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ABSTRACT Software-defined networking (SDN) is an emerging network architecture that promises to
simplify network management, improve network resource utilization, and boost evolution and innovation
in traditional networks. The SDN allows the abstraction and centralized management of the lower-level
network functionalities by decoupling the network logic from the data forwarding devices into the logically
centralized distributed controllers. However, this separation introduces new scalability and performance
challenges in large-scale networks of dynamic traffic and topology conditions. Many research studies
have represented that centralization and maintaining the global network visibility over the distributed
SDN controller introduce scalability concern. This paper surveys the state-of-the-art proposed techniques
toward minimizing the control to data planes communication overhead and controllers’ consistency traffic
to enhance the OpenFlow-SDN scalability in the context of logically centralized distributed SDN control
plane architecture. The survey mainly focuses on four issues, including logically centralized visibility,
link-state discovery, flow rules placement, and controllers’ load balancing. In addition, this paper discusses
each issue and presents an updated and detailed study of existing solutions and limitations in enhancing the
OpenFlow-SDN scalability and performance. Moreover, it outlines the potential challenges that need to be
addressed further in obtaining adaptive and scalable OpenFlow-SDN flow control.

INDEX TERMS SDN, OpenFlow, controller, scalability, global network view, flow rules placement,
centralized flow control, load balancing, discovery protocol.

I. INTRODUCTION
Today’s Internet is used as a global communication platform
for the heterogeneous and large number of dynamic appli-
cations, services, physical objects, and machines. Network
traffic control and orchestration in modern networks is a
very complex task that requires to adapt to the time-varying
changes in link utilization, bandwidth allocation, latency,
energy consumption, and jitter over a heterogeneous network.
The emerging Internet of Things (IoT) and the adoption
of multi-tenant data centers (DC) generate a large amount
of traffic and add more complexity to the network. Unfor-
tunately, traditional network’s architecture is complex and
not well designed to enable the fine-grained and QoS-aware
traffic engineering over the network. The compact integration
of control and data planes complicates the network traffic
monitoring process resulted in less QoS-aware flow control
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and inefficient resource utilization. It is time-consuming and
expensive to manage the network devices separately espe-
cially in time-varying and multi-tenant data center environ-
ments. According to the Enterprise Strategy Group (ESG),
traditional networks require to automate the manual pro-
cesses of network management, provides better visibility for
efficient resource utilization and provides dynamic network
orchestration to align with cloud computing. ESG stats that
as data center grows in scale, network management operators
struggle of too many manual and reconfiguration processes,
which may reach nearly 40 percent of the most common
network operations problems.

In addition to the configuration complexity, traditional
networks are not well designed to adapt and self-manage to
active, unpredictable faults and load changes in large-scale
networks [1]. The underline network architecture lacks
programmability, and hence cannot meet the application
layer needs in real-time. The time-varying and tremendous
amount of traffic in application layer requires global network
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visibility and abstraction for better QoS provisioning,
resource utilization and for avoiding the need to enforce
global policies by carefully crafting switch-by-switch
configuration.

Software-Defined Networking (SDN) is an emerging
network architecture that promises to simplify network man-
agement, improve network resource utilization, and boost
evolution and innovation in traditional networks. SDN intro-
duces the abstraction on the network layers by separating
the control plane (networking logic) from the data plane
(routers and switches) to an external entity (controller). This
separation decouples network devices from management and
allows both planes to evolve independently, provides design
flexibility and programmability compared to traditional net-
work architectures [2].

In SDN architecture, traffic forwarding devices become
simpler and easier to be deployed, upgraded or configured by
a centralized SDN controller. The network management and
configuration becomemuch simpler as they can be performed
from a centralized point in the network and thus significantly
reduce the operational expenses (OPEX). The centralized
management of SDN enables dynamic on the fly reconfigura-
tion and adaptation to the time-variant fault and load changes
in the network as well as reduces the complexity of routing
and traffic engineering. SDN simplifies orchestration for both
static and dynamic network changes. It also enables a stan-
dard based homogeneous network and network programma-
bility, portability, global management and optimization, and
efficient utilization of the network resources. Furthermore,
it provides true network visualization by enabling the abstrac-
tion of the underline network and offers a flexible Network
as a Service (NaaS) as proposed in OpenVirtex [3]. Virtual
networks can also efficiently slice and share the same physi-
cal hardware resources to be provisioned on-demand without
affecting virtual network operations [4].

Today SDN gains more interest in the industry. According
to Statistics MRC, ’’the Global Software Defined Network-
ing (SDN) Market accounted for $10.88 billion in 2015 and
is expected to reach $134.51 billion by 2022 growing at a
CAGR of 43.2% from 2015 to 2022’’, which is extremely
high. Google, as an instance, uses SDN in its data centers’
network solutions such as B4 [5], Jupiter [6] and Andromeda.
Google’s B4 is a network backbone that has adopted SDN
for interconnecting WAN data centers across the planet.
The reason behind using SDN in B4 is to increase efficient
link utilization and enable global network visibility over the
network edge. Thus, it promotes relative application traffic
demands/priorities during resource constraints, dynamically
reassign bandwidth in response to link failures or changes in
traffic patterns and control bursts traffic rather than a complex
over-provisioning. B4 shows an increase in link utilization
reaches to an average of 70% utilization which corresponding
to 2− 3x efficiency of standard network practice.
Despite the advantages of decoupling the network control

logic from the underlying forwarding devices, there have
been concerns on the network scalability and performance.

The new communication channel between control and data
planes adds extra delay and increases the amount of control
traffic, which can be vertical between the control and data
planes or horizontal among the distributed controllers. This
amount of traffic increases proportionally to the time-varying
changes and scaling of the network, resulting in high commu-
nication and computational load in the control plane [7]–[9].

Several studies have been conducted toward improving
SDN-based networks scalability and performance. Early
works focused on restructuring the control plane by dis-
tributing the controllers hierarchically or horizontally while
maintaining a logically centralized control on each distributed
controller [10]–[16]. Other research works focus on the elas-
ticity and placement of the distributed controllers to dynami-
cally identify the optimal number and locations of controllers
in the network [17]–[22]. Researchers have also considered
the deployment of SDN switches and their controllers in
hybrid SDNs for maximizing the number of flows managed
by SDN and therefore enhancing legacy network’s scalabil-
ity and performance [23]–[32]. However, in this survey we
focus on the research studies toward re-engineering SDN
communication traffic vertically between control and data
planes or horizontally among controllers, resulted from some
SDN-scalability related challenges such as 1) controller’s
global visibility, 2) link-state discovery, 3) flow-rules place-
ment, and 4) controllers’ load unbalancing, in dynamic and
large-scale networks. Considering the importance of SDN
flow management in the future of wire/wireless networks,
this paper presents a comprehensive literature survey on some
of the key challenges and research efforts to enhance the
OpenFlow-SDN scalability and performance in the context
of logically-centralized distributed SDN controllers. It also
provides a discussion and comparison study on the currently
proposed solutions and demonstrates some future research
challenges.

The rest of the paper organizes as follows: Section II gives
an overview of the standard OpenFlow-SDN flow control.
Section III presents the key challenges in the OpenFlow-SDN
flow control that affect the performance and scalability of the
network. Section IV provides a detailed survey of existing
and state-of-the-art solutions proposed in the literature of
the OpenFlow-SDN logically centralized visibility. Section V
provides a detailed survey of existing and state-of-the-art
solutions proposed in the literature of the OpenFlow-SDN
link-state discovery. Section VI provides a detailed survey of
existing and state-of-the-art solutions proposed in the litera-
ture of the OpenFlow-SDNflow-rules placement. Section VII
provides a detailed survey of existing and state-of-the-art
solutions proposed in the literature of the OpenFlow-SDN
controllers load balancing. Section VIII discusses and sum-
marizes the research challenges and future directions. Finally,
Section IX wraps the paper up with concluding remarks.

II. AN OVERVIEW OF OPENFLOW-SDN FLOW CONTROL
SDN architecture consists of five main components;
application plane (AP), northbound interface (NBI),
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FIGURE 1. Physically distributed but logically centralized SDN
architecture.

control plane (CP), southbound interface (SBI) and data
plane (DP) [33] as shown in Figure 1. The application plane
is the set of network applications that leverage the exposed
northbound APIs to define the rules and instructions that con-
trol the network logic. The northbound APIs interface trans-
lates these instructions to the control plane which provides
fine-grained control over the forwarding nodes and offers
many network services such as routing, monitoring, load
balancers, and firewalls. These applications either embodied
in the control plane (e.g., routing optimization, network man-
agement and monitoring, security, traffic engineering, and
QoS control) or located in a proxy server (e.g., firewall and
authentication servers). The control plane consists of one or
more controllers that forward the instruction sets and policies
defined by network applications to the data plane via the
southbound APIs interface. Centralization and visibility over
the network allow the controller to orchestrate application
demands for limited dynamic network resources [33].

OpenFlow [35] is the first and predominant SDN flow
control protocol which has already been the de facto standard
for controlling SDN-based switches. It plays the role of the
southbound interface to allow the controller to have direct
access and control of the data forwarding network devices.
OpenFlow is standardized by Open Networking Founda-
tion (ONF) to address dynamic nature and high-bandwidth
of today’s applications, and reduce the management com-
plexity. Forwarding and Control Elements (ForCES) [36]
and Protocol-oblivious forwarding (POF) are other exam-
ples of the southbound flow control platforms. Similarly to
the flow tables in OpenFlow, ForCES uses logical function
blocks (LFB) in the data forwarding devices to provide net-
working functionalities, such as IP routing. However, this
research aims to study the state-of-the-art flow control mech-
anisms and research challenges in the OpenFlow-SDN. The
lowest layer of SDN architecture is the data plane that consists
of simple physical/virtual data forwarding nodes such as
switches or vSwitch. This layer includes the minimal neces-
sary network functions as packets lookups and forwarding in
which they are responsible for forwarding packets according
to the rules and instructions that are configured by the control
plane.

According to the OpenFlow Switch Specification version
1.5, an OpenFlow-based virtual or physical switch consists

FIGURE 2. OpenFlow version 1.5 switch components [34].

FIGURE 3. OpenFlow 1.5 flow entry [34].

of at least one ingress flow table, a group table and control
channels to communicate with the controller as shown in Fig-
ure 2. Flow tables are sequentially ordered and can perform
packet lookups and forwarding. Each flow table can store a
set of flow entries that consists of matching fields, statistical
counters and a set of flow instructions (actions) as illustrated
in Figure 3. Matching fields are used to match the packet
header fields such as Ethernet source and destination address,
packet ingress port, and other pipeline fields. The matching
field can use wild-card to match any value or in some cases
uses bit-masked to match a subset of bits. The controller can
send/receive events from/to the data forwarding node via the
OpenFlow-based control channels. It can also add, update or
remove the installed flow entries reactively or proactively.
If a packet arrives on an OpenFlow-based forwarding node,
the matching process starts in the first flow table and may
continue on the next tables in the pipeline unless a matching
flow entry is found. The process of checking flow entries
in the pipeline flow tables is performed sequentially. When
the packet’s matching header matches with a flow entry in
the pipeline flow tables, the instructions associated with the
flow entry will be executed. Otherwise, the instruction asso-
ciated with the table-miss flow entry in the last flow table
will be executed and depending on the configuration of the
table-miss flow entry, the packet either be forwarded to the
controller over the OpenFlow channel or simply dropped.

The instructions associatedwith each flow entry either con-
tain actions or pipeline processing. Actions are responsible
for giving instructions to packet modification, forwarding
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or group table processing. On the other hand, pipeline pro-
cessing is responsible for giving instructions to sent pack-
ets to the subsequent flow tables and allows the commu-
nication of meta-data information among flow tables. The
matched packet may be forwarded to physical, logical or
a reserved port defined by the specification. The reserved
ports are only used for generic forwarding actions such as
broadcasting, sending and receiving to/from the controller,
or for non-OpenFlow based forward processing. Moreover,
OpenFlow-based data forwarding node contains logical ports
that are used to specify link aggregation groups, loopback
interfaces or tunnels. Flow packets may also be forwarded to
a group table, which specifies additional sets of actions such
as flooding or more complex forwarding semantics (e.g., fast
reroute, multi-path, and link aggregation). The Group table
consists of a set of group entries that contains a list of action
buckets with specific semantics dependent on the group type.
Furthermore, it enables to forward multiple flow entries to a
certain common IP address.

OpenFlow pipeline processing as illustrated in Figure 4
starts when a flow packet arrived at the ingress first flow table
and matched against flow entries. If the flow packet does not
match with any flow entry, the instruction set direct the packet
to the next flow table using the GotoTable instruction. The
same process will continue checking the matched flow entries
in every flow table until the matched flow entry founded
and the associated instruction set executed. On the other
hand, if pipeline processing completed while no matched
flow entry was found, packet then will be processed as a
table_miss. Depending on the pre-configured instructions in
the table-miss entry, the packet either be dropped, forwarded
to a subsequent table or sent to the controller on a packet_in
message via the control channel. In case the table_miss flow
entry does not exist, the unmatched packets are dropped (dis-
carded) by default. A large number of packet_in messages
are expected to be generated in the case of dynamic and
large-scale network traffic conditions where many unknown
flow packets frequently arrive at the forwarding node.
However, sending a flow request (packet_in message) to the
controller for every unknown packet can overwhelm the con-
troller because the controller needs to calculate the forward-
ing rules of every new packet and then install it to the flow
tables in all the respective data forwarding nodes (switches or
VSwitches). Such amount of traffic and computational load
may lead to a controller overhead and increase flow-rules
placement delay, and hence affects the network performance
and scalability [37].

In OpenFlow-SDN, the controller has a global network
state visibility over the network, which thereby can install
the forwarding rules (flow entries) proactively to the flow
tables in every connected data forwarding device. How-
ever, due to high wildcard lookup performance of Ternary
Content-Addressable Memory (TCAMs), it has been used to
implement flow tables. Unfortunately, TCAM is very expen-
sive and thus flow tables cannot scale well due to its capacity
limitation which usually from 4000 to 32000 entries [1].

According to OpenFlow version 1.5, only a maximum of
1082 bits can be used per flow entry. As a result, flow tables
cannot handle a large number of proactively installed flow
entries that can provide a network-wide state to the data
plane.

III. CHALLENGES AND BACKGROUND
Despite the significant advantages of deploying SDN archi-
tecture, the centralization of control plane introduces a major
scalability issue for SDN. The single controller architec-
ture of SDN can perform well and obtain optimal flow
management and configuration in the case of static and
small networks. Controllers like NOX [38], Beacon [39],
Floodlight [40], Maestro [41] and McNettle [42] are exam-
ples of a centralized single controller. Early research studies
focus on improving the performance and scalability of a sin-
gle controller by exploiting parallelism (e.g., multi-threading,
multi-core). For instance, the single-threaded NOX [38] con-
troller is optimized by enabling multi-threading (NOX-
MT [43]) to improve its throughput and response time.
Beacon [39] and Maestro [41] are also other examples of
optimized controllers that use parallelism to improve their
performance and scalability. Beacon can achieve a throughput
of 12.8 million rps (response per second) with an average
delay of 0.02ms using 12 processing cores while Maestro can
achieve 0.63 million rps with an average delay of 76ms using
7 processing cores [37].

Although a single and centralized controller of high com-
putational resources (super controller) can handle a large
amount of network flow, it will inevitably form a signifi-
cant bottleneck in the long run of a large-scale network of
dynamic tuning traffic and topology conditions where the
number of data plane elements and traffic flow grows over
the time. The single centralized SDN controller represents a
single point of failure and considerably increases the latency
when processing a massive number of data plane requests
and controlling the whole network topology. Moreover, in the
case of widely separated inter-connected data centers, a single
controller introduces a propagation delay. As a result, the idea
of multiple controllers is proposed as a solution to resolve
the scalability limitation and reliability of a single point
of failure controller. In this architecture, the controllers are
either logically distributed in one layer (flat) or hierarchically
distributed in multi-layer (hierarchical). Table 1 shows some
of the popular distributed controllers that can provide central-
ized management over the network.

Decoupling control logic from data forwarding nodes to
allow SDN centralized management and abstraction, intro-
duces new challenging scalability issues. Many research
studies have represented that maintaining global net-
work visibility to enable each distributed SDN controller
to act as a centralized controller introduces scalability
concerns [1], [4], [7]–[9], [49]. The logically centralized vis-
ibility can be a major concern for the dynamic and large-scale
networks as the Internet of Things (IoT) and Data-Centers
(DC) where a huge number of entities (e.g., physical objects,
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FIGURE 4. OpenFlow 1.5 Pipeline Processing [34].

TABLE 1. OpenFlow-SDN control plane architecture.

VMs, applications) communicate and dynamically join or
leave the network. As the size of a network grows, con-
trollers become a potential bottleneck and fail to handle
all the controller’s ingoing/outgoing control or consistency
traffic. Therefore, this survey presents some of the scalability
challenges facing current OpenFlow-SDN architecture that

can lead to control and consistency traffic overhead under
dynamic and large-scale network conditions. As illustrated
in Figure 5, this survey organizes these challenges into four
main categories: Logically Centralized Visibility, Link State
Discovery, Flow Rules Placement and Controllers’ Load
Balancing.

107350 VOLUME 7, 2019



M. Alsaeedi et al.: Toward Adaptive and Scalable OpenFlow-SDN Flow Control: A Survey

FIGURE 5. OpenFlow-SDN scalability challenges under dynamic and
large-scale network conditions.

A. LOGICALLY CENTRALIZED VISIBILITY
In the distributed SDN control plane architecture, every con-
troller requires to have a global view of the network topology
to act as a centralized controller. Hence, every controller has
to share its local network state view with other controllers.
Replicating the global link-state view in every distributed
controller can guarantee a logically centralized controlling
and transparency over the data plane. However, maintaining
a consistent replica of the network-wide state among con-
trollers in a large-scale network of dynamic traffic and topol-
ogy conditions may result in a massive amount of frequent
synchronization traffic that can overwhelm the controller.
The interval time between two consecutive synchronizations
can also lead to forwarding errors such as routing Loops
and black-holes caused by the periodic state inconsistency.
Moreover, the time required to maintain a consistent replica
of global network state view may result in a spike in the con-
trol plane response time and therefore increases the overall
flow-rules placement delay and impacts the network scala-
bility and performance [9]. The logically centralized control
plane architecture should provide the flexibility to balance
the trade-offs between the centralized network-wide state
visibility, scalability, and timeliness. The inter-controller con-
sistency process that maintains global network visibility in
each controller has to be adaptive to the dynamic network
conditions to reduce the amount of consistency traffic that
can burden the network scalability.

B. LINK STATE DISCOVERY
In SDN, the control plane has to have a real-time up-to-
date view of the global network view and status to act as
a centralized controller and efficiently serve the data plane
forwarding requests. The entire control plane management
procedure is substantially affected by how efficiently it can
discover data plane forwarding nodes and links to maintain

a centralized global view of the network’s topology [50].
The forwarding errors such as Reachability Failures, Routing
Loops, Black-holes, Traffic Isolation, and Leakage due to
inconsistency between data and control planes proportionally
decrease to the efficiency and performance of the discovery
process. Furthermore, with the massive proliferation of net-
work devices and the complexity of dynamic and large-scale
network topologies, more sophisticated and efficient discov-
ery protocol mechanisms are needed. Therefore, it is impor-
tant that the SDN discovery protocol supplies the control
plane with a real-time view of the network topology to meet
the application and dynamic routing QoS demands.

C. FLOW RULES PLACEMENT
Flow-based forwarding nodes use Ternary Content Address-
able Memories (TCAMs) to match and forward the arrived
packets in constant time. Despite their high speed, TCAMs
are expensive and therefore have a minimal capacity. How-
ever, SDN traffic routing is per-flow with large flow entries
of minimum 356 bits in 15 field tuples out of 40 fields
as per the OpenFlow 1.5 specification [34]. To maintain a
per-flow fine-grained control, the controller may require to
install more than one entry in the flow tables to forward one
single flow. Consequently, the OpenFlow-based forwarding
element needs a large TCAM memory size to accommodate
such a large amount of flow entries.

To cope with the limited size of TCAMs flow tables,
controllers can reactively (on-demand) install flow entries
every-time a new flow packet arrives at the switch. Unfor-
tunately, in highly dynamic and large-scale networks where
traffic changes dynamically over time, the number of
flow-rules placement requests increase rapidly, and hence
lead to a controller traffic overhead, increase the con-
troller response time and the end-to-end flow-rules place-
ment delay [37]. This delay can significantly increase to a
level which can not meet with the requirements of real-time
applications and result in degrading network performance and
scalability [9].

The scalability and performance drawbacks resulted from
the limited size of the flow tables is represented when a
high number of new flows aggregated in the edge switches.
The data plane needs to forward every first packet of
the (unknown) new streams that does not match with any
stored flow entry to the controller. As a result, the con-
troller requires to calculate the forwarding rule for each
flow (stream) and install it in all corresponding data forward-
ing devices (switches or routers). Monitor every new stream
and install its forwarding rules can overwhelm the controller
and makes it as a potential bottleneck [51]. The controller
needs to calculate every new flow forwarding path and install
it as instructions into the flow table’s entries which may add
extra latency on routing process and therefore hinder the net-
work performance and scalability, see Figure 6. The reactive
placement of forwarding rules can be a serious scalability
problem in dynamic large-scale networks such as IoT where
a diverse of Internet-connected devices are increased in the
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FIGURE 6. OpenFlow-based controller’s response time to the flow rules
placement request.

volume and variety of network requests, creating a significant
load on the controller [52]. IoT networks typically commu-
nicate with SDN-based networks through OpenFlow-based
gateways and thus add more burden traffic load over the
TCAM data tables. Due to the capacity limitation of TCAM,
the OpenFlow protocol configures the flow entry’s idle time-
out with a small value. Therefore, if the flow has not been
transmittedwithin the idle timeout, its entries will be removed
to give more space in the flow tables for other active flows.
However, the diversity and heterogeneity of IoT communi-
cation networks and devices traffic can easily overwhelm
the timeout-based flow-rules placementmechanism [53]. The
mobility, fluctuation and infrequent transmission of flow
samples in IoT based devices make the static idle timeout as
an inefficient way to reduce the communication between the
controller and OpenFlow-based IoT gateways/sinks because
of the removal of IoT flow entries before the arrival of the
next IoT flow samples. Results in an additional burden on the
controller (controller bottleneck) and thus add extra latency
into the overall flow-rules placement process. Furthermore,
in mobile or wireless networks where nodes dynamically
join and leave the network, a big number of requests are
going to be forwarded to the controller to update flow entries
which introduce overhead on the control plane and affects
the network scalability and performance [37]. The research
work in [54] presents the impact of the timeout period on the
signaling traffic and the flow table occupancy by studying the
inter-arrival times of heterogeneous flows.

D. CONTROLLERS’ LOAD BALANCING
In the distributed SDN control plane architecture, the map-
ping between the data plane elements (switches or routers)
and the controllers are statically configured. As a result,
controllers can become overloaded due to uneven load bal-
ancing of the distributed controllers especially in dynamic
large-scale networks of temporal/spatial variations in the

traffic characteristics. A controller may become overloaded
when the direct connected switches/IoT gateways observe
a large amount of aggregated traffic, and hence increase
flow-rules placement latency and hinder the network avail-
ability and scalability [55]–[57]. Elastic controller provision-
ing in response to the temporal/spatial variation in network
traffic conditions can be used to improve scalability and
prevent the controller from being a potential bottleneck [58].
However, inefficient use of the available resources is wast-
ing resources and improperly increases capital expenditures
(CAPEX). As a result, the load-balancing among controllers
has to be adaptive to the network dynamic changes to main-
tain better network resource utilization and scalability.

IV. OPENFLOW-SDN LOGICALLY CENTRALIZED
VISIBILITY
The distributed controllers require to share their network
state view to provide an optimal end-to-end and fine-grained
network control and build a consistent and centralized global
view of the network. Replicating identical clones of the global
network state view in every controller is used to improve reli-
ability, fault-tolerance and (replication) transparency of the
distributed controllers. However, periodic synchronization to
maintain a consistent replica of the network-wide state among
controllers can intensively consume network bandwidth and
lead to problems such as controllers overloading or routing
misbehavior during the interval between two consecutive
synchronizations. Therefore, it is important to synchronize
any data plane related event in a timely fashion to keep a con-
sistent network state among the controllers and avoid poten-
tial routing misbehaviors such as routing loops and black
hols [59]. The trade-off between centralized network-wide
state visibility and scalability of the distributed control plane
has attracted researchers to propose different controller state
distribution techniques for better scalability and performance
under large-scale and dynamic network traffic and topology
conditions.

Hu et al. [60] provided a survey on the recent solutions for
maintaining a consistent global network state view among
multi-controllers. The literature classified the existing solu-
tions into two aspects: 1) consistency of control state; 2) con-
sistency of control strategy. However, in this survey, we aim
at presenting the research efforts toward re-engineering the
inter-controller traffic to prevent controllers from being
overloaded and therefore enhancing the network scalability.
Based on how the global network state view is maintained and
distributed among controllers, we classify the proposed dis-
tributed global network state view into three main schemes;
flat controller state distribution, hierarchical controller state
distribution, and hybrid controller state distribution as illus-
trated in Figure 7.

A Comparison of the different controller state distribution
mechanisms is also provided in Table 2.

A. FLAT CONTROLLER STATE DISTRIBUTION
Controllers of this scheme are horizontally distributed and
share their state view using a distributed data store, hash

107352 VOLUME 7, 2019



M. Alsaeedi et al.: Toward Adaptive and Scalable OpenFlow-SDN Flow Control: A Survey

FIGURE 7. OpenFlow-SDN network state view mechanisms in multiple controllers.

tables or publish-subscribe messaging to build a consistent
and centralized global view of the network.

1) DISTRIBUTED DATA STORE
Controllers store their network state view in a flat-distributed
data store (e.g., Network Information Base (NIB), Stores,
sharding). Each controller in this scheme synchronizes its
state domain with other controllers to realize centralized
visibility over the network. The authors in [61] propose
two periodic synchronization schemes, i.e., Link Balance
Controller (LBC) and Separate State Link Balancer Con-
troller (SSLBC) to minimize the maximum inter-controllers
link utilization. However, the frequent periodic synchroniza-
tion may result in synchronization traffic overhead in the
distributed controllers. Moreover, these schemes are clas-
sified under eventual consistency (EC) model [63], which
can temporarily introduce state inconsistency, and there-
fore causes routing problems, such as forwarding loops and
black holes, due to the inconsistency in the interval between
two consecutive synchronizations. To overcome these issues,
the authors in [66] propose an event-based controller syn-
chronization mechanism so-called Load Variance-based Syn-
chronization (LVS) that synchronizes controllers only when
a load of a specific controller or domain exceeds a certain
threshold. The proposedmechanism reduces the synchroniza-
tion overhead as possible by updating all controllers with
the crucial variance of network status that could lead to
forwarding loops.

A controller as ONOS [12] uses the RAFT [67] consensus
algorithm to maintain strong consistency. Each controller
replica is assigned a follower, leader or candidate role. Fol-
lowing a committed state-update at the leader controller,
the update is propagated to the follower controllers only
after half of them have agreed on the update. Unlike the
eventually consistent model, the strong consistency comes
at the cost of increasing controllers’ response time and
lowering their availability. ONOS [12] is a logically cen-
tralized open-source controller which follows in the foot-
steps of ONIX [10] controller. It builds on the open-source
single-instance Floodlight [40] SDN controller. Each ONOS
instance is responsible for propagating the network state of its

data-plane viewwith the global network view. Controllers are
instantiated as the capacity of data plane grows. Each switch
in ONOS requires to be connected to multiple controller
instances to maintain a fault tolerance, but only one instance
is selected as a master. If a master instance fails, a new
instance is selected from the remaining pool of instances
to be the new master. Multiple instances of RAFT protocol
is running simultaneously to maintain strong consistency
among the controllers. To improve scalability, the controllers’
network state is partitioned into shards of distributed stores
data structure, where each shard is managed by a different
RAFT instance and shared among notmore than 3 controllers.
The research work in [59] studied the inter-controller traffic
and realized that the significant source of traffic overhead is
mainly from the consensus protocols. The study developed
some empirical models to quantify the traffic exchanged
among the controllers, depending on the considered shared
data structures.

Adaptive consistency is also proposed in some recent
works as in [62], [63] and [68]. In this scheme of consistency,
the periodic synchronization is tuned according to the current
network state to achieve a certain consistency level. Changing
the controller consistency level on-the-fly can maintain a
scalable system that sacrifices application optimality for less
synchronization overhead. Adaptive consistency can achieve
consistency and availability among controller with lower
synchronization traffic overhead, and therefore enhances the
network scalability.

2) DISTRIBUTED HASH TABLES
Distributed Hash Table (DHT) is a type of decentralized
distribution that provides a lookup similar hash table of
key-value pairs to partition data among distributed nodes.
In this scheme, DHT is responsible for distributing the stor-
ing network state views among controllers. Each distributed
controller has a unique global identification (GUID) and a
hash table that contain a key and value pairs of its local
link-state views. Retrieving a certain link state view is per-
formed by sending a request message to the controller of an
index (GUID) that hosts the key resulted from a hash function
of that value. DHT based distribution of the network-wide
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TABLE 2. A comparison of proposed openFlow-SDN controllers state distribution mechanisms.

state views among controller instances is used to avoid over-
whelming controller resources due to replicating and updat-
ing network stat at all controller instances to scale to a vast
network. However, it increases flow-rules placement latency
as a result of inter-controller communications to access topol-
ogy state for calculating the routing path of the control plane
packet_in flow-rules placement requests.

ONIX [10] and Beehive [21] are examples of distributed
controllers that use the DHT distribution primitive to obtain
logically-centralized control over the data plane. ONIX
has two types of consistency mechanisms for synchroniz-
ing network state updates among the controller instances:

a replicated transactional database designed for ensuring
strong consistency, and a distributed hash table for main-
taining an eventual consistency. Each ONIX instance shares
and disseminates its view of the underlying network state to
other instances within the network domain. The management
and control layer is implemented on top of ONIX’s APIs
and responsible for controlling the network behavior. ONIX
offers general-purpose APIs for control applications while
allowing them to make their trade-offs among consistency,
durability, and scalability. The controller can actively cache
its local view of the corresponding data plane elements while
reactively request other remote controllers’ views to maintain
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fragmentation transparency over the data plane forwarding
elements and ensure availability and scalability.

3) DISTRIBUTED PUBLISH-SUBSCRIBE MESSAGING
The publish-subscribe messaging pattern is a way of
decoupling the information providers and consumers. The
provider (publisher) disseminates data without knowing the
consumer while the consumer (subscriber) registers its inter-
est to the required data. Each controller can publish its local
network state view to other controllers without the delay
resulted from request-reply of the client-server communica-
tion model. This pattern can be used efficiently to maintain
global network state view over the distributed controllers
while guarantees better control plane scalability.

HyperFlow [44] is one of the early distributed event-based
controllers for OpenFlow using the publish-subscribe mes-
saging which implemented as an application for NOX
controller [38]. HyperFlow uses WheelFS [69] distributed
file system with a familiar POSIX interface which allows
applications to adjust the trade-off between prompt visi-
bility of updates from other sites and the ability for sites
to operate independently despite failures and long delays.
WheelFS allows these adjustments via semantic cues, which
provide application control over consistency, failure han-
dling, and file and replica placement. HyperFlow proposes
to localize decision making to interconnecting indepen-
dent distributed controllers that can serve data plane with-
out contacting any remote controller. To reduce the con-
troller response time and achieve better scalability, Hyper-
Flow implements event-based publish-subscribe messaging
to propagate and eventually replicate the controller’s network
view state among all distributed controllers. Every controller
has a HyperFlow instance which selectively publishes the
events that make a change to the state of the networks.
HyperFlow controllers in a specific domain can get most
of the updates of other domains from nearby controllers,
thus minimizes the cross-site traffic required to propagate
synchronization events.

Although, the HyperFlow controller passively publishes
state to other controllers to significantly reduce the response
time of contacting remote controllers, it does not efficiently
reduce the amount of link capacity required for maintaining
inter-controller consistency in a highly dynamic and scale-out
networks and assumes that only a tiny fraction of network
events cause changes to the network-wide view. Furthermore,
it can not prevents the routing problems as forwarding loops
caused by the temporary inconsistency during the passive
propagation of synchronization traffic among controllers.

OpenDayLight [13] controller platform is a distributed
controller that introduces modularity in implementing con-
trol functions by using Model-Driven Software Engineer-
ing (MDSE) specification. OpenDayLight went further
beyond the basic premise of SDN and supported multi-
ple southbound protocol plugins, services, and applications.
Furthermore, it supports some programmability technolo-
gies and SDN platforms, including OpenFlow, OVSDB,

NETCONF/YANG, and BGP, thus allows application
developers to focus more on SDN APIs rather than
underlying network communication protocols. OpenDay-
Light uses RAFT [67] consensus algorithm to maintain
strong consistency. It also supports both request-reply and
publish-subscribe communication patterns by implementing
a Model-Driven SAL (MD-SAL) service bus in each con-
troller. The request-reply pattern is implemented by RPC
module while publish-subscribe functionality is provided by
notification module.

DIstributed SDN COntrol (DISCO) [11] controller uses
(topic-based) publish-subscribe messaging based on the
Advanced Message Queuing Protocol (AMQP) to control
multi-domain SDN. DISCO is a flat distributed controller
implemented on top of Floodlight [40] controller and pro-
vides a lightweight and highly manageable inter-controller
channel to let all controllers share their link-state views.
DISCO does not impose a strong consistent network-wide
state in all controllers and provides a distributed con-
trol plane for WAN and constrained networks based
on a message-oriented communication bus. DISCO con-
troller consists of two main parts (intra-domain and inter-
domain) with different functionalities to reduce the overall
inter-controller consistency traffic using topic filtering to
adapt to the heterogeneous network topologies dynamically.
Intra-domain part gathers the main functionalities of the con-
troller while inter-domain part manages the communication
with other DISCO controllers (e.g., reservation, topology
state modifications, monitoring).

PLEROMA [64] is another example of a flat distributed
controller that uses the content-based publish-subscribe com-
munication model to distribute the network-wide state view
and obtain logically-centralized control over the data plane.
Two main components (dispatcher and configurator) in
PLEROMA are responsible for handling the events among
publishers and subscribers. The dispatcher (broker) compo-
nent is responsible for collecting control requests and events
from publishers and subscribers. On the other hand, the con-
figuration components are responsible for processing these
requests and performing network updates accordingly. How-
ever, using brokers to save bandwidth in a publish-subscribe
model can impose a significant delay by lengthening the end-
to-end pathwith a detour to the brokers and a processing delay
for matching events against filters’ rules.

ZeroSDN [65] splits control logic into lightweight con-
trol modules so-called controllers. The lightweight con-
trollers allow for pushing control logic onto switches and
enable local processing of data plane events to minimize
control latency and communication overhead. ZeroSDN
uses a publish-subscribe messaging to implement mes-
sage bus which enables event-based communication among
decoupling controllers and data (forwarding) elements. The
network-wide state is obtained by using the topology con-
trollers which subscribe to both SwitchRegistry and LinkDis-
covery events of certain partitioning topology groups to
obtain global network topology knowledge.
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Like Hash-based distribution, publish-subscribe based dis-
tribution of global network state view reduces the overhead
of maintaining replica in each controller and therefore allows
control plane to scale. However, it still requires some time to
access topology state for calculating the routing path of the
control plane reactive flow-rules placement requests. Con-
trollers, on the other hand, can efficiently utilize its insight
over the data plane to predict the expected network flows,
and thereby subscribe proactively to the most critical and
required application-based network state. Thus, significantly
reduce the overall amount of inter-controller consistency traf-
fic required for maintaining network-wide state visibility and
reduce the link utilization in the large-scale and dynamic
networks environments as IoT.

B. HIERARCHICAL CONTROLLER STATE DISTRIBUTION
Reducing the overhead of frequent events on the control
plane is essential for realizing an agile and scalable SDN net-
work. The flat-distributed control plane architecture cannot
solve the super-linear computational complexity growth of
the control plane when SDN network scales to large size [48].
As a result, some research works focus on how to reduce
the amount of control plane traffic by vertically distribute
the control plane as in Kandoo [14], Logical Xbar [15],
and ORION [16]. Controllers on this architecture are por-
tioned among multiple layers, typically two or three lay-
ers. This design gives a simpler approach to managing con-
trollers where controllers have different responsibilities and
can make decisions based on their level and view on the
network [70]. The low-layer controllers are responsible for
only their regional data plane, while top-layer controllers
offer a logically centralized and global view control over the
whole network.

Kandoo [14] as an instance proposes a two-layer structure
of control plane. The bottom layer controllers are not inter-
connected and only know its local network state view. The
top layer is logically centralized controllers which maintain
a global network state view over the whole network. Con-
trollers at the bottom layer can handle small and frequent
flows that can be processed using the local state knowledge of
the controller to reduce the load on the root controller effec-
tively. Top layer’s controller, on the other hand, takes charge
of the large volume streams (elephant flows) that requires
network-wide state for optimal routing path. Root controller
also acts as a mediator between bottom layer controllers.
Kandoo limits the overhead of consistency traffic on the
control plane to achieve synchronization among controllers
and relieve the load on the top layer. However, contacting
the upper layer to calculate the optimal forwarding rules of
any new flow-rules placement request brings a path stretch
problem and increases the controller response time.

C. HYBRID NETWORK STATE DISTRIBUTION
In the hierarchically distributed control plane architecture,
if the data plane forwarding request requires non-regional
routing information, it will be directed to the upper layer

domain controller. As such, the routing path increases by
the number of hops to the upper layer which brings a
path stretch problem and increases the controller response
time. As a result, some research work proposes a hybrid
hierarchical control plane architecture to resolve the path
stretch problem and decrease the controller’s response time.
ORION [16], [48] as instant, addresses this issue by propos-
ing a hybrid hierarchical control plane that acts as the
flat-distributed control plane architecture while hierarchically
distribute the controllers. The control plane has two layers:
the bottom layer includes local area controllers which are
responsible of collecting physical device and link informa-
tion, dealing with intra-area requests and updates, as well as
abstracting the network view and sending it to the upper man-
agement layer. The upper layer, on the other hand, contains
the domain controllers which maintain the global network
view for the bottom layer. ORION has a routing module
which can effectively reduce the path stretch problem of the
hierarchical structure. The domain controller can calculate
the shortest path by collecting the intra-area hops from the
inner switch to all edge switches which is sending by area
controllers, and adds the inter-area hops and the intra-area
hops together. Thus, abstracting views from the area to the
domain layer can reduce the problem of computational com-
plexity in large-scale networks. Although ORION can effec-
tively reduce the path stretch problem of the hierarchical
structure, it still requires to contact the domain controllers
when the destination address of the flow-rules placement
request is out of the area. Moreover, the vertical communi-
cation between the domain and area controllers is established
via a request/replay TCPwhich add extra propagation latency.
The bottom layer needs to be exposed to the network-wide
state by the upper layer through a messaging bus to reduce the
controller response time. Thus, calculating the routing path of
new flow can be done in the area layer and no need to send
packets to the upper domain layer.

V. OPENFLOW-SDN LINK STATE DISCOVERY
In the OpenFlow-SDN, the data plane forwarding elements
are meant to be simple forwarding devices. The implemen-
tation of networking logic such as routing or link discovery
services is the control plane responsibility. Hence, there is
no official discovery protocol standard for the OpenFlow-
SDN, and most of the current OpenFlow-based controllers
implement the Link Layer Discovery Protocol (LLDP)
standard [71]. LLDP is a vendor-neutral L2 single-hop pro-
tocol that allows IEEE 802 local area network devices to
advertise their identity, capabilities and direct connected
neighbors. Each LLDP discovery message encapsulated in
an Ethernet frame with an EtherType field (sets to 0x88cc)
while each frame contains one data unit (LLDPUD) which
consists of a sequence of type-length-value (TLV) variables
as illustrated in Figure 8. LLDP stores the gathered infor-
mation in the forwarding device’s management information
database (MIB) which can then be queried when crawling
the network’s nodes to retrieve the network state topology
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FIGURE 8. LLDP frame.

FIGURE 9. Open flow discovery protocol.

using a network management protocol like SNMP. NOX [38]
controller is the first SDN controller that leverages the Link
Layer Discovery Protocol (LLDP) in its implementation with
minor modification to perform the process of discovering
the network topology which is then known as OpenFlow
Discovery Protocol (OFDP). Unlike the single-hop advertis-
ing only feature of LLDP, OFDP is request-reply discovery
protocol that can receive the gathered discovery information
by sending a packet_in message to the controller.
In OFDP, the controller initiates the discovery pro-

cess by sending an LLDP discovery advertisement which
encapsulated in a packet_out message to the directly con-
nected forwarding devices using the OpenFlow Multicast
address. When an OpenFlow/non-OpenFlow forwarding
device receives the advertisement message, it floods all of
its ports with the received LLDP discovery advertisement,
and only the OpenFlow-enabled one updates its OFDP table.
To explain the OFDP discovery process, Figure 9 shows an
SDN topology of one controller and three linearly connected
forwarding nodes S1, S2 and S3. The discovery process can
be separated into two phases: the handshaking and config-
uration phase and the link-layer discovery phase as shown
in Figure 10. In the first phase, each data forwarding node
initially sends a handshaking hello messages ofpt_hello to
the assigned remote controller. The controller responds with a

message ofpt_feature_request, requesting more information.
As a response, each data forwarding node sends a message
ofpt_feature_reply to provide the controller with the rele-
vant discovery parameter such as node ID and active ports
with their respective MAC associates. The controller will
then send a ofpt_set_config to install the rules of forward-
ing LLDP encapsulated packet_in/out packets. In the next
phase, the controller sends an LLDP packet encapsulated in
a packet_out (OFDP) messages to every connected port or
forwarding node (as optimized in OFDPv2 [49]) immediately
after handshaking. The advertising message will then be
flooded to all ports of the adjacent nodes using the OpenFlow
Multicast address excluding the ingress port (controller port).
As such, each forwarding node can advertise itself to the
adjacent nodes.

LLDP is a one-way single-hope advertising protocol,
so when a forwarding node receives a forwarded packet_out
message by a port that is not the controller port, the executed
table-miss instructions will encapsulate the packet within a
packet_in and send it to the controller including the dis-
covery information of the source and adjacent nodes. After
the controller receives all the packet_in messages, it will
have complete link information between each connected
OpenFlow-based forwarding node. The discovery process is
performed periodically every amount of time [72].
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FIGURE 10. Open flow discovery protocol flow sequence.

According to [49], the controller requires to send an LLDP
packet_out for each port in each forwarding node, and in turn,
an LLDP packet_in will be sent to the controller form each
forwarding node. The total number of LLDP packet_in and
packet_out messages can be calculated using Eq. 1, where S
refers to the forwarding nodes, L refers to the links between
all forwarding nodes and P refers to the ports.

TOTAL(packet_in/out) = 2L.

S∑
i=1

Pi (1)

In a large-scale network of highly dynamic topology, keeping
up-to-date visibility of the topology is critical for perform-
ing optimal routing decisions by the controller. However,
this large number of regular discovery traffic can lower the
network throughput and hinder OpenFlow-based networks
performance and scalability. Furthermore, enabling a global
centralized control over a flow-based network requires that
the controller has to have an up-to-date real-time view of
the network state to act as a centralized controller and effi-
ciently serve the data plane forwarding requests and network
applications. The entire control plane management procedure
is substantially affected by how efficiently and timely it can
discover data plane forwarding nodes and links to maintain a
centralized global view of the network’s topology [50]. Link
state discovery is crucial for network services that require
real-time network state view. It is also essential for per-
forming traffic engineering in a highly dynamic network of
traffic and topology conditions. Some researchers focus on
how to enhance the OpenFlow discovery protocol to improve

the overall network performance and scalability. In this sur-
vey, we classify the proposed solutions into three schemes:
LLDP-based Link State Discovery, Tree Exploration Link
State Discovery and Layer-2 based Link State Discovery
as illustrated in Figure 11. A Comparison of the different
link-state discovery mechanisms is also provided in Table 3.

A. LLDP-BASED LINK STATE DISCOVERY
In this scheme, researchers focus on how to enhance the de
facto OpenFlow discovery protocol (OFDP) to reduce the
overhead of discovery traffic and improve the SDN scalability
and performance.

The authors in [49] propose a modification to the de facto
implementation of OFDP, called OFDPv2 to reduce the over-
head of OFDP discovery protocol by reducing the number
of packet_out messages that are required to be sent by the
controller. The idea is to send only one LLDP packet_out
message to the forwarding node and provides instructions to
the forwarding node to forward it via its ports, after adding the
Port ID TLV to allow the adjacent egress node to identify the
source port. This proposed solution uses the OpenFlow fea-
ture of rewriting packet headers to rewrite the MAC address
of forwarded LLDP packet. Another research work in [73]
proposes to include also hosts in the discovery to reduce the
ARP flooding when hosts initially generate traffic.

The OpenFlow-based discovery process is periodically
triggered to provide the controller with the current global
topology view. However, this may introduce unnecessary,
redundant discovery traffic to the controller. As a result,
research works as [50], [74] propose event-driven discovery
mechanisms to resolve this issue. In [74], the authors propose
a secure and efficient discovery protocol called sOFTDP
which implemented in the Floodlight controller [40].
sOFTDP enables forwarding nodes to detect link events
and asynchronously notify the controller autonomously. The
controller then keep listening only for link event notifications
from the data forwarding nodes to make topology updates.

Unlike OFDP and OFDPv2, the authors in [50] emphasize
that all information required by the controller to create the
topology map can be automatically extracted from the net-
work devices using the existing protocol without the need to
use the modified OpenFlow-based version like OFDP. Aim-
ing at obtaining a discovery mechanism capable of fetching
topology information from SDN and non-SDN devices, this
work proposes to use communally existing protocols like
ARP and LLDP without any modification. It proposes an
event-based listening mechanism in each forwarding node’s
port to send information to the controller whenever traffic
from a predefined protocol was detected. This way, the con-
troller can get information about the forwarding node and its
neighbor nodes. Using only the existing protocols to discover
the topology in SDN-based networks can efficiently reduce
the overhead of sending control traffic and solves the topol-
ogy discovery problem in a hybrid SDN network. However,
it limits the controller ability to get statistical information
about the discovery traffic in the data plane and requires to

107358 VOLUME 7, 2019



M. Alsaeedi et al.: Toward Adaptive and Scalable OpenFlow-SDN Flow Control: A Survey

FIGURE 11. SDN link state discovery mechanisms.

TABLE 3. Comparison of the proposed SDN link state discovery mechanisms.

modify the forwarding node so it can trigger asynchronous
events to the controller. Furthermore, the proposed method
is only implemented and tested on ForCES, and need to be
tested on OpenFlow too.

B. TREE EXPLORATION LINK STATE DISCOVERY
Another way of discovering SDN topology proposes in [75]
so-called tree exploration discovery protocol (TEDP), which
reduces the traffic overhead of one-hope point-to-point
LLDP-based discovery process. Instead of sending and
receiving discovery messages among neighbors, TEDP pro-
poses to send only one single probe frame from the controller,
which then floods the network and explores the whole net-
work topology. Unlike OFDP, TEDP collects the topology
information at each hop and sends it directly to the controller.
As such, the controller can find the optimal path between
nodes without additional traffic cost. Although sending one
single flooded discovery advertisement reduces the number

of messages that need to be sent by the controller to only
one, it may introduce a delay in updating the controller with
up-to-date topology view especially in the context of highly
dynamic large-scale networks.

C. LAYER-2 BASED LINK STATE DISCOVERY
More optimization for OFDP is also proposed by
SD-TDP [76], in which discovery traffic is sent only by few
forwarding nodes in a hierarchical SDN network architecture.
SD-TDP reduces the number of messages exchange in OFDP
by proposing an agent-based layer-2 only topology discovery
protocol (SD-TDP) that divides the discovery process into
phases and distributes hierarchically the discovery functions
between the network nodes. Thus, allows for obtaining the
network graph as quickly as possible without incurring scala-
bility issue. SD-TDP proposes to select nodes for aggregating
the topology information and send it to the controller. The
drawback of this solution is that each forwarding node has
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to support the proposed algorithm through an agent which
follow a hybrid non-standard SDN. Furthermore, the aggre-
gating of discovery topology information can lead to delay
constraints.

In addition to the hierarchical distributed discovery,
the authors in [77] state that the discovery process in
LLDP-based discovery protocols starts after handshaking
process in which controllers have prior knowledge of IP
addresses and the list of active ports of each SDN forwarding
element. As a result, it proposes a layer-2 discovery protocol
so-called Enhanced Topology Discovery Protocol (eTDP)
that hierarchically distributes the discovery functions among
forwarding elements. The discovery process in eTDP can start
without the need for previous network configurations or con-
troller knowledge of the network. However, eTDP requires
that every forwarding element has an eTDP agent, which
need modification on both OpenFlow-based/non-OpenFlow-
based forwarding elements.Moreover, eTDP is not a listening
event-based protocol and depends on the periodic exchange
of topoReplymessages to inform the controller about any link
failures or port-down. The periodic exchange of discovery
messages can lead to unnecessary bandwidth wastage and
control traffic overhead especially when the network topol-
ogy changes rarely.

Previous literature does not give a robust study and anal-
ysis on the effect of discovery protocol in the context
of large-scale SDN-based networks of dynamic traffic and
topology conditions. Discovery process is either statically
configured to be repeated periodically to keep up the con-
troller up-to-date with the global topology view or reac-
tively configured to update the controller when receiving
links change events. However, the statically configured dis-
covery process may result in unnecessary discovery traffic
in long-time non-changing topologies while reactive con-
figuration needs to be fast enough to avoid packet loss
or routing mistakes. Furthermore, most of the proposed
OpenFlow-based discovery protocols are for specific net-
works type and cannot work in a heterogeneous network of
both wired and wireless devices like IoT. Therefore, more
research requires for proposing an efficient and dynamic
discovery protocol for large-scale heterogeneous networks
where topology and traffic dynamically change. The discov-
ery process has to be triggered asynchronously in response
to the reactive or predicted topology changes to save network
resources and avoid sending redundant topology information
to the controller.

VI. OPENFLOW-SDN FLOW RULES PLACEMENT
The controller involvement in response to every new
unknown flow arrives at the forwarding node can be avoided
by installing flow entries proactively. Rather than reacting
to the arriving flow packets, the OpenFlow controller can
proactively populate the flow entries of all traffic matches.
The long non-prefix matching of flow entries can match
the most granular route to a destination. As a result, all
flows and actions can be predefined and installed to the data

forwarding node in advance to the flow arrival and prevent-
ing any Packet_In flow-rules placement request to the con-
troller. Such proactive action is suitable for simple network’s
topologies where flow tables memory size is fit with the
global network state view. However, in large-scale networks,
the TCAM-based flow tables can be overflowed by the high
number of installed flow entries that match traffic between
all ingress and egress ports. Although proactive flow-rules
placement approach is preferable for achieving better perfor-
mance, the flow control granularity is broken when new flows
are forwarded without the controller awareness or when the
flow entry compression is achieved based on the relationship
among flow entries [78]. The flow granularity is essential
to obtain better SDN controller’s visibility over the network
and therefore guarantee an optimal QoS provisioning and
controlling by monitoring and collecting per-flow statistics.
Meanwhile, allocating the pre-calculated forwarding rules
before flow transmission without reacting to the dynamic
changes can lead to routing problems like routing loops, black
holes and dropping packets.

OpenFlow protocol holds only the recently arrived flow
entries in the flow tables by configuring every flow entry with
an idle timeout to cope with the limitation of the flow tables
memory size. The flow entries with expired idle timeout are
removed from the flow tables to offer space for the newly
installed flow entries, and thereby avoid flow tables over-
flow. However, this mechanism increases the communication
traffic between control and data planes due to the controller
involvement in every new flow-rules placement process.
An on-demand flow-rules placement request is created and
sent as aPacket_In by the forwarding element to the controller
every time a new unknown flow arrives with unmatched
flow entry. The controller then responds with the new cal-
culated forwarding rule and adds it to the flow tables of the
directly connected forwarding nodes. Such on-demand flow-
rules placement process can introduce a significant delay and
controller traffic overload in the case of a high number of
congested new flows, and consequently, increases the con-
troller response time and decreases data plane throughput as
the network scale grows dynamically [37].

This section provides a survey on the OpenFlow-based
state-of-the-art research studies on how to reduce the amount
of traffic between control and data planes, and efficiently
utilize the data plane flow tables in response to the dynamic
nature and resource limitations of the network.

Nguyen et al. [79] provided a survey on the proposed solu-
tions toward data plane memory management and reducing
signaling traffic to improve SDN scalability. Compared to this
work, we focus on the state-of-the-art proposed mechanisms
toward reducing the traffic overhead between control and
data planes caused by the reactive flow-rules placement, and
classify them into five schemes: Control back to data plane,
flow table entries reduction, per-flow source routing, adaptive
flow entry’s timeout and predictive flow rules placement.
In addition, we cover also other OpenFlow SDN-scalability
related issues. A taxonomy of the OpenFlow-SDN flow-rules
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FIGURE 12. OpenFlow-SDN flow rules placement mechanisms.

TABLE 4. Comparison of the proposed openFlow-SDN control back to the data plane mechanisms.

placement mechanisms that have been proposed to enhance
the network scalability and performance is also provided
in Figure 12.

A. CONTROL BACK TO THE DATA PLANE
Some research works focus on how to gently break the
coupling between the control and global visibility to the
network state by reactively processing some traffic routing
in the data plane without the control plane involvement, see
Table 4.

DevoFlow [80] argues that fine-grained control and
network-wide visibility of OpenFlow controller comes at the
cost of involving the controller in every flow-rules placement
and statistical gathering events. Therefore, such design of the
OpenFlow model cannot meet the needs of high performance
and scalable networks. DevoFlow proposes to bring back
some of the control logic to the data forwarding elements,
in a way that preserves central control and visibility over all
significant flows only – aggregate flows that might become
sufficiently intense (elephant flow), while limiting the load
on the central controller. DevoFlow augments the action part
of each OpenFlow packet with a Boolean CLOONE flag.
If the flag value is clear, the switch follows the normal
OpenFlowwildcard matching; otherwise, it locally clones the
wildcard rule. The cloning process creates a new flow entry

by replacing all the wildcard fields with values matching the
(micro-flow) and inheriting other aspects from the original
entry. As such, the switch locally routes short-lived flows
(micro-flows) without contacting the controller and only
significant flows are reactively forwarded to the controller.
Thus, it reduces the load on the controller and improves the
network scalability. The idea is to push as many decisions
as possible to the data plane, but in a way that guaran-
tees a simple and cost-effective hardware implementation.
Although DevoFlow gently breaks the coupling between con-
trol and global visibility, it can maintain a useful amount
of visibility without imposing unnecessary costs. However,
it can not proactively detect the potential elephant flows, and
instead, the controller detects elephant flows as they become
significant.

Reactively processing some of the control logic in the data
plane can significantly reduce the amount of traffic between
control and data planes, and hence reduce the control traffic
overhead on the controller. However, the amount of traffic
among data plane elements to retrieve data-forwarding rules
may introduce overhead in the data plane and can lead to
potential routing loops and congestion due to non-optimal
routing decisions and inefficient link utilization. Moreover,
allowing data forwarding devices to decide on the rout-
ing of some flows contradicts with the main purpose of
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SDN and comes at the cost of coarse-grained flow control.
Hence, each packet may match multiple rules which
consequently reduces the controller ability to imple-
ment fine-grained flow-level policies such as multipathing
and prevents forwarding decisions from being calcu-
lated based on more information than just destination
addresses.

Motivated by these drawbacks, Song et al. [81] propose
a flow-rules placement mechanism so-called ‘‘controller-
proxy’’ that can delegate the control back to the data plane
without sacrificing the advantages of the SDN centralized
fine-grained control. Although the data forwarding elements
in this flow-rules placement mechanism can handle some
event-processing logic, the control plane still maintains high
visibility over the whole network by communicating with a
proxy executor via a proxy path to synchronize the network
state. The idea is to send an assist request to the hotspot
data forwarding elements whenever traffic spikes occur to
delegate the event-processing logic for packet_in events. The
proxy executor in a hotspot data forwarding element can han-
dle the new flows directly instead of sending a packet_in to
the controller.Meanwhile, the packets from non-hotspots data
forwarding elements are still handled by the controller. The
proxy executor is periodically synchronizing the topology
view with the controller so it can route the flows on time.
The delegation process of the controller-proxy mechanism
can improve the timeliness and scalability of the forward-
ing processes, but it pushes the overhead and complexity
to the data plane. The amount of space required for saving
the network view in the data forwarding element to main-
tain a fine-grained flow control consumes more memory
and computational resources which can overload the data
plane.

ZeroSDN [65] is another research work that supports the
idea of bringing some of the control logic back to the data
plane. ZeroSDN argues that a highly flexible SDN distributed
architecture has to allow the full spectrum of distribution,
from fully centralized to fully distributed architecture by
including data forwarding nodes in the control distribution
and allow network decisions on the local view. To minimize
control latency, ZeroSDN focuses on the network timeliness
by processing control decisions locally as possible while
leveraging the logically centralized global network state view
to improve the decision quality. Due to the nature of the
local network state data of being the most recent and consis-
tent, ZeroSDN, applies a fast heuristic mechanism to quickly
decide whether the control event has to be processed locally
or propagated to the middleware bus to be processed by
remote entities in the control plane.

B. FLOW TABLE ENTRIES REDUCTION
To cope with the limitation of TCAM space and proactively
install flow entries, some researchers focus on how to effi-
ciently reduce the amount of memory space required to store
flow entries by either compressing, aggregating, distributing
or caching flow entries, see Table 5.

1) FLOW ENTRIES COMPRESSION
Some research works focus on how to efficiently compress
the flow entries to reduce the number of flow requests arrived
at the controller. Source Flow [82] is one of the early research
works that propose to reduce the number of flow entries
on core nodes without changing the granularity of flows.
Source Flow proposes to remove the redundancy of flow
matching rules for a selected routing path on all intermediate
nodes. The idea is to embed the actions for all intermediate
nodes as a form of a list into a user packet and store the
forwarding rule actions as a pointer to an action table that
stores the actual actions in the forwarding node. As such
Source Flow can save the memory space to save redundant
flow matching rules. However, the number of flow entries
on edge nodes are not reduced and requires to modify Open-
Flow to implement action table in the same way as a flow
table.

The authors in [83] propose a compression mechanism
called Compact TCAM which encodes the flow entry match-
ing header while augmenting the action part of the rule with
a boolean COMPACT flag. It proposes the use of shorter
tags for identifying flows to optimize the TCAM space.
The controller encodes the information of each unique flow
entry as a numeric identifier so-called Flow-ID. The con-
troller responds to each new flow request with a message
consists of the flow ID and actions. Only in the egress
switch, the encoded matching header is decoded back to
save more TCAM space along the ingress and interme-
diate switches, and therefore allows storing more control
flow entries. The packet’s standard actions are executed
if the COMPACT flag value is set to clear; otherwise,
the packet’s operations corresponding to the Flow-ID are
executed. Compact TCAM needs to upgrade the OpenFlow
standard flow tables to implement the Flow-ID table. The
drawback of the compression mechanism is that it prevents
the flow granularity along the forwarding path and therefore
it cannot guarantee a fine-grained control over the network
traffic.

2) FLOW TABLES PARTITIONING
In traditional IP routing tables, each routing entry mainly
consists of destination IP, gateway IP and interface while the
forwarding process requires only 32 bits (IPv4) or 128 bits
(IPv6) ofmatching destination IP to forward the packet. How-
ever, in the OpenFlow protocol, each flow routing entry occu-
pies 40 field tuples of 1227 bits memory storage while many
of these fields are optional and empty, resulting in memory
space wastage. Hence, compressing the match header fields
is not enough to reduce the amount of memory space required
to store flow entries. Accordingly, the authors in [78] pro-
pose a Heuristic Storage Space Optimization algorithm for
Flow Tables (H-SOFT) to reduce the storage space required
for each flow entry. H-SOFT partitions the flow table into
simple files and stores them in multiple sub-flow tables, so it
performs the compression by assigning each flow entry into
those sub-flow tables. If the newly added flow entries exceed
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TABLE 5. Comparison of the proposed openFlow-SDN flow table entries reduction mechanisms.

the predefined threshold, H-SOFT dynamically adjusts the
valid fields in each sub-flow table to optimize the storage
space.

3) FLOW ENTRIES AGGREGATION
Although flow entries compression mechanism can effi-
ciently optimize the size of the flow tables to accept
more flow entries, the compression-decompression process
requires high computational resources which add more
overhead on the data plane especially in the condition
of a large amount of aggregated traffic. Therefore, some
research works focus on aggregating the original fine-grained

TCAM flow entries into fewer coarse-grained ones with a
larger matching range at the cost of losing some matching
information. Unlike compression mechanism, flow entries
aggregation mechanism can be implemented as a soft-
ware plug-in on the OpenFlow controller and does not
require any change in the OpenFlow protocol. Following
the idea of prefix aggregation (summarization) in tradi-
tional IP routing to reduce the amount of routing tables,
some research works such as [95], [84], [85] and [86] pro-
pose to aggregate the OpenFlow wildcard matching headers
of the same action to allow installing more TCAMs flow
entries.
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Braun and Menth [84] as an instance, proposes to aggre-
gate the flow matching entries to more generic wildcards
using Espresso heuristic. Unlike IP prefix aggregation, flow
entries contain a non-prefix matching field, which length-
ens the flow tables updating time and hence increasing the
flow-rules placement latency especially when the flow tables
are frequently updated.

The aggregation process must not change the action part
of any flow entry. As a result, motivated by Bit Weaving [96]
TCAMs aggregation, the authors in [87] propose a non-prefix
FFTA offline aggregation scheme that can aggregate 100 rule
partition in just several milliseconds. It cuts the non-prefix
matching fields to prefix permutable partitions and then
aggregates each partition respectively. FFTA construct a
Binary Search Tree (BST) of prefix partitions and then
apply the Optimal Routing Table Constructor (ORTC) algo-
rithm to omit the permutations and simplify the aggrega-
tion process. In the flow entries aggregation scheme, it is
possible that a new unknown flow matches with an aggre-
gated flow entry resulted in potential routing mistakes. As a
result, Leng et al. [88] propose a Flow Table Reduction
Scheme (FTRS) to solve this problem. FTRS pointed out that
core switches are more likely to encounter flow table con-
gestion than the boundary (edge) switches. Therefore, FTRS
focuses on aggregating flow entries that are less important in
the middle of the flow path while reserving the existence of
flow entries at the edges to maintain fine-grained manage-
ment. To achieve this, FTRS uses binary trie (prefix tree) to
traverse a selected matching attributed from each flow entry
(e.g., IP Address) into nodes and then reduce the number
of flow entries by replacing the non-empty sub-trees with
coarse-grained nodes.

Flow entries aggregation scheme is much faster than
the compression scheme and consumes less computational
resources. However, in dynamic and large-scale networks,
the aggregation process may cause a routing delay because
of the time requires to aggregate each new rule with all the
existing ones. Furthermore, flow entries must share the same
routing action to be eligible for aggregate. Hence, the high
variety of the instructions field of flow entries can signifi-
cantly reduce the number of possibly-aggregated flow entries.

4) FLOW ENTRIES DISTRIBUTION
Distributing the pre-calculated flow-rules among network
forwarding nodes is another way to efficiently utilize flow
table and reduce the communication traffic between the con-
trol and data planes, controller traffic overhead and hence
improve the network scalability.

DIFANE [89] as an instance provides an architecture to
distribute the pre-calculated forwarding rules and keep the
traffic in the data plane to avoid the reactive controller
involvement for routing each miss-matching packets. The
controller first pre-calculates the forwarding rules and allo-
cates them as even partitions to a subset authority switches of
the existing ones. Upon receiving unknown new flow packet
in the ingress switch, it will be encapsulated and sent to the

appropriate authority switch based on the partition informa-
tion. The authority switch de-encapsulates the packet and
forwards it to the egress switch,meanwhile, sends feedback to
the ingress switch to cache the flow entry to avoid long rout-
ing path for active flows. DIFANE provides a scalable solu-
tion that can efficiently reduce the control traffic overhead
and eliminate the delay resulted from controller involvement
in every new flow entry installation. However, it moves the
complexity and overhead to the data plane by partitioning the
flow entries in subtables distributed among selected authority
switches. Furthermore, the authority switches play a main
different rule in DIFANE which contradict with the main
idea behind SDN in making the networking devices as a
simple decoupling forwarding nodes. The coupling among
the selected authority data forwarding nodes adds more com-
plexity, unnecessary traffic on the data plane and increases
the propagation delay. It also introduces a flow forwarding
reliability and resiliency issues when authority switches fail.

To avoid the management and redirection overhead of
packet forwarding at data plane in DIFANE, Palette [90]
proposes a distributing framework for decomposing the flow
tables into small ones and distribute them across the data
plane elements. Kang et al. [91] on the other hand, proposes
a rule replacement algorithm that distributes the forwarding
rules across an abstracted data plane layer so-called one big
switch to maintain the TCAM rule-space constraints. Rather
than grappling with TCAM sizes, the control plane defines
one big switch that manages the installation of rules on the
data forwarding nodes.

Unlike other flow entries reduction mechanism, distribut-
ing flow entries among the data forwarding nodes reserves the
fine-grained control policies. However, it adds more traffic
overhead in the data plane to maintain the distribution of for-
warding rules especially when the network topology changes
dynamically.

5) FLOW ENTRIES CACHING
Flow entries caching is another solution to the limitation
of TCAMS and the control channel traffic overhead. The
idea is to cache heavy-hitting rules in the TCAMS flow
tables and the remaining rules in a software data structure
or software switches as part of the same hardware switch or
on separate servers. Hence, give the controller the illusion
of fast-forwarding/updating and large flow tables. In Open-
Flow, if a flow packet matches multiple rules in a flow table,
the data forwarding element will execute the actions of the
highest priority matched rule. The problem with the rule
caching scheme is that it breaks the long-chain rule matching
dependencies leading to a rules dependency issue. In other
words, if the high-priority rule of a certain flow is cached
in the Non-TCAM flow table, the flow’s arriving packet will
incorrectly match the low-priority rule (because the priority
is for rules cached in TCAMs). As such, the dependent rules
of a TCAM-cached rule should also be cached to preserve
the semantics of the fine-grained control policy. Meanwhile,
the dependency checkingmechanism has to be able to capture
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all of the policies direct and indirect dependencies. More-
over, rule caching scheme should be adapted to the dynamic
changes in the rule policies so it can update the cached rules
in a proper time.

To resolve the rule dependency issue, CacheFlow [92], [93]
proposes a hardware-software hybrid switch to cache the
most popular rules in the available TCAMs flow tables
while caching the remaining rules in a software switches.
CacheFlow splices long dependency chains to cache small
groups of rules while trying to preserve the semantics of
network policies. To handle rule dependencies, CacheFlow
represents the rule’s priority as an annotated Directed Acyclic
Graph (DAC) in which rules are incrementally added or
removed. It also proposes a cache-replacement algorithm to
decide which rules to place in the TCAMs.

Sheu and Chuo [94], on the other hand, proposes to use
a cover-set approach to solve the rule dependency problem
and utilize the TCAM space more efficiently. It proposes a
(cover-set) based rules caching algorithm to cache the most
frequent and important matched wildcard rules which have
higher weight values. Unlike the standard cover-set caching
algorithm, it calculates the accumulated contribution value of
a set of rules instead of the individual contribution value of a
rule. Moreover, it proposes a rule cache replacement (RCR)
algorithm to increase the cache hit ratio. Once cache miss
occurs, the RCR algorithm would replace cached victim rules
with the cache miss rule to keep the rule in the TCAM.
Although a well-designed rule cache replacement algorithm
can resolve rules dependency problem, the rules partition
makes rule updates more difficult and challenging, especially
when rules change dynamically according to evolving net-
work states.

C. PER-FLOW SOURCE ROUTING
The per-hop configuration-based forwarding in OpenFlow
requires to generate multiple flow entries along a route to
forward a single flow, resulting in a huge redundancy in flow
tables. Hence, the flow tables space efficiency and manage-
ment usually coupled with how the forwarding method is
efficient. Instead of keeping the redundant forwarding rules
in all the forwarding nodes along the route, some research
studies propose to use source routing to make packet forward-
ing obeys the forwarding labels/instructions provided by the
packet, see Table 6.
Having the global network state knowledge, the SDN con-

troller can install the routing path information proactively
to the ingress nodes. Thus the forwarding rule of the for-
warded packet can be inspected in each node without the
need to reactively contact the controller or proactively install
the corresponding forwarding rules in the intermediate for-
warding nodes. According to [110], source routing has been
designed to be highly scalable, where the scaling capability
of source routing has been tested successfully on a use case
of 600,000 nodes and 300 millions of endpoints. Unlike
traditional per-flow routing, no direct interaction is required
between the SDN controller and each node along the route

path. Furthermore, the controller can re-send the packet with-
out the need for installing the forwarding rules in the related
forwarding nodes [108].

The authors in [97], [98] propose to utilize source routing
method to reduce the distribution of network state in all the
data forwarding nodes along the routing path for improv-
ing the controller’s scalability and network coverage time
in an SD-WAN production deployment. It also proposes to
change the output interface number in the path packet header
with the input interface number at each intermediate node
for maintaining the packet reverse path without sending a
routing request to the controller. Although source routing
can significantly enhance the SDN network scalability and
performance, the controller involvement in calculating a new
routing path is still necessary when a routing link fails.
To avoid the consequent routing latency, a research study
in SlickFlow [99] proposes a resilient source routing mech-
anism that combines the source routing with alternative path
information carried in the packet header.

Some other research studies propose to encapsulate the
arrived flow packet in the ingress port with multiple MPLS
labels indicating the forwarding port numbers of other for-
warding nodes on its route. Intermediate forwarding nodes
will use the MPLS label to forward the packet to the next
hop and delete the used header. This process is repeated in
every intermediate forwarding node until the packet reached
the egress port of the destination forwarding node. Thus,
the controller needs to only install one flow entry in the
ingress forwarding node, and perform the matching process
once. However, using MPLS labels to forward flow packets
in OpenFlow-SDN significantly reduces the redundancy of
installing flow entries and the latency of the flow matching
process. However, the packet headers needed to encapsulate
the MPLS route labels generate too much overhead on the
edge forwarding nodes and their links especially when the
controller is configured to install all matching flow entries
proactively. Each MPLS label requires 32 bits, which will be
worse in a long route of multiple MPLS labels. The longer
the forwarding path is, the larger the overhead becomes.

To resolve this issue, some research studies such
as JumpFlow [100], Arbitrary Jump Source Routing
(AJSR) [103] and Kitsuwan et al. [104] propose more effi-
cient bandwidth utilization MPLS-like source routing tech-
niques. JumpFlow [100] proposes to use the available VLAN
identifier (VID) of the packet header to carry the routing
information. JumpFlow considers the constraints of the flow
table space and proposes to partition the routing information
and distribute them on a few selected contact forwarding
nodes. However, due to the limitation of 12-bits VID filed
space and the reactive flow entries placement, JumpFlow
can only carry little routing information and therefore cannot
work properly in SD-WANandmay lead to a scalability issue.
Inspired by JumpFlow, the authors in [101]–[103] propose
to divide the complete routing path of a particular flow into
arbitrary length sections and distribute these sections at dif-
ferent selected forwarding nodes along the route. The authors
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TABLE 6. Comparison of the proposed openFlow-SDN per-flow source routing mechanisms.

in [101], [102] propose a heuristic algorithm called K Similar
Greedy Tree (KSGT) to intelligently select nodes to install the
MPLS-based flow entries. KSGT divides flows into clusters
and greedily selects a small number of switches to install
entries. However, using MPLS labels to carry each per-hop
forwarding information can induce a significant bandwidth
overhead. As a result, the authors in [103] propose a forward-
ing scheme called Arbitrary Jump Source Routing (AJSR)
to achieve a trade-off between control traffic overhead and
bandwidth overhead which can carry an arbitrary number of
forwarding information and leverages MPLS labels to carry
routing bath.

Segment routing (SR) [111] is another variant of source
routing which has been proposed to provide flexibility and
scalability to the traditional MPLS networking. SR can
be implemented on top of either the MPLS or the IPv6.
In MPLS-based SR, segment routing uses label forwarding
but with no more additional protocol just extensions to Inte-
rior Gateway Protocols IGPs such as Intermediate System
to Intermediate System (IS-IS) and Open Shortest Path First
(OSPF). Segment routing uses the classical Dijkstra shortest
path algorithm based routing protocols like IS-IS and OSPF

to advertise the segment information and to compute the
routing paths. However, in IPv6-based, segment routing uses
IPv6 addresses to carry the segment list in an Extension
Header called SR header (SRH) [112]. At the ingress node,
SR encodes the routing path in the packet header as an
ordered list of segments (stack of labels) to be executed on
the subsequent nodes along the packet’s route. There are two
types of segments: nodal segment and adjacency segment.
The nodal segment is globally significant and identifies the
node and the prefix of its loopback interface. The adjacency
segment is locally significant and identifies the local segment
(e.g., switch port number) to a specific SR node [111]. Unlike
MPLS, segment routing maintains per-flow state only at the
ingress node. Thus, no need for signaling the forwarding
labels to the nodes along the route path. Using segment rout-
ing in SDN-based networks can reduce the overhead of using
Dijkstra-based routing algorithm to advertise the segment
information because of the centralized view of global net-
work topology that can be provided by the controller. Mean-
while, it can significantly minimize the need for keeping a
large number of flow entries in the intermediate forwarding
nodes. As a result, authors in [113] implement an SDN-based
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segment routing to control the label stacks in a multi-layer
network testbed for testing the scalability of the network.
The results show that the deep label stacking can increase
the average required time to configure the overall flow into
1mswithout experiencing performance degradation. Segment
routing attracts the researchers’ interest to propose it in SDN
because of its ability to utilize the network bandwidth more
efficient than traditional source routing mechanisms.

The authors in [105] propose to improve the energy effi-
ciency of large-scale backbone networks by using SDN
and segment routing to dynamically adapt the number of
powered-on/off links in response to the traffic load. They
utilized segment routing to reduce the transmission overhead
and the power of SDN centralized controller to selectively
turn off a subset of links in response to the traffic load. The
authors in [106] also propose an architecture that integrates
SDN with segment routing. Trying to solve the Flow Rules
Placement problem, they implemented a heuristic SR-based
path assignment algorithm to find the minimum-length SR
paths corresponding to each path. The scalability of the net-
work when applying SR for SDN has been studied by [107].
An SDN-based SR implementation on a Multi-layer net-
work is performed to demonstrate the scalability of the SDN
network while performing dynamic traffic rerouting at the
ingress node. The implementation uses OpenFlow 1.3 based
RYU controller to control the SR segments configuration.
It also relies on a Novel path computation algorithm to deter-
mine the routing path. The experimental results show that
no packet loss was experienced during dynamic rerouting
without the need for using signaling protocols.

Previous studies do not study the proper routing algorithms
for SDN-based SR to reduce the extra cost of deep label stack
in the packet header. In other words, if the count of path hops
is long, it causes extra wastage of the network bandwidth
due to the deep SR list in the packet header. As a result,
the authors in [108] propose a heuristic routing algorithm
with bandwidth guarantee. The proposed algorithm uses traf-
fic engineering to select the proper routing path for achieving
traffic load balancing among the network. The routing algo-
rithm considers both the link’s maximum residual bandwidth
and minimum interface for selecting the routing (MIRA)
methods to decide a routing plane for unicast communication
in SDN. A multicast routing algorithm for SDN with SR is
also proposed by [109] to serve the bandwidth requirements
of multicast routing requests. The research work proposes a
multicast heuristic routing algorithm with bandwidth guaran-
tee to achieve traffic load balancing.

The authors in [114] went further and proposed an
SDN-based SR on top of IPv6. Motivated by the central-
ized control of SDN, they propose an SDN architecture to
control IPv6-based SR enabled networks. The segment list is
carried in the segment routing header (SRH) as explained in
IETF draft [112]. The proposed solution was applied in four
different implementations of the southbound APIs: GRPC,
REST and NETCONF, and remote command-line interface
respectively. The research work also provides a comparison

with OpenFlow-SDN solutions and represents that unlike
IPv6, using OpenFlow as southbound API can lead to a lack
of broad support and can easily transform in vendor lock-in.

Although source routing can significantly minimize the
need for keeping a large number of flow entries in the inter-
mediate forwarding nodes, the ingress/edge nodes still form a
bottleneck due to the extra header size required to encapsulate
a multi-hop route. OpenFlow defines the MPLS label with
32-bits which make the process of encapsulating each flow
packet with the routing path introduces extra transmission
overhead, especially in large-scale networks, resulting in
bandwidth waste. Source routing also spoils the advantages
of per-flow route selection in adaptive to the dynamic QoS
demands and load balancing. Moreover, all the existing stud-
ies do not provide a clear study on how to traffic engineering
SR mechanisms to fit with the proactively installed flow
entries under dynamic traffic and topology conditions.

D. ADAPTIVE FLOW ENTRY’S TIMEOUT
In OpenFlow 1.3, the flow entry’s idle timeout value (mini-
mum of 1 second) is statically configured to remove entries
of inactive flows from the flow tables to offer space for the
entries of the most recent flows. The static configuration
of the idle timeout can significantly increase the number
of flow-rules placement requests to the controller due to
the lack of estimating the precise per-flow inter-arrival and
transmission intervals. The coarse-grained configuration of
the idle timeout is usually inefficient since some flow entries
of inactive flow can be still cached. Permanent placement of
flow entries can resolve this issue; however, the limitation in
flow tables resources cannot accommodate the huge amount
of active flow entries without minimizing the flow granular-
ity. On the other hand, OpenFlow 1.4 allows to automatically
remove entries of lower importance to offer space for newer
flows. However, flow tables can still be easily overflowed and
result in a flow entries eviction of some active flows, which in
turn, degrades the network performance and scalability. The
fixed value of the idle timeout of each flow entry can be adap-
tively adjusted according to the current network conditions.
The timeout can be reactively configured by the controller to
give certain priority for adding/removing flow entries, so the
flow table can always serve the most significant flows.

In this scheme, maintaining a fine-grained flow control
is crucial to classify each flow and decide on how long the
flow entry should reside in the flow table. As a result, some
research works propose to utilize the logically centralized
controller to adaptively configure the flow entry’s idle time-
out in response to the current traffic matrix, see Table 7.

In this essence, the research works in [115], [116]
and [117] propose to dynamically adjust the timeout of flow
entries. The authors in [115] propose an Adaptive Hard Time-
out Method (AHTM) to dynamically adjust the flow entry’s
hard timeout according to the number of interrupted flows.
However, using hard timeout may lead to a large amount of
flow interruption in the case of dynamic traffic conditions and
can cause a rule removal during the transmission of a burst
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TABLE 7. Comparison of the proposed openFlow-SDN adaptive flow entry’s timeout mechanisms.

of packets, which increases latency and damages network
performance. The authors in [116] propose to set an adaptive
timeout to each flow according to its estimated duration, flow
type, and the current flow table utilization ratio. The authors
in [117] focus on optimizing idle_timeout value to utilize
network resources in OpenFlow-based networks efficiently.
Based on the ON/OFF traffic model, they experiment and
analyze the influence of static idle timeout value in both flow
tables and the controller. The invalid lifetime of flow entry is
used to represent flow table resource cost, where packet_in
events generated per seconds are used to represent the con-
troller processing resource cost. These two resource cost
indicators represent the upper and lower bound of idle timeout
which can be used to calculate the effective idle timeout value
of flow entries. The research work in [118] also depends on
some factors in addition to the flow inter-arrival such as;
flow rate and flow type to dynamically set flow entry’s idle
timeout. The authors in [119] also propose to dynamically
adapt the idle_timeout to adjust the timeout value for the new
coming flow according to the current estimated remaining
resources in the flow tables. The proposed mechanism, first
estimates how many flow entries could survive to the next
sampling time. Then it estimates the number of newflows that
may need to be installed in the next sampling time. As such,
the proper timeout value can be estimated to satisfy that the
rest of new flows at the next sampling moment are less than
the remaining resources of flow tables.

Previously proposed solutions did not provide a mech-
anism to evict non-significant flow entries in the case of
highly-active networks. As a result, the authors in [120]
propose to control the idle timeout value of each flow

dynamically. It proposes an online routing scheme so-called
Software-defined Adaptive Routing (STAR) that can detect
the real-time flow tables utilization for evicting expired flow
entries when needed to accommodate new flows. STAR uses
the LRU replacement algorithm and idle timeout to allow
each switch to remove flow entries. Each flow entry is asso-
ciated with a binary flag to indicate whether the entry is
active or inactive. This flag is set to active when the controller
places a new flow entry and set to inactive when the switch
receives the last packet (FIN packet) of the flow. As such,
the controller can track the actual flow tables utilization by
estimating the counter of active-flows and in turn, remove the
inactive flows even before their expiry timeout.

Although dynamic flow entry’s idle timeout can adaptively
add/remove flow entries in response to the dynamic network
resource constraints, it cannot adaptively set the idle timeout
based on the traffic patterns and expected flow transmission
rate.

E. PREDICTIVE FLOW RULES PLACEMENT
Identifying and predicting traffic patterns to place, update or
remove flow entries proactively is crucial to reduce the over-
head of a large number of flow-rules placement requests and
guarantee an efficient resource utilization. The main idea is to
proactively install the flow entries of the predicted frequency
and elephant flows while removing flow entries of rarely and
light flows to give a space for more priority flows in the flow
tables and reduce the frequent reactive flow-rules placement
requests traffic to the controller. Predicting OpenFlow-SDN
traffic patterns can also help in obtaining optimal routing
calculation to avoid traffic congestion and therefore enhance
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TABLE 8. Comparison of the proposed openFlow-SDN predictive flow rules placement mechanisms.

network scalability and throughput. The controller has to
simultaneously gather per-flow measurements and statistical
information to measure the network accurate and timely traf-
fic matrix. The traffic matrix is the key factor in predicting
the future traffic trends to place flow entries optimally.

Due to the burst nature of large-scale networks traffic,
network-wide learning-based traffic measurement and clas-
sification is crucial for predicting network flow patterns to
utilize network resources efficiently. OpenFlow protocol has
a built-in data collection that can provide some basic flow
information such as packet size, timestamps, inter-arrival
time, source and destination MAC/IP/Port, flow duration,
byte count and packet count. Furthermore, the centralized
visibility of the SDN controller provides a new opportu-
nity for monitoring and predicting network performance.
Hence, leveraging the global network view knowledge of
the OpenFlow-SDN controller to predict the flow patterns
and therefore achieve better QoS provisioning and resource
utilization has gained increasing interest among researchers,
see Table 8.

To adaptively providing desired QoS for different traffic
flows in OpenFlow-base SDN, it is also necessary to monitor
and classify network flows at the application level. Therefore,
when a new flow arrives, the application-layer classifier
can get the flow’s features and compares them with the
learned features, result in an optimal controller forwarding
rule decision. Unfortunately, OpenFlow-based networks are
only capable of monitoring Layer 2/3/4 header field of

packets and still lack in higher layers application awareness.
The OpenFlow-SDN controller can only perform forwarding
decisions based on the shortest path or load balancing. Data
set and classification features in OpenFlow-SDN must be
carefully selected. Therefore, it requires Layer 7 fine-grained
application awareness to achieve more intelligent forwarding
decisions to give more flow-rules placement priority for
real-time or large applications flows and guarantee better QoS
control and provisioning. Deep Packet Inspect (DPI) based
techniques are quite effective due to its high accuracy mea-
surement level [121]. However, DPI consumes a lot of CPU
resources and not effective for the encrypted traffic, which
makes it unreliable for large-scale and complex networks of
heterogeneous and enormous traffic conditions. On the other
hand, a machine learning-based approach does not require
packet payload inspection, and only some flow features are
selected carefully for training the classifier. The ML-based
approach can perform classification in a much lower com-
putational cost than DPI approach, but in a lower accuracy
rate due to its coarse-grained classification. Nevertheless, the
ML-based technique can bemore effective inOpenFlow-SDN
than traditional networks due to the global network visibility
of the SDN controller and the collected statistical information
of each flow entry.

Assume that no application signature is available, the accu-
racy problem of ML-based and fine-grained application-level
classification in OpenFlow-SDN has been addressed in some
research works such as [121] and [122]. Research work as
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Atlas [121] proposes to use C5.0 decision tree ML-based
technique and employ a crowd-sourcing labeling approach on
OpenFlow-SDN controller to obtain a fine-grained and accu-
rate application classifier. Atlas relies on deployed agents in
some employee devices to collect information about active
network sockets of each running application. These forma-
tions are sent to the controller where the ML-based classifier
is running to correlate and compose the ground truth training
data with other flow features such as packet size that are
collected by the OpenFlow protocol. Therefore, when new
guest devices join the network, OpenFlow sends the flow
features to the classifier which can detect the application and
recommend the appropriate actions to be installed by the con-
troller. The work gives a solution for an accurate and reliable
application awareness ML/OpenFlow based SDN classifier
that get 90% accuracy of only a test of 40 applications in
Google Play. However, the idea of employing agents for
collecting application-level information can add more com-
plexity and traffic in large-scale networks and may not be an
optimal solution in IoT network where data source devices
are of resource constraints and heterogeneous platforms.

The Accuracy of an ML-based network traffic classifier
can also be affected by the type of selected flow features
under a highly fluctuating traffic over time/space. Hence,
the network flow measurement has to be agile enough to
estimate both large and small traffic flows dynamically. SDN
has opened up new opportunities to collect per-flow fine-
grained measurements of specific features dynamically on-
the-fly and to cope with the dynamic network and traffic
conditions. According to [122], selecting some flow features
for certain ML-based classification techniques can be more
effective in achieving higher classification accuracy than
other classification techniques. As a result, [122] proposes a
software-defined traffic classification framework (vTC) that
dynamically choose the appropriate flow features and clas-
sifier to maximize accuracy and reduce classification delay.
The author uses a pool of ML-based classification mod-
els such as K Nearest Neighbors, Support Vector Machine
(SVM), Decision Tree (DT), Adaptive Boosting, Naive Bayes
and Multi-Layer Perception (MLP) to test the accuracy of
each model in categorizing network flows. The results show
that the accuracy of the classifier is highly dependent upon
the selected flow features and protocol.

Some other research works concentrate on predicting
dynamic OpenFlow-SDN network traffic patterns to enable
adaptive QoS provisioning and enhance the network’s
resources utilization such as [123], [124]and [127]. To avoid
the eviction of unfinished flows, the authors in [123] pro-
pose an algorithm to determine the number of flow entries
that are likely to be remaining in the flow table at the next
sampling period. As such, it dynamically adjusts the timeout
value of each flow to reserve space for the newly arrived
flows in advance. The proposed algorithm uses AutoRegres-
sion (AR) to predict the number of new flows and utilize
the Weibull distribution to estimate the number of remain-
ing flows. Research work as [124] uses the mathematical

tensor model that widely used in big data application to
proposes a tensor-based SDN (TSDN) model for efficient
QoS provisioning in OpenFlow-SDN. The High-order singu-
lar value decomposition (HO-SVD) method and incremental
updating approach are employed to extract the most valu-
able flow entry header fields and generate the forwarding
tensor. The dynamic update in the network topology can be
rapidly reported to the controller by incrementally updating
the forwarding tensor. The incremental tensor decomposition
approach is employed to generate the core tensor which
contains the most valuable forwarding information. All the
core tensors generated in the data plane are submitted to
the control plane to generate the controlling tensor which
capable of globally computing optimal paths for data packet
scheduling. The transition tensor model which consists of
four orders and uses the eigenvalue decomposition method to
compute the stationary distribution is also proposed to predict
the network traffic.

In OpenFlow-SDN, the controller needs to calculate and
install the forwarding rule of each unknown stream in real-
time, which may cause a computation and communica-
tion burden on both data and control planes in large-scale
networks [128]. In this essence, the authors in [125] propose a
Pre-Emptive Flow InstallationMechanisms (PFIM) to reduce
the load on the controller result from the burden flow requests
traffic. PFIM dynamically learns the periodic patterns of IoT
traffic and accordingly install the appropriate flow entries to
the flow-based switch before new packets arrivals. This work
only focuses on monitoring the packets arriving time of the
newflows at the forwarding device to identify flows of regular
intervals. However, non-regular interval flow patterns require
more complex learning-based algorithms to predict the IoT
based traffic pattern.

Other research works such as FlowSeer [126], and [129]
adopt learning algorithms to predict the dynamic traf-
fic patterns of OpenFlow-SDN large scale networks.
FlowSeer [126] proposes an elephant flow detection and
scheduling mechanism that monitor and train the first few
packets to predict the rate and duration of the initiated flow
under dynamic network and traffic conditions. However,
FlowSeer does not clearly explain the flow features selected
in the learning data set as inputs. Furthermore, the proposed
a cooperative prediction mechanism that enables the switch
to perform most of the classification decisions, requires to
update the data plane which contradicts with the main idea
of SDN to keep data plane abstract and simple for per-
forming the basic networking tasks. Elephant flow predic-
tion mechanism is also proposed in [129] to meet with the
demands of the traffic characteristics in data center networks.
Both research studies focus on how to reduce the controller
to switches communication overhead by predicting the ele-
phant flows and adapt their routing policies to meet with
the dynamic network conditions demands. However, none of
them study the scalability of the network when connecting to
more complex and dynamic large-scale networks as IoT, large
virtualized data centers and multi-tenant cloud networks.
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Taking into consideration the network-wide state knowl-
edge of the SDN controller is important for achieving an opti-
mal traffic measurement and performance prediction. Hence,
more research is required in selecting more valuable flow fea-
tures as a training set for predicting the flow patterns. Thus,
proactively set up the flow to minimize the control traffic
overhead on the controller that caused due to the huge amount
of flow-rules placement requests in the case of dynamic and
large-scale networks.

VII. OPENFLOW-SDN CONTROLLERS LOAD BALANCING
In the OpenFlow-based distributed SDN control plane archi-
tecture, the mapping between the data forwarding nodes and
controllers is statically configured. Any workload changes
in the data plane can easily lead to load imbalance in the
distributed controllers. The controller can be overwhelmed
by the high amount of flow-rules placement requests and
inefficient resource utilization due to uneven load balancing
among controllers under spatial and temporal variations in
the traffic conditions. Hence, the assignments of the data for-
warding nodes to the controllers need to be carefully config-
ured to prevent controllers from being overloaded. In Open-
Flow protocol, the problem of the overloaded controller is
partially resolved by assigning two controllers with different
roles (master, equal or slave) for each switch. If the master
controller fails due to overload or other exceptions, the role
of the equal controller can be changed to master. However,
this mechanism is not adaptive and robust enough to the
controller’s failure, and cannot achieve optimal load balanc-
ing and resource utilization in the control plane. To resolve
this issue, the authors in [130] propose a dynamic slave
controller assignment that prevents the network crash by
planning slave controllers assignment ahead of the controller
failures.

The hierarchically distributed controllers has been
also proposed to partition the load and functionali-
ties among controllers as in Kandoo [14], Xbar [15],
ORION [16], [48], [131] and [132]. Although the hierarchi-
cally distributed controllers can improve the network scal-
ability and partition the traffic load and functionality into
level-based controllers, it cannot optimally distribute the
load among the lower-level controllers of local network state
view. The local area controllers are statically mapped to their
local-view data plane forwarding nodes and do not consider
the current state and load fluctuation of the network in its
static load partition. As such, both the area and domain
controllers can still be overwhelmed by the high imbalance
aggregated flow in their mapping data plane forwarding
nodes.

Elastic controller provisioning in response to the tempo-
ral/spatial variation in network traffic conditions can also be
used to improve scalability and prevent the controller from
being a potential bottleneck. However, dynamic resource
provisioning without efficiently use the available resources
are wasting of resources and improperly increase the capital
expenditures (CAPEX). Therefore, proposing an efficient and

adaptive load balancing scheme for the control plane gains
more interest among researchers.

Wang et al. [133] provided a survey on the recent solutions
for balancing traffic across links in data center networks. Part
of the literature presents the load balancing mechanisms that
leverage SDN global link and traffic information to balance
the load in the data plane. However, in this survey, we aim
at presenting the scalability concern in the control plane due
to load imbalance in the logically-centralized controllers.
This paper presents the state-of-the-art load balancing mech-
anism in the control plane that dynamically reassigns con-
trollers to data forwarding planes or flow-rules placement
requests to different underloaded controllers. Another sur-
vey in [134] presented the proposed techniques toward bal-
ancing the load in both the data and control planes. How-
ever, we cover also the most recent research works toward
the controllers’ load balancing and compare the proposed
approaches. Finally, we classify the OpenFlow-SDN load
balancing in the control plane into two main schemes;
dynamic assignment of controllers and dynamic assignment
of flow requests, see Figure 13. A comparison of the differ-
ent controllers’ load balancing mechanisms is also provided
in Table 9.

A. DYNAMIC ASSIGNMENT OF CONTROLLERS
One of the proposedmechanism for balancing the load among
the distributed controllers is to dynamically migrate the data
plane forwarding nodes from the overloaded controllers to
the underloaded ones. For instance, ElastiCon [135] proposes
a switch migration protocol that monitors the load on all
controllers and adaptively reassign data plane forwarding
nodes to the underutilized controllers. ElastiCon also pro-
poses elastic provisioning of the controllers from a pool of
controllers that dynamically grow or shrink in response to the
aggregated load capacity threshold of all existing controllers.
To guarantee liveness, ElastiCon lets the controller remain
active when migration happens until the switch finishes the
command processing. ElastiCon implements a new 4-phase
migration protocol to make sure that at least one controller is
active (master or equal mode) and hence minimize disruption
to ongoing flows, and automatically fit with the spatial and
temporal variations in the flow conditions.

Partitioning or distributing network state views among con-
troller instances is used to avoid overwhelming the controller
resources due to replicating network state at all controller
instances. However, it can unacceptably increase flow-rules
placement propagation latency as a result of inter-controller
communications to access the topology state. An experiment
commenced by Pratyaastha [136] to measure the RTT of the
first packet of each new flow shows that computation time
requires for flow-rules placement is negligible while the key
factor in the high flow-rules placement latency is the time to
access remote state from the distributed network-wide state.
To address this problem, Pratyaastha proposes an approach
for assigning switches to controllers and partition the network
state views among the distributed controllers by minimizing
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FIGURE 13. OpenFlow-SDN controllers load balancing mechanisms.

TABLE 9. Comparison of the proposed openFlow-SDN controllers load balancing mechanisms.

the number of dependencies between SDN switches and a
specific state partition. However, in highly dynamic work-
load conditions, resource requirements and state partitions
can dynamically change and hence introduces a reconfig-

uration overhead due to a sharp and frequent controller to
switch reassignments.Moreover, such deterministic approach
that depends on a specific threshold needs is inflexible to
some extent for variable network environment. Therefore,
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an adaptive reassignment mechanism is required to reduce the
frequent disruption in SDN network configuration.

The research works in [55]–[57], [137] propose the online
migration of switches to controllers to utilize available
resources and balance a load of controllers efficiently. Some
research works [55], [56] focus on how to efficiently utilize
resources (CPU, bandwidth, and memory) to achieve load
balancing among controllers. Cheng et al. [55] as an instance,
proposes a GAME-Switch Migration (GAME-SM) mecha-
nism to carefully migrate a small number of switches among
controllers for each time of adjustment to efficiently maxi-
mize resource utilization with the dimension of CPU, band-
width, and memory. Unlike ElastiCon, the authors in [55]
propose to let both controllers with residual resources and
the overloaded controller to play a role in the load balancing
and resource utilization. Inspiring by the power of game
theory, the controllers with residual resources will act as
players that compete to fully utilize its resources by achieving
switchesmigration. On the other hand, overloaded controllers
will try to migrate their tasks to avoid service interruption.
Measuring the resource utilization by the controllers without
considering the relation between switches and controllers is
not enough to achieve efficient dynamic controllers assign-
ment. As a result, Ye et al. [56] propose a multi-dimensional
resource-consuming model that considers switches as
resources consumers and controllers as resource providers.
Since different data plane forwarding events have uneven
resource demands such as CPU, bandwidth and memory,
the migration decision is achieved based on how the model
can obtain load balancing among these multi-dimensional
resources to maximize resource utilization. For instance,
a controller that control more edge forwarding nodes needs
more CPU resources than others due to the high number
of flow request for unknown new flows. Core forward-
ing nodes, on the other hand, consume more bandwidth
resources than others due to the high amount of aggregated
traffic.

The dynamic online assignment of controllers has to con-
sider the trade-off between the load balance rate and migra-
tion cost and elaborately decide which forwarding node
and where it should be migrated to avoid service interrup-
tion. Some research works as in [57], [137], [138] study the
dynamic controller assignment problem (DCAP) and pro-
poses solutions to minimize the migration cost in production
networks as in data centers. For instance, the research work
in [137] proposes an efficient-aware switch migration-based
decision-making (SMDM) algorithm which based on the
greedy method. SMDM performs the migration process in
three main phases. First, it monitors the aggregated load
in each controller and measures the load diversity on the
controllers to decide on whether to perform the migration.
Second, it calculates the migration cost and migration effi-
ciency to prepare possible migration choices. The migration
efficiency of moving a switch to a controller is defined
as a ratio of load balance variation to the migration cost
of the increase in load cost and message exchange cost.

Finally, it prepares a migration plane for migrating some
switches to controllers with higher migration efficiency.

Another study in [57] formulates the dynamic controller
assignment problem (DCAP) as an online optimization to
minimize the total cost caused by the response time and
controllers maintenance. To let the forwarding nodes to be
re-assigned in a timely fashion in response to the dynamic
variation of network conditions, it proposes a two-phase
offline algorithm that uses the concepts of both matching
theory and conditional games. In the first phase, forwarding
nodes are defining their preferences over controllers based on
the worst response time that the controller can provide, and
in turn, the controllers are defining their preferences based
on the control traffic overhead caused by the communication
between them. In the second phase, the outcomes from phase
one are used to improve the matching solution by using a
coalitional game approach that further reduces the response
time. Then applying both the two-phase offline algorithm
and the Randomized Fixed Horizon Control (RFHC) frame-
work to develop an online algorithm for efficiently solv-
ing the switch-controllers assignment problem. Distributed
Decision Mechanism (DDM) [138] is another research work
that migrates switches according to the selection probability,
and the target controllers are determined by calculating the
migration cost of three integrated cost factors; data collection,
switch migration and controller state synchronization.

Although the dynamic assignment of switches to con-
trollers can improve the scalability of SDN, in very active
networks, the determination of the exact moment of con-
trollers’ hand-off in a disruption-free manner between con-
trollers can be minimal and useless. As a result, the dynamic
re-assignment of the forwarding nodes to controllers disturb
the ongoing flows and introduce liveness, consistency and
reliability concerns.

B. DYNAMIC ASSIGNMENT OF FLOW REQUESTS
Another attempt toward controllers load balancing is to
dynamically redirect the flow-rules placement requests from
the overloaded to underloaded controllers while preserving
the static mapping between control and data planes.

ASIC [139] proposes to redirect the flow-rules place-
ment requests to a load balancer to select the appropri-
ate intra-domain controllers for processing these requests
in parallel. However, the use of proxy load balancer can
form a potential single point of failure. BalanceFlow [140]
also proposes a controller load balancing architecture for
the OpenFlow-based wide-area networks that can dynami-
cally partition flow requests among controllers. Every con-
troller in BalanceFlow shares the same network-wide replica
and publishes its load information periodically through
a cross-controller communication system. Unlike ASIC,
a super controller in BalanceFlow is only responsible for
collecting the periodically published flow requests infor-
mation from all controllers. Next, it partitions the traffic
in response to the collected information and generates the
assignment information. Finally, the assignments rules are
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installed to the flow tables of the corresponding forward-
ing nodes. To assign each new flow-rules placement request
to a certain controller, BalanceFlow extends OpenFlow by
introducing the CONTROLLER X action to forward the
new flow to the under-loaded X controller. It installs all the
potential flows and their wildcard matching ingress-egress
route pairs with a permanent idle-timeout to the forward-
ing nodes. As such, the first packets of new flows always
match allocation rules and are sent to different controllers to
achieve controller load balancing. BalanceFlow also presents
a traffic partition heuristic to avoid propagation latency of
allocating flow-requests to distant remote controllers. The
drawbacks of BalanceFlow is that it adds more configuration
and monitoring traffic overhead and a single super-controller
for load balancing may not perform well in large-scale
networks.

The authors in [141] also propose a distributed load bal-
ancing algorithm for the control traffic based on the game
theory and converges to a specific equilibrium known as
Wardrop equilibrium. The switches estimate the controllers’
state according to the delay function and select the available
controller to process the flow-rules placement requests.

Controller elasticity and load balancing suffer from two
main problems in the case of variant traffic conditions
which can hinder scalability and performance of SDN. First,
the reactively threshold-based provisioning of new con-
trollers can introduce an overhead due to sharp and fre-
quent controller instances provisioning and shrinking. This
is because of the enormous traffic that can be generated by
control and data planes to maintain load-balancing, consis-
tency, and global domain network state among controllers.
Second, partitioning network state views among controllers
introduce a flow-rules placement delay due to inter-controller
communication to access applications or topology state. This
overhead can only be acceptable if forwarding rules are
proactively installed, however it can still disrupt many crit-
ical applications that depend on fast reactive forwarding
rule installation such as consistent load balancing, traffic
engineering, and dynamic traffic filtering. More researches
are required to be invested in proactive and soft controller
provisioning and flow-rules placement distribution, that can
minimize controller consistency overhead and balance load
among controllers.

VIII. RESEARCH CHALLENGES AND FUTURE DIRECTIONS
Decoupling control logic from data forwarding nodes to
enable centralized management introduces new scalabil-
ity and performance challenges in the SDN. Very limited
research works have discussed the performance and scala-
bility of the OpenFlow-SDN in dynamic and large-scale net-
works like the Internet of Things (IoT) where a huge number
of entities (e.g., physical objects, VMs, applications) com-
municate and dynamically join or leave the network. In this
section, we present some of the scalability and performance
challenges that encounter the OpenFlow-SDN and deserve
more research efforts.

A. CHALLENGES RELATED TO OPENFLOW-SDN
CENTRALIZED VISIBILITY
To obtain centralized and optimal network flow manage-
ment and configuration, controllers have to maintain a global
view of the network topology graph. Replicating the global
link-state view in every distributed controller can guarantee
a logically-centralized controlling and transparency over the
data plane. Moreover, it can prevent the routing misbehavior
caused by controllers’ inconsistency in the interval between
two consecutive synchronizations. However, maintaining a
consistent replica of the network-wide state among con-
trollers in a large-scale network of dynamic traffic and topol-
ogy conditions can result in a massive amount of frequent
synchronization traffic that can overwhelm the controller.

Previous literature proposed solutions that addressed
different consistency and synchronization mechanisms to
improve SDN scalability. Eventual consistency can guarantee
faster controller response time but it can lead to potential
routing problems (e.g., routing loops, black holes). On the
other hand, strong consistency can avoid routing problems
but with the cost of higher delay, lower availability and
computational complexity overhead. Adapting consistency in
according to the current network state canmaintain scalability
that sacrifices application optimality for less synchronization
overhead. However, in highly dynamic networks, it requires
more computational complexity to monitor and measure the
trafficmetrics for obtaining adaptive controllers’ consistency.
Event-driven synchronization can also reduce the consistency
traffic by synchronizing only the updated controller state
according to the data plane topology change and link failure
events.

Partitioning the controllers into clusters and using eventual
consistency in response to data plane changes events is a
practical and agile solution in the large-scale and dynamic
SDN networks. However, the packets that are traveling on
the failed link during inconsistency interval will be lost and
dropped until the assigned controller recalculate and install
the alternate forwarding rules to recover the network failure.
Therefore, it is crucial to enable OpenFlow-SDN to bypass
the link failures in less recovery time by providing alternate
routing paths in advance to avoid delay and communication
traffic overhead imposed by strong consistency.

B. CHALLENGES RELATED TO OPENFLOW-SDN
DISCOVERY PROTOCOL
Previous literature does not give a robust study and anal-
ysis on the effect of discovery protocol in the context
of large-scale SDN-based networks of dynamic traffic and
topology conditions. Furthermore, the proposed solutions
toward hybrid-SDN discovery either use the existing LLDP
protocol or propose a new protocol. However, none of these
studies proposed a solution to enable OpenFlow to discover
non-OpenFlow elements in hybrid-SDN, so the controller
can get statistical information about adjacent non-OpenFlow
topology for achieving optimal routing decisions on the
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border forwarding elements. Therefore, there is a need for
more research efforts to propose an efficient OpenFlow-based
discovery protocol in the context of hybrid-SDN. More
research efforts also required to enhance the discovery pro-
cess to be triggered asynchronously in response to reactive
or predicted topology changes to save network resources and
avoid sending unnecessary redundant topology information
to the controller.

In addition, the control plane has to have a real-time up-
to-date view of the global network view and status to act as
a centralized controller and efficiently serve the data plane
forwarding requests. The entire control plane management
procedure is substantially affected by how efficiently it can
discover data plane forwarding nodes and links to maintain a
centralized global view of the network topology. Therefore,
more research efforts are necessary to study the performance
of the OpenFlow discovery under large-scale and dynamic
network conditions.

C. CHALLENGES RELATED TO OPENFLOW-SDN
FLOW-RULES PLACEMENT
In a highly dynamic and large-scale network, the number
of flow-rules placement requests to the controller increase
rapidly, which can overwhelm the controller and delay the
forwarding process. This delay can significantly increase to a
level which can not meet with the requirements of real-time
applications and result in degrading network performance and
scalability. The OpenFlow controller can proactively popu-
late the flow entries of all traffic matches in advance to the
flow arrival. However, in large-scale networks, the TCAM-
based flow tables can be overflowed by the high number of
installed flow entries that match the traffic between all ingress
and egress ports. Previous literature proposed solutions such
as efficiently using memory resources in the data plane, bring
back some control logic to the data plane, use per-flow source
routing or adaptively adjust the flow entries idle timeout.
However, very few research efforts focus on predicting the
flow patterns to install the forwarding rules in advance to
the arrival of flows. Most of the proposed learning-based
mechanisms focus only on monitoring and classifying the
SDN traffic. Therefore, more research is required in selecting
more valuable flow features as a training set for predicting
the flow patterns. Thus, controllers can proactively install
the forwarding rules to minimize the communication traffic
overhead between the control and data planes.

The proposed solutions toward dynamically adjusting the
flow entries idle timeout focus on measuring the current
network traffic performance without considering the appli-
cation and QoS demands. There are also a lot of dynamic
applications whose traffic transmission inter-arrival cannot be
accurately estimated or predicted. For example, in on-demand
applications (e.g., VoIP and video-on-demand), flows come
and go unexpectedly, and their bandwidth requirements and
duration cannot be known in advance. Hence, it is also neces-
sary to monitor and classify network flows at the application
level to dynamically adjust flow entries’ timeout.

D. CHALLENGES RELATED TO OPENFLOW-SDN
CONTROLLERS LOAD BALANCING
Under spatial and temporal variations in the traffic condi-
tions, the controller can be overwhelmed by the high amount
of flow-rules placement requests and inefficient resource
utilization due to uneven load balancing among the logi-
cally centralized controllers. Most of the proposed solutions
toward controllers load balancing focus on either dynam-
ically reassigns controllers to the forwarding elements or
dynamically reassign flow-rules placement requests to the
underloaded controllers according to the dynamic variation
of network conditions. A sharp and frequent migration of
forwarding nodes to controllers can introduce a reconfig-
uration overhead which can be avoided by calculating the
migration cost and decide accordingly. However, most of
the proposed solutions suffer from large execution time and
cannot guarantee efficient resource utilization. A better solu-
tion to the reconfiguration overhead due to reactive migra-
tion is to predict the load imbalance and act accordingly.
On the other hand, most of the proposed solutions toward
reactively reassigning flow-rules request to the underloaded
controllers suffer from high response time due to propagation
delay and computational complexity. Moreover, none of the
proposed solutions study the possibility of proactively reas-
signing flow entries based on the predicted load imbalance in
controllers.

IX. CONCLUSION
Software-Defined Networking (SDN) is an emerging net-
work architecture that promises to simplify network manage-
ment, improve network resource utilization, and boost evolu-
tion and innovation in traditional networks. SDN allows the
abstraction and centralized management of the lower-level
network functionalities by decoupling the network logic from
the data forwarding devices into a logically centralized dis-
tributed controllers. However, in highly dynamic large-scale
networks, this separation introduces two types of communi-
cation overhead: 1) control traffic overhead between control
and data planes, and 2) consistency traffic overhead between
distributed controllers to maintain logically-centralized con-
trol over the network. This traffic can lead to problems such as
controller overloading, inefficient resource utilization, rout-
ing problems, high controllers response time and data plane
memory overloading. As such, impact the overall perfor-
mance and scalability of SDN.

In this survey, we have presented four main challenges in
OpenFlow-SDN that can be considered as primary sources
of such traffic overhead. The survey, have first given an
overview of OpenFlow-SDN flow control and presented
some critical challenges in the OpenFlow-SDN flow con-
trol that affects the performance and scalability of the net-
work such as logically-centralized visibility, link-state dis-
covery, flow-rules placement problem and controllers load
balancing. We have then discussed each issue and presented
the related existing solutions and limitations in enhancing
the OpenFlow-SDN scalability and performance. Finally,
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we have outlined the research challenges that need to
be addressed further toward more adaptive and scalable
OpenFlow-SDN solutions under large-scale and dynamic
network conditions. These challenges include the ability of
OpenFlow-SDN to bypass link failures in less recovery time,
discover non-OpenFlow elements in the context of hybrid-
SDN, avoid sending redundant topology information to the
controllers, monitor and classify network flows at the applica-
tion level to dynamically adjust flow entries’ idle timeout, and
proactively assign flow entries based on the predicted load
imbalance in controllers.
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