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ABSTRACT Modulation recognition is a major task in many wireless communication systems including
cognitive radio and signal reconnaissance. The diversification of modulation schemes and the increased
complexity of the channel environment put higher requirements on the correct identification of modulated
signals. Deep learning (DL) is considered as a potential solution to solve these problems due to the superior
big data processing and classification capabilities. This paper proposes an efficient digital modulation
recognition method based on deep neural network (DNN) model. Furthermore, we present the particle
swarm optimization (PSO) algorithm to optimize the number of hidden layer nodes of the DNN so as to
solve the problem that the traditional DNN is trapped in local minimum values and the number of hidden
layer nodes needs selecting manually. In this paper, we utilize the proposed PSO-DNN method to learn
characteristics extracted from the modulated signal added by additive white Gaussian noise (AWGN) and
to train the network, which can improve the performance of recognition under the condition of low signal-
to-noise ratio (SNR). The experimental results demonstrate that the recognition rate on this algorithm has
improved by 9.4% and 8.8% compared with methods that adopt conventional DNN and support vector
machine (SVM) when SNR equals 0 and 1 dB, respectively. Besides, another experiment compared with the
genetic algorithm (GA) also proves that our proposed algorithm is more effective in optimizing the DNN.
The proposed method is easy to be implemented so that it has a broad development prospect in modulation
recognition.

INDEX TERMS Additive white Gaussian noise, deep neural network, digital modulation recognition,
particle swarm optimization algorithm.

I. INTRODUCTION
In wireless communications, modulation recognition is a kind
of technology which can realize smart reception, processing,
and classification of modulated signals. It plays an important
role in intelligent control for civilian purpose and signals
monitoring for military purpose under the scenario that the
receiver does not know the modulation format the sender
used [1], [2]. Besides, it is also a basic problem for spectrum
sensing in cognitive radios [3]. As the interference of multiple
noises complicates the channel conditions and the number of
the transmitted signals are becoming much bigger, precise
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recognition of various modulations at low SNR becomes
more challenging.

The traditional solution to recognize the digital modulation
patterns is feature based (FB) method, since its theoretical
basis is simple and the near-optimal performance can be
achieved when designed properly [4]. The FB technique
extracts certain features from the modulated signals and a
decision is made based on the separation of the received
characteristics by the classifier. Guo et al. [5] proposed to
identify a variety of modulation modes based on the high-
order cumulants feature of the signal, which can suppress
Gaussian white noise well. Bing [6] adopted the idea of a
combination of wavelet and RBF neural network to recog-
nize 4 kinds of digital signals and the experimental results
realized high accuracy for each modulation method. Another
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recognition method based on instantaneous statistical char-
acteristics of modulated signals and the SVM classifier can
distinguish 8 traditional types of modulation [7]. Although
the FB solution has low complexity and easy to implement,
it is less effective with the increase of the modulation types.
Therefore, the researchers have made great efforts to seek
a robust and useful method to improve the performance of
classification.

The Deep Learning (DL) method has developed rapidly in
recent years because of the superior capability of big data
processing and classification, which has certain applications
in the field of communication [8], including modulation
recognition. DL can combine with the initial simple features
to discover more complex features automatically through
multiple nonlinear transformations. Research in [9] presented
themethod based on the combination of FBmethod andDNN
and brought dramatic performance improvement for Doppler
fading channels. In [10] and [11], a variety of modulated
signals were converted into constellation forms or waveforms
and used as the input of the CNN classifier without further
features extraction procedure, which also obtained good clas-
sification results. The authors in [12] studied feature learning
and automatic modulation classification (AMC) under dif-
ferent DL models and concluded that the DNN model with
double hidden layers performs best and has 3.2% promotion
compared with other algorithms. However, the problem of
low recognition rate of the above methods at low SNR has not
been effectively solved and the parameters of the DL model
require to be determined artificially to find the optimal result.
In view of this, integrating feature fusion with model opti-
mization can provide a new idea for modulation recognition.

In this research, we propose a novel method in the
scenario of multiple modulation signal recognition in wire-
less communications, which applied the technique of sig-
nal preprocessing and the improved DNN model. Our
method can identify 6 kinds of modulated signals which
include Phase Shift Keying (BPSK, QPSK, 8PSK) and
higher-level Quadrature Amplitude Modulation (16QAM,
64QAM, 256QAM). In our proposed scheme, various fea-
tures extracted from the modulation signals are learned
through the training of DNN so that the modulation modes
can be classified more accurately. Moreover, PSO algorithm
is utilized to correct the defects in the DNN structure effec-
tively. The main contributions of this paper are summarized
in three parts as follows.
• We introduce a novel PSO optimization scheme to
improve the structure of DNN to obtain the global opti-
mal number of hidden layer nodes, thus obtaining the
optimal accuracy under the condition of low SNR in
a modulation recognition system. To the best of our
knowledge, this is the first attempt to apply PSO-DNN
algorithm to the field of digital modulation recognition,
which is a crucial application either in civil or military
fields.

• The performance of the proposed method is evalu-
ated in this paper. Simulation results demonstrate that

the recognition rate versus different SNR is greatly
improved by our scheme compared with the other two
conventional recognition methods. In addition, we con-
duct comparative simulations that utilize another opti-
mization method to optimize DNN. Simulations also
prove that our proposed method has a faster convergence
speed. Therefore we confirm that the PSO-DNN recog-
nition algorithm is robust and effective.

• We conduct the detailed and extensive experiments and
comparative analyses that contain the overall recogni-
tion rate comparison and the verification of the effect
of particle number on recognition rate. The parameters
that provide the best performance are then used in the
proposed design.

The rest of this article is arranged as follows: Section II
outlines the preprocessing step including the digital mod-
ulation and the features engineering used in our system.
In Section III the principles of optimizing DNN by using
PSO is to be submitted. After that, the proposed PSO-DNN,
the conventional DNN and the SVM method are tested ver-
sus SNR in Section IV, followed by simulation results and
comparative analyses. Finally, the conclusion is given in
Section V.

II. DATA PREPROCESSING
The basic content and processing of various digital modulated
signals are firstly researched in this paper, which is depicted
in Fig. 1. This framework mainly consists of two parts which
are digital signal modulation and features engineering com-
ponent, and the overall framework is described in detail
below.

In the first part, our selection of the digital modula-
tion schemes for recognition in this paper is based on the
existing communication technologies. The OFDM systems
and the wireless LAN standard use a variety of different
PSKs depending on the data rate required [12]. In order
to achieve higher spectrum utilization, the communication
systems employ high denseMQAMconstellationswhich pro-
vide better transmission performance. Thus, we choose the
following schemes to modulate the raw data: BPSK, QPSK,
8PSK, 16QAM, 64QAM, and 256QAM.

The second part is crucial because the extracted features
can provide more accurate signal information for DNN to
improve the recognition accuracy of various modulation
modes. Each modulated signal sample with added noise first
undergoes dimensionality reduction, which is the process of
12 features extraction, to decrease the time cost and maintain
the same length of each sample. Then we need to normalize
the eigenvectors according to the input criterion of DNN.
After the above preprocessing, the data will be sorted on the
basis of different recognition labels.

A. DIGITAL MODULATION MODEL
The receiver always receives the signal polluted by noise in
practice, so the expression of the complex baseband signal is
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FIGURE 1. The framework of data preprocessing.

FIGURE 2. The constellation diagram of different modulations at SNR = 10dB. (a) BPSK, (b) QPSK, (c) 8PSK, (d) 16QAM, (e) 64QAM, and
(f) 256QAM.

as follows:

s(t) = x(t)+ n(t)

=

∑
n

an
√
Ep(t − nTs)ej(2π fct+θc) + n(t) (1)

where s(t) is the received modulated signal, x(t) depends
on the modulation mode, E maps the energy of the sig-
nal and p(t) is the finite energy signal with a Ts duration,
n = 1, 2 . . . ,N, N represents the length of the transmitted
binary symbol sequence, the carrier frequency and phase are
defined as fc and θc respectively, n(t) equals the AWGN
with zero means, which is independent of x(t). Meanwhile,

the SNR is written as

SNR = 10log10
S2

N 2 (2)

where S and N are corresponding to the effective power of
signal and noise. The constellation diagram of the 6 mod-
ulated signals is interfered by AWGN at SNR = 10dB as
denoted in Fig. 2. In order to make a fair comparison with
traditional methods, we assume that the timing error has
been recovered at the receiver. According to the principle
of digital signal modulation and the mapping relationship of
the constellation diagram, the two symbol sequence an in the
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FIGURE 3. Features extraction based recognition framework.

above formula can be expressed as follows:

aMPSK = e
j2π (n−1)

N (3)

aMQAM = In + jQn =
√
I2n + Q2

n ∗ e
jϕn (4)

where aMPSK and aMQAM are PSK and QAM modulated
symbol sequence respectively, In and Qn map the value of
in-phase component and quadrature component respectively,
ϕn is the phase of the complex data in the polar coordinate
system, i.e. arctan(Qn/In).

B. FEATURE ENGINEERING
Feature engineering is the process of extracting, combining
andmanipulating features by using a number of expert knowl-
edge to obtain representative information of the signals in the
field of communication [13]. The FB recognition framework
is comprised of two subsystems which are features extraction
and recognition system, as shown in Fig. 3.

For simple computations, the distinct features are exhibit-
ing as sufficient separation of each modulation class at dif-
ferent SNR as possible on the one hand, and as better noise
suppression as possible on the other hand. The high-order
cumulant features greater than the second-order remains zero
for any zero-mean Gaussian stochastic process, thus utilizing
these features to reduce the influence of noise on the signal
and dimensionality of the data. Furthermore, among many
features available, we append four signal characteristics to the
basis of high-order cumulant values. These four features suf-
ficiently exhibit good separation of each modulation method
and successfully train the DNN structure to achieve higher
recognition accuracy versus different SNR.

The first feature is the ratio of in-phase component and
quadrature component signal power [9]

β =

∑
m a

2
Q(m)∑

m a
2
I (m)

(5)

where aI (m) and aQ(m) are the in-phase and quadrature com-
ponent for the complex baseband signal. The second feature
is the standard deviation of the absolute value of normalized

signal amplitude in (6), as shown at the bottom of this page,
where a(m) is the complex point formed after the signal is
modulated, i.e. aI (m) + jaQ(m), and M is the number of
sampling points for av(m). The main value of the signal
magnitude χ is defined as

χ =
1
M

∑M

m=1
|a(m)| (7)

Similarly, the normalized square root value of amplitude
summation of signal χ2 can be written as

χ2 =
1
M

√∑M

m=1
|a(m)| (8)

The next feature is hybrid order moments v20, which can be
expressed as

v20 =
M4,2(y)

M2
2,1(y)

=
E[|a(n)|4]

E[|a(n)|2]
(9)

where Mp+q,p(y) denotes E[a(m)pa(m)∗q], a(m) and a(m)∗

are mutually conjugated. The remaining features are the high-
order cumulants of the modulated signal with the equations
below:

C20=Cum (a(m), a(m))=E[a(m)2] (10)

C21=Cum
(
a(m), a(m)∗

)
=E[|a(m)|2] (11)

C40=Cum (a(n), a(n), a(n), a(n))=M40−3M20
2

(12)

C41=Cum
(
a(m), a(m), a(m), a(m)∗

)
=M41−3M20M21

(13)

C42=M42−|M20|
2
−2M21

2 (14)

C63=M63+18M20
2M21−6M20M40−9M42M21+12M21

3

(15)

C80=M80−35M40
2
−28M60M20+420M40−630M20

4

(16)

Normalization transforms the eigenvalues of data samples
into the same dimension, which maps the data between
0 and 1. Meanwhile, normalizing the data can make
the weight of each feature dimension consistent with the
objective function and improve the convergence speed of the
iterative solution. Therefore, the maximum and minimum
normalization method is applied to scale the features vector
equally and can be calculated by:

Xnorm =
X − Xmin

Xmax − Xmin
(17)

σv =

√
1
M

∑M

m=1
a2v(m)−

1
M

(
∑M

m=1
|av(m)|)2

=

√√√√ 1
M

∑M

m=1
(

√
a(m)

var(a(m))
− 1)2 −

1
M

(
∑M

m=1
|

√
a(m)

var(a(m))
− 1|)2 (6)
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where Xnorm is the normalized data, X maps the original
feature value, Xmax and Xmin are the maximum and mini-
mum values of each feature vector, respectively. It is also
worthwhile to mention here that these characteristics possess
good drop resistance performance, so this technique can be
applied to the case of channel fading and noise interference in
practice.

III. PROPOSED PSO-DNN MODEL FOR
MODULATION RECOGNITION
Inspired by using PSO to optimize the parameters of DL
model [14] and improve the performance of CNN [15],
this section presents a deep neural network based on PSO
for modulation recognition application in future wireless
communications, which are expected to handle the existing
problems of DNN and low recognition rate in the increas-
ingly complex channel environments with dynamic changes.
At first, we briefly introduce the basic content of the PSO
algorithm. Then the training progress of DNN is described.
The last part presents the specified steps of our proposed
method, which is the most important part of the whole
article.

A. ALGORITHM OF PARTICLE
SWARM OPTIMIZATION
The PSO algorithm, also known as the flock foraging
algorithm, is an evolutionary method developed by
J. Kennedy and R. C. Eberhart [16]. It first generates a
random solution and then finds the optimal solution with
the best fitness value iteratively. This kind of algorithm
has been widely applied to the Back Propagation (BP)
neural network because of the advantages of easy imple-
mentation, high precision and fast convergence. Moreover,
it has demonstrated superiority in solving practical prob-
lems [17], [18] and been initially applied in the field of
DL [14], [15], [19].

The basic form of the PSO algorithm consists of a group
of particles which communicate with each other to reach the
best place repeatedly. To optimize the problem, the method
updates the position, velocity and fitness value of each parti-
cle that are determined by mathematical equations. Particles’
position represents the candidate solution to the problem
sought and is recorded as the individual best solution pibest .
The changing of position is influenced by its individual best
fitness value pfit , which is the smallest reached value in
previous iterations, and guided toward global best position
gbest corresponding to the global fitness value gfit among all
results in the entire space.

The PSO algorithm can be expressed as the following
equations:

Vi [k + 1] = wVi [k]+ c1rand1 (pibest − Pi (k))

+ c2rand2 (gbest − Pi (k)) (18)

Pi (k + 1) = Pi (k)+ Vi [k + 1] (19)

where w is the inertia weight that helps the particles move
through the interior to a better position, ci represent the con-
stants and rand i are the uniform random value, the position
vector and velocity vector of the i-th particle are Pi(k) and
Vi(k) respectively at the k-th iteration and the Pi(k) is updated
by Vi(k + 1).

B. DEEP NEURAL NETWORK MODEL
DL is the foundation of many modern Artificial Intelli-
gence (AI) applications, which consists of multiple hidden
layers and neural nodes. At present, it has been wildly
utilized in image recognition [20]–[22], voice processing
[23], [24], etc., and some progress in communication has been
achieved [25]–[27].

Modulation recognition of digital signals has gradually
changed from the traditional method to DNN method with
the rapid development of DL. This new method can also be
regarded as a learning concept from ‘‘learning the system
model’’ to ‘‘learning the signal features’’. In fact, the process
of treating DNN as a classifier can be seen as a combination
of signal features and Machine Learning (ML). The input of
DNN, also named as the training example, is a multidimen-
sional data vector presented in the visible layer. Then each
hidden layers perform a series of non-linear transformations
that can be defined as follows:

Y = sig(W ∗ A+ b) (20)

where A is the input of each neural node, W and b equal
the encoding weight matrices and bias vector respectively,
sig is denoted as sigmoid activation function, i.e. 1/(1+e−x).
We have adopted the Stochastic Gradient Descent (SGD)
method for training the hidden layers and used Mean Square
Error (MSE) function to calculate the output error that is
given as follows:

Eout =
1
N

∑N

i=1

∑J

j=1
(A′ji − Aji)

2
+ λ ∗�weight (21)

where A′ji is the actual output after a series of operations, λ
maps the coefficient for the L2 regularization and �weight is
applied to the weights of the cost function and can be written
as:

�weight =
1
2

∑L

k

∑Z

j

∑M

i
(W (k)

ji )
2

(22)

where L and M are the number of hidden layers and the
number of input variables respectively. After training the
DNN model, the test data will be fed into this model for
prediction and converted to the recognition accuracy at the
output.

Nevertheless, the DNNmodel is a black box that cannot be
observed how it works and the characteristics it learns cannot
be observed neither, which leads to a series of problems.
Therefore, we use PSO algorithm as the solution to the prob-
lem that the DNN is easy to fall into the local minimum value
and the number of hidden layer nodes is not fixed, thereby
improving the accuracy of modulation recognition.
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FIGURE 4. The proposed PSO-DNN model.

C. MODULATION RECOGNITION BASED ON PSO-DNN
After training the DNN, the modulation recognition is exe-
cuted by using a combination of PSO algorithm and DNN
architecture in our proposed method, as shown in Fig. 4.
The normalized feature vector is utilized as the input of the
network model. Then, the number of double hidden layer
nodes of the DNN is automatically tuned by using the global
optimization capability of the PSO algorithm to obtain the
optimal number of nodes and to improve recognition accu-
racy, based on observing the MSE achieved. In order to
have a better observation of the recognition results, we add
Softmax function to normalize the output layer to get the final
recognition rate ŷ of each output node that can be expressed
as:

ŷi = P(y = i|out) =
eout

i∑6
i=1 e

out i
(23)

where ŷ = [ŷ1, ŷ2, ŷ3, ŷ4, ŷ5, ŷ6]
T
, which equal BPSK,

QPSK, 8PSK, 16QAM, 64QAM and 256QAM respectively,
out i represents the i-th element of the output vector out .
Finally, the modulation modes are classified, which are cor-
responding to the maximum ŷ, based on the distinction of
features by using the PSO-DNN algorithm.

Here, we generate α sets of data, which are the number
of particles in a swarm. The individual best fitness value
pfit and global best fitness value gfit represent the minimum
recognition error corresponding to the optimal number of
nodes in i.th group and the whole group, respectively. Sim-
ilarly, the individual best value pibest and global best value
gbest represent the optimal number of nodes in i.th group and
the whole group, respectively. The algorithm is organized as
follows:
Step 1: Randomly initialize the α group of double hidden

layer nodes and put them into P whose size is α × 2, and
initialize fine-tuning parameter V . Using P to train the DNN
and calculate the initial fitness value of each particle pfit (i).
Select gfit and gbest from P.

Step 2: Adjust P by using the fine-tuning parameter V with
the following equations

Vi = wVi−1 + c1rand1 (pibest − Pi−1)

+ c2rand2 (gbest − Pi−1) (24)

Pi = Pi−1 + Vi (25)

Step 3: Calculate new pfit (i) by training DNN with the
updated P.
Step 4: Compare the value of new pfit (i) and the previous

step’s, and assign the new pfit (i) to pibest if the value is
smaller. Meanwhile, if the value of new pfit (i) is smaller
than gfit , update gfit and gbestwith the new pfit (i) and pibest ,
respectively.
Step 5: Determine whether gfit is less than an intended

error, if it is, the iteration is stopped, otherwise return to the
second step until the condition is satisfied or the iteration is
terminated.
Step 6: Return the minimum error gfit and the optimal

neural nodes gbest .
The specific optimization process can be described by

Algorithm 1.

Algorithm 1 PSO Process for Optimizing DNN
Required: Number of particle in a swarm α, Cognitive coef-
ficients c, Inertia weight w
Required: Initial velocity V , Initial the nodes of double
hidden layers P
Required: Initial individual best fitness value pfit , Individual
best value pibest
Required: Initial global best fitness value gfit calculated by
DNN, Global best value gbest
While gfit > 0 do
For each i = 1: α do
Calculate update: Vi← wVi−1 + c1rand1(pibest − Pi−1)

+c2rand2 (gbest − Pi−1)
Calculate update: Pi← Pi−1 + Vi
Calculate pfit (i) through DNN using Pi
If pfit (i) < pfit (i− 1) do
Update global best value: pibest ← Pi
Ifpfit (i) < gfit do
Update global best fitness value: gfit ← pfit (i)
Update global best value: gbest ← pibest
End if
End if
End for
End while
Return gfit , gbest

IV. SIMULATION AND RESULTS ANALYSIS
A. DATA DESCRIPTION
To verify the significance and effectiveness of the proposed
PSO-DNN structure, the simulations with MATLAB are
performed in this section. Specifically, for all experiments
performed in this paper, the feature vectors are marked
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TABLE 1. Parameters of proposed PSO-DNN recognition model.

by six labels that correspond to the following modulation
modes: BPSK-1, QPSK-2, 8PSK-3, 16QAM-4, 64QAM-5,
and 256QAM-6. In order tomodel the actual output in various
channel conditions reasonably, the SNR is set to vary from
0dB to 12dB at 1dB steps. Combine the extracted 12 signal
features into a column vector and make each modulation gen-
erate 4 thousand samples, noting that a total of 12000 feature
vectors are used as the training set. After training, the per-
formance of 3 methods is tested with other 6000 test feature
vectors. The output of the Softmax function is regarded as a
binary sequence with one-hot state, thereby the modulation
format can be determined according to the non-zero position
ŷ ∈ R6. Other parameters of our proposed method are shown
in Table I.

B. PERFORMANCE MATRIC
In order to better characterize the prediction accuracy of PSO-
DNN model, it is significant to measure the matching degree
of the true response values of the data the models observed.
Thus, the probability of success recognition (PSR) is used
to quantify the performance of the modulation recognition
based on the output of the classifier. PSR can be calculated
by the following formula:

PSR =
success recognition samples

all samples
× 100% (26)

C. RECOGNITION PERFORMANCE
In this section, we performed a series of simulations to iden-
tify the practicability of the proposed method and the effec-
tiveness of the optimization algorithm. In the first experiment,
we compare the proposed PSO-DNNmodel with two existing
methods, the conventional DNN approach [9] and the SVM
approach [28], to evaluate its recognition performance of dig-
ital signals. These three modulation recognition techniques
are applied to identify 6 modulations and the overall PSR can
be seen in Fig. 5.

According to Fig. 5, the overall recognition accuracy of
these recognition algorithms is significantly improved with
the increase of SNR. This can be explained by the fact that
the higher the signal-to-noise ratio is, the closer the signal is
to its original appearance, and the extracted features make
a contribution to separate different modulation methods.

FIGURE 5. Performance result for 3 recognition schemes versus different
SNR.

Adramatic phenomenon can be seen from the graph is that the
PSR of SVM method is higher than the DNN method when
SNR equals 0dB. For some applications, using a simpler
SVM works well while using DNN only complicates things.
Thus PSO is applied to optimize the performance of DNN
and we can discover a significant improvement that the PSR
is apparently higher than using other algorithms under the
condition of low SNR. In addition, it is evident that the
proposed method achieves the accuracy above 95%, which
is 8% and 8.8% higher than the DNN algorithm and the SVM
algorithm respectively (SNR ≥ 1dB). Therefore, the result
implies that our scheme is able to identify these 6 modulation
techniques effectively by searching for the optimal number of
hidden layer nodes automatically, which also illustrates the
effectiveness of our proposed PSO-DNN method in AWGN
environment.

In order to understand the result better, Fig. 6 exhibits
the detailed confusion matrices of six modulation classes
calculated by the proposed method for the case of 1dB and
6dB SNR, respectively. It can be seen from Fig. 6(a) that
the recognition accuracy in identifying 64QAM is relatively
low compared with the rest which are above 90%, and it is
easily recognized as 16QAM. The reason is that 16QAM
is a subset of 64QAM making it hard to distinguish them.
Besides, we can also observe from Fig. 6(a) that the accu-
racy of 16QAM and 64QAM is slightly lower than that
of others. This can be attributed to the fact that the fea-
tures extraction curves generated for 16QAM and 64QAM
share high similarity after channel distortions, which makes
the received samples indiscernible between two modula-
tions. Specifically, the accuracy of BPSK and QPSK are
both 100%. With a 5dB increase of SNR, the recogni-
tion rate of each modulation of the proposed technique
in Fig. 6(b) has been greatly improved and all achieved
above 95%.

We conducted comparative simulations with the other opti-
mization algorithm GA in the second experiment to further
prove the effectiveness of our proposed method. Both meth-
ods are used to optimize the DNN for digital modulation
recognition and the PSR curves are shown in Fig. 7.
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FIGURE 6. Confusion matrices for the modulation recognition data.
(a) SNR = 1dB and (b) SNR = 6dB.

FIGURE 7. PSR result of 2 optimization schemes versus different SNR.

From Fig. 7 we can observe that the PSR curves of the two
recognition schemes are similar. The accuracy of PSO-DNN
algorithm is slightly higher than that of GA-DNN algorithm
at low SNR, and both of them can achieve 100% accuracy
at high SNR. The reason is that both algorithms select the
optimal value based on the fitness of the individual popu-
lation and both belong to the global optimization method,
thereby reducing the possibility that the DNN is trapped
in local minimum. Nevertheless, PSO algorithm does not
require crossover and mutation operations like GA, and it
has memory, which makes it simpler to use and can achieve

FIGURE 8. The training convergence performance of 2 optimization
schemes.

FIGURE 9. The PSR versus different α. (a) BPSK, (b) QPSK, (c) 8PSK,
(d) 16QAM, (e) 64QAM, and (f) 256QAM.

better results most of the time. Another advantage of PSO
is that it has a faster convergence speed compared to GA,
the simulation result is shown in Fig. 8.

In Fig. 8, the DNN is trained by using PSO algorithm
and GA respectively. The training performance intuitively
demonstrates the superior capability of PSO, which meet
the requirements of the objective function only by iterating
200 steps while the training performance of GA-DNN stops
at epoch 300. In the GA, the chromosomes share information
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with each other, so the movement of the entire population
moves more evenly toward the optimal region. The particles
in the PSO share information only through the current search
to the best position, which belongs to a single information
sharing mechanism. Therefore, particles may converge to
the optimal position faster than the evolutionary individuals
in GA in most cases. Here comes to the conclusion that
our approach performs better than the existing methods or
optimization algorithm and demonstrates the suitability for
other DL applications.

D. ANALYZING THE IMPACT OF THE PARTICLE NUMBER
IN A PARTICLE SWARM
The above simulation results demonstrate that the DNN
model with PSO optimization has the best performance com-
pared with conventional methods. Furthermore, we executed
another experiment to measure the effect of the number of
particle α in a particle swarm on recognition accuracy in the
PSO-DNN algorithm. Let α be 10, 20, 30, and 50, the step
size of the SNR is changed from 1dB to 2dB and the other
parameters remain the same. The PSR curve corresponding
to the six modulations under different α is presented in Fig. 9.
Intuitively, these six figures jointly illustrate that the more

the number of particles is, the higher the accuracy of recogni-
tion under different SNR will be. This can be attributed to the
fact that as the number of particles increases, fine-tuning the
particles can traverse more possible options, thereby increas-
ing the accuracy accordingly. Another observation drawn
from the figure is that the PSR curve with 30 particles almost
coincides as it is with 50 particles (such as Fig. 9 (d)).
Although making use of 50 particles achieves relatively high
precision, the calculation is very time-consuming. Therefore,
the number of particles in one particle swarm can neither be
too little nor too much. For the algorithm proposed in this
paper, we think it is reasonable to set the number of particle
to 30 which is the same as the number utilized in the above
experiments.

V. CONCLUSION
In this paper, we first propose particle swarm optimized deep
neural network model to recognize digital modulation modes.
The approach can identify 6 kinds of digital signals includ-
ing BPSK, QPSK, 8PSK, 16QAM, 64QAM, and 256QAM
from the disturbed environment. In our method, modulated
signals are first preprocessed as the input to the neural net-
work. Subsequently, PSO algorithm is applied to optimize the
structure of DNN. Finally, we utilize the proposed method
and traditional method to perform modulation recognition.
Although time complexity is high in the case of large training
datasets or particle quantity, the method presented in this
paper achieves higher recognition accuracy with 8.8% and
9.4% promotion comparing with traditional DNN method
and SVM method respectively under the condition of low
SNR. In addition, it also solves the problem of setting the
number of hidden layer nodes artificially and demonstrates
the best performance of the proposed model. Experimental

results further verify the reliability of the proposed algorithm,
which provides a simpler and more effective novel method
for signal modulation recognition in the field of wireless
communication. Nevertheless, our method is implemented
based on the existing modes, and future work will concentrate
on applying this technique to the unknownmodulated signals.
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