cycles and accelerated. To split the two inner
i loops, as shown in Listing 7 we expand the capacity of
array x and then update x (i, j, k) corresponding to i, j, k
simultaneously.

Loops require special treatment when there are several
subordinate inner loops and subroutines, as shown in List-
ing 8. Because the compiler does not knowwhether the called
function is parallel or serial, the loop i clause will be ignored
by the compiler, which will apply multithreading to the inner-
most loop k;however, this causes the canuto_2010_interface

Listing 8. Refactoring source code 3A.

Listing 9. Refactoring source code 3B.

to run serially in every block. Therefore the code in
Listing 8 will be translated by the compiler to the one in
Listing 9. However, the correct code in this case is shown
in Listing 10. It needs to specify !$acc loop seq before k
loop and !$acc routine(canuto_2010_interface) seq before
the subroutine. Accordingly, we set a suitable number of
vector_length.
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Listing 10. Refactoring source code 3C.

Listing 11. Overlapping communication A.

C. OVERLAPPING COMMUNICATION OPTIMIZATION
Frequent communication reduces the speed of GPU
computing resources.

As Listing 11 and Listing 12 show, in each iteration of
the j cycle, the program executes the code and then uses the

Listing 12. Overlapping communication B.

TABLE 1. Description of platform for the experiments.

MPI to perform second-dimensional data exchange in the
exchange function exchange_1d_boundary by specifying the
j value for each iteration, using send_buf (kk)and recv_buf
(kk) to exchange data. However, the data exchanged in each
j cycle iteration are not used in the next j cycle iteration.
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TABLE 2. Description of model for the experiments.

TABLE 3. Description of the forcing data.

Therefore, to improve the communication efficiency, we need
to overlap the communication using split computation and
communication. We extend the buffered arrays send_buf (kk)
and recv_buf (kk) to send_buf (jmt, kk), recv_buf (jmt, kk) to
allow communications to complete all at one time.We use the
wait (1) clause to ensure that the data on the GPU are ready;
then, we use the host_datause_device clause to indicate the
data used by the communication on the GPU to ensure that
the data being manipulated are correct.

D. IMPROVING THE CODE AND ALGORITHM TO
FIT THE OPENACC
Some complex algorithms and modules exist in the
LICOM, such as the GISS turbulent vertical mixing module
(Canuto_2010_interface) and GFDL’s full convective adjust-
ment module convadj, each of which have many exit, goto
and while branch calculations. Consequently, the compiler is
unable to obtain the logical dependencies between different

blocks and threads. Therefore, we need to rewrite these mod-
els to clarify the logical dependencies.

V. EXPERIMENTS
A. THE PLATFORM AND INITIAL DATA SETUP
The hardware components used for the experiments is listed
in Table 1. The GPU platform used for the experiments is a
work station consisting of 2 computational nodes. Each node
has 2 10-core Intel E5-2690 v2 CPUs and 2 Nvidia Tesla
K80s. We tested the programs on this platform with the PGI
compiler v17.1, OpenMPI Library v1.10.5, and the CUDA
8.0 Toolkit.

We used the LICOM version 2 model for the experiments.
The primary settings of LICOM2.0 used in the experiments
is listed in Table 2. We conducted the experiment from the
initial condition with WOA05 temperature and salinity and
no current, forced by the daily corrected NYF of Large and
Yeager (2004). The simulation was conducted to verify the
correctness of the code and to test the performance and
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FIGURE 4. LICOM2-gpu.

FIGURE 5. LICOM 2.0.

FIGURE 6. Difference between LICOM2-gpu and LICOM 2.0.

scalability of the LICOM2-gpumodel. More details about the
forcing data can be found in Table 3.

B. THE VERIFICATION OF ACCURACY
We executed two separate experiments using LICOM2.0 and
LICOM2-gpu. The test results demonstrate that variables
such as velocity, temperature, salinity and sea-surface height
are all identical, and the error between the LICOM2.0 and
LICOM2-gpu results is small and acceptable. The error may
be caused by differences in mathematical precision between
the GPU and CPU. Figure 4- 6 show the sea-surface tempera-
ture (SST) results of the two experiments and their differences
after 10 days.

C. THE PERFORMANCE
In this section, we conducted a series of experiments to illus-
trate the improvement and benefit of the LICOM2-gpu model
compared to the LICOM2.0 model. We tested the different
modules of LICOM2-gpu separately and compared themwith

FIGURE 7. READYT performance.

FIGURE 8. READYC performance.

the performances of LICOM2.0 to investigate the accrued
optimization from employing OpenACC.

In this study, we optimized and tested five major LICOM
modules to investigate the performance of OpenACC accel-
eration. The percentages of the complete elapsed time
accounted for by these modules are shown below, and the
performances of LICOM2.0 and LICOM2-gpu are com-
pared. We executed LICOM2.0 on 16 MPI processes,
while LICOM2-gpu employed 8 MPI processes for each
NVIDIA Tesla K80 chipâĂ"16 MPI processes in total for the
2 NVIDIA Tesla K80 chips.

1) READYT PERFORMANCE
Figure 7 shows the performance of the READYT module.
The OpenACC version achieved a speedup of 9.16x. The per-
centage of the total elapsed time occupied by the READYT
module was reduced from 3.1% to 1.55%. Because READYT
is a computationally intensive module, it would be advanta-
geous to fully unroll the loops in the calculations. As shown
in Figure 7, the READYT module requires only 3.1% of the
total elapsed time because it is called only once during each
daily iteration in a month loop. Thus, although the module
itself achieved a speedup of 9.16x, the overall performance
did not improve much.

2) READYC PERFORMANCE
Figure 8 shows the performance of the READYC mod-
ule, which achieved a speedup of 4.94x by applying Ope-
nACC acceleration. Additionally, the percentage of total
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FIGURE 9. BAROTR performance.

time that the READYC modulus occupies fell from 65% to
60%. Because READYC is a computation-dominated mod-
ule, it requires less communication than computation. Thus,
loop optimization produces a speedup on the READYCmod-
ule. In addition, the optimization of the READYC module
is critical to the entire LICOM model because it occupies a
dominant position among all the LICOM modules.

3) BAROTR PERFORMANCE
As shown in Figure 9, a speedup of 3.51x was achieved by
applyingOpenACC to the BAROTRmodule-the lowest of the
five major modules of LICOM. Meanwhile, the proportion
that the BAROTR module occupies in the total elapsed time
increased from 7.75% to 10.12%. This performance loss
occurs because the BAROTRmodule performsmore commu-
nication than calculation. The main structure of BAROTR is
shown in Listing 13.The outer layer is a loop that executes
24 times. In each loop, a series of subroutines, including
the part of code shown in line 3 to line 9-boundary com-
munications concerning some array variables, velocity field,
thermohaline field, sea-surface fluctuation field and the one-
dimensional threepoint smoothing modules of SMUV, SMTS
and SMZO-run successively.

This alternating subroutine process that has a low calcu-
lation proportion is different from the situation in the other
modules, where most of the loops are iterations over i, j,
k indexes. The major iteration in BAROTR is the part shown
in Figure 13, from line 3 to line 9. After implementing Ope-
nACC acceleration, every two-layer loop requires only sev-
eral hundreds of rounds to complete. We optimized 25 loops
in this work. The percentage of time occupied by each loop
in BAROTR is shown in Table 4.
Almost all optimized iterations in BAROTR achieve con-

siderable speedups. However, the calculation involves only
10% of the total time. Thus, as the MPI processes increase,
the proportion that the calculation occupies decreases. This
explains why BAROTR achieves only a small speedup.

4) BCLINC PERFORMANCE
As shown in Figure 10, BCLINC module achieves a speedup
of 5.64x after OpenACC acceleration is implemented, and

Listing 13. Main structure of BAROTR.

TABLE 4. Performance of loops.

FIGURE 10. BCLINC performance.

its proportion of the total time decreases from 11.95% to
9.71%. Similar to READYT, the high communication pro-
portion prevents the BCLINC module from achieving a
higher speedup ratio. Because the BCLINC module occupies
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FIGURE 11. TRACER performance.

FIGURE 12. Performance on Multi-node with 1D decomposition.

11.95% of the total time, it has good potential for
optimization.

5) TRACER PERFORMANCE
Figure 11 shows the performance of the TRACER module,
which achieved a speedup of 2.98x, but its proportion of the
total time increased from 12.13% to 18%.

6) OVERALL PERFORMANCE
In the overall performance test, we ran 1-day simulations sep-
arately 10 times using the LICOM2.0 and LICOM2-gpumod-
els. We compare the best performances of LICOM2.0 and
LICOM2-gpu on 1 and 2 nodes, as shown in Figure 12 and
Figure 13, respectively. Figure 12 shows the performance of
the employed 1D decomposition scheme, while Figure 13
shows the performance of the employed 2D decomposition
scheme. We achieved speedups of 4.58x and 6.57x using
1D decomposition and 3.89x and 4.48x using 2D decom-
position, respectively. A superlinear speedup occurs when
moving from 1 node to 2 nodes, which is quite common
in atmospheric and oceanic models. We believe this occurs
when the working set of the LICOM exceeds the cache size
when executed on 1 node and 2 GPUs but fits nicely in
each available cache when executed on 2 nodes and 4 GPUs.
It also occurs because memory copy andMPI communication
cost when executed on 2 nodes and 4 GPUs is half that

FIGURE 13. Performance on Multi-node with 2D decomposition.

when executed on 1 node and 2 GPUs and fit nicely in
PCIE bandwidth. Meanwhile, because the 1D decomposition
LICOM2-gpu has no MPI communication in the west-east
direction grids, it requires fewer memory copies between the
CPU and the GPU than in the 2D decomposition; conse-
quently, the LICOM2-gpu runtime with 1D decomposition
is less than that of the LICOM2-gpu with 2D decomposition.
The 1D decomposition parallel is better than the 2D decom-
position for the LICOM2-gpu model.

VI. CONCLUSION
In this paper, we designed and implemented a GPU-based
accelerated version of the LASG/IAP Climate system
Ocean Model (LICOM) version 2, called LICOM2-gpu.
LICOM2-gpuwas completely implemented usingOpenACC,
and it distributes all the model computations to the GPUs.
Our main contributions include OpenACC data locality opti-
mization, optimizing the code on each of the GPUs, and
optimizing the communications between GPUs. The exper-
imental results on 4 NVIDIA K80 cards achieved a speedup
of up to 6.6 times compared with 4 Intel(R) Xeon(R) E5-2690
v2 CPUs. GPUs have become an important acceleration
solution for scientific applications. OpenACC programming
can be implemented with few changes to the source code,
which means the original structure and readability of the
program can be maintained while obtaining good speedup
values. Development using OpenACC for GPUs is sub-
stantially simpler than development through CUDA porting.
Thus, it is a suitable GPU programming model for complex
systems, such as the Earth System Model and its component
models.

In future work, we plan to adjust the code structure of
LICOM2-gpu and adopt more aggressive fusion functions
to further improve the performance. Meanwhile, we will
improve the horizontal resolution of the LICOM2-gpu model
and adjust the modeling schemes and the numerical methods
of the equations, which will cause new computation prob-
lems. Using OpenACC instead of CUDA or OpenCL reduces
the workload and promotes interdisciplinary overlap.
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