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ABSTRACT In order to realize the recognition of coal gangue in the top coal caving process, a scheme
of the coal gangue recognition based on the collision vibration signal between coal gangue and the metal
plate is proposed in this paper, a systematic and standardized impacting test between coal gangue particles
and the metal plate is designed for the first time, the vibration signal standardized processing method by the
signal intercepting and the coal gangue impact vibration signal recognition algorithm by stacking integration
are innovatively proposed. First, a single particle impact on the metal plate test-bed was designed and
constructed. Then 1,000 groups coal and 1,000 groups gangue impact on the metal plate tests were carried out
respectively, and the vibration acceleration signals of the metal plate were collected. After that, through the
signal intercepting, calculating the time-domain characteristics and HHT processing of the vibration signal,
10 time-frequency characteristics, such as the variance of the intercepted signal and the Hilbert marginal
spectrum energy value, are determined to form the feature vector. Finally, based on the two different type
of the signal samples, the intercepted signal feature vector, and the original intercepted signal, coal gangue
recognition by the seven machine learning algorithms, including the decision tree (DT), random forest (RF),
XGBoost, long short-term memory (LSTM), support vector machine (SVM), factorization machine (FM),
and stacking integration is carried out respectively, and the basis for selecting recognition schemes is
discussed. The results show that the coal gangue recognition rate with the same recognition algorithm by
using the intercepted signal samples is higher than that of the feature vector samples, the Staking integration
algorithm based on the same sample has the highest recognition rate, and the Staking integration algorithm
based on the feature vector has the most significant comprehensive advantage in top coal caving process.

INDEX TERMS Coal gangue recognition, EMD, impact, intercepted signal, stacking integration algorithm,
vibration signal.

I. INTRODUCTION

Coal which has dual attributes of energy and resources is the
main energy source in China [1]-[3]. Among them, thick
coal seams account for a large proportion of proven coal
reserves and production in China. As shown in Figure 1,
comprehensive mechanized caving mining technology
[4]-[10] has been widely used in the mining of thick and
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extra-thick coal seams in China with its characteristics of high
production, high efficiency, low energy consumption and
low investment. However, in the actual production process,
there is large manpower investment, and the working face
environment is extremely bad. Also artificial judgment of
the degree of top coal caving will inevitably lead to the
situation of Under-caving and Over-caving, thus resulting
in the reduction of coal recovery rate or transportation cost
increase and coal quality decline and other problems. The
realization of unmanned automation technology for fully
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FIGURE 1. Top coal caving.

mechanized top coal mining can release manpower, improve
production safety and efficiency, and reduce coal mining cost.
In order to realize the unmanned automation of the fully
mechanized caving, the “‘bottleneck’ problem of coal gangue
recognition in top coal caving [11], [12] must be solved first.

At present, methods of coal gangue identification
(or sorting) mainly include image recognition, cutting force
recognition, laser scanning separation, vibration recognition
and voice recognition. Liu et al. established the coal gangue
automatically sorts supervisory system by adopting technol-
ogy of image processing and pattern recognition to identify
and sort gangue [13]. Sun and She [14], [16] carried out
the coal rock image decomposition, feature extraction and
recognition by Daubechies wavelet and identify coal and
gangue base on SVM and image texture features. Hou et al.
established a coal gangue automation selection system based
on the difference of coal gangue surface texture features and
gray features, and combined image feature extraction with
artificial neural network for coal gangue identification, so as
to realize automatic coal and gangue separation [17]. Wang
and Zhang [18] proposed a three-dimensional laser scanning
separation method for coal gangue based on density, the
mathematical model for coal gangue recognition was estab-
lished, and an algorithm for the recognition threshold and
recognition rate was proposed. He presented a new method
based on sparse representation for coal and gangue signal
recognition [19]. Based on the fractal model of impact crush-
ing probability, Liu et al. carried out impact crushing experi-
ments on gangue particles in three mines, and compared the
results with those of impact crushing experiments of coal par-
ticles in the same mines, which provided favorable conditions
for the separation of coal and gangue by impact crushing [20].
Zhou et al. proved that the crushing probability of coal and
gangue increases with the increase of impact velocity through
the impact crushing test of coal gangue, but the crushing
probability of the gangue in the same condition is far less
than that of coal, which provides a research foundation for
coal gangue recognition based on impact [21]. Liu Wei et al.
proposed a new coal gangue interface recognition method
based on vibration signal analysis, which extracted vibration
characteristics based on Hilbert spectral information entropy,
and analyzed coal gangue vibration signals based on Hilbert-
Huang transform [22]-[24]. Xue et al. extract the vibration
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signals of the tail beam of the hydraulic support under differ-
ent conditions of caving coal, caving gangue and caving roof
with a portable vibration data recorder developed by them-
selves, and put forward the coal-rock recognition method
based on the energy analysis to wavelet packet frequency
bands [25]. Hobson et al. established a set of coal gangue
separation process based on image processing and analysis,
and found that texture is more suitable for the application
of coal gangue separation [26]. Mu et al. put forward a
coal gangue detection method based on the cooperation of
FPGA and DSP [27]. Xu et al. proposed a coal-rock interface
recognition method based on Mel-Frequencyepstrum coeffi-
cients and neural network, separate acoustic signals by using
Independent Component Analysis (ICA), and used the BP
neural network to recognize coal-rock interface after extract-
ing MFCC features [28]. Wang ef al. combined the improved
particle swarm optimization algorithm with the wavelet neu-
ral network to identify the change of cutting load of the
shearer, which provide a scheme for the cutting state identifi-
cation [29]. Si et al. proposed an intelligent multi-sensor data
fusion recognition method based on parallel quasi-Newton
neural network (PQN-NN) and Dempster-shafer (DS) theory
to recognize the cutting state of shearers [30]. Wang et al.
carried out the study on the vibration state of tail beam and
the identification of coal gangue interface in top coal caving
process based on time series analysis, Hilbert marginal spec-
trum distribution characteristics, EMD and neural network
[31]-[33]. Hua et al. took the vibration signal of tail beam
as the research object and proposed a method for interface
recognition of fully-mechanized caving face based on dimen-
sionless parameters and SVM [34]. Zhang et al. analyzed
the vibration acoustic signal of coal and gangue by Hilbert-
Huang transform, and obtained the frequency and amplitude
characteristics of the acoustic signal under the conditions of
top coal falling and coal gangue mixture [35]. Li proposed
an effective edge detection algorithm to extract edges from
coal gangue noise images, which improved the recognition
rate of gangue [36]. Song er al. designed an automatic
control system for caving process in top coal caving mining,
proposed a new multi-class feature selection approach based
on vibration and acoustic signal, and an effective minimum
enclosing ball (MEB) algorithm plus SVM is proposed for
rapid detection of coal-rock in the caving process [37]-[39].
Based on image analysis and Relief-SVM Dou et al. iden-
tified coal and gangue under four different working condi-
tions [40]. Li et al. studied the recognition of coal and gangue
through the image processing [41]. Based on extensions of the
co-occurrence matrix method and Multispectral and Joint
Color-Texture Features, Tripathy et al. identified the associ-
ated gangue minerals from limestone and coal mines using
three different approaches [42]. Zhang et al. proposed to
detect the instantaneous refuse content of drawn coal and
gangue mixture during top coal caving by using natural
gamma-ray technology, and conduct experiments to identify
the mixed condition of roof-rock by using the self-developed
coal-gangue recognition experimental system [43]. Based on
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partial gray compression and extended-order co-occurrence
matrix, Yu et al. proposed an image recognition approach
for coal and gangue [44]. The above research provides a
foundation and reference for coal rock recognition in top
coal caving. However, due to the complex working condi-
tions underground, more dust, noise, different distribution
of coal seams, and the existence of particle disturbance
and other conditions, there is still a big gap between the
various methods and the actual application of the coal gangue
identification in the top coal caving, and the identification
approach is not perfect.

According to the previous research achievements on the
spherical contact and the spherical plate contact [45]-[60],
and after the collision and slippage behavior analyze between
the coal gangue and the metal plate of the hydraulic support
in the process of top coal caving, we have studied the sys-
tematic dynamic and contact response for the rock sphere
elastic impact on the metal plate and for the coal gangue-
like elastic spherical particle impact on the elastic half-space
[61], [62], and preliminarily proved the exist of the difference
between the contact responses and the vibration signals when
coal gangue impact on the metal plate respectively, which
explains the identifiability of coal and gangue. Based on
the above research, and in order to finally break through
the problem of the coal gangue surface identification in the
top coal mining, we innovatively put forward to disassemble
the complex coal gangue recognition problem in top-coal
caving, adopt the approach of breaking up the whole into parts
and research from point to face, and took the single particle
coal gangue recognition as a breakthrough point, through
constructing the vibration testbed of single particle impacting
metal plate and conducting large sample single particle coal
gangue impact test, combined with signal acquisition, signal
interception, Hilbert-Huang transform and other processing
methods, as well as machine learning and deep learning and
other classification methods, the identification of the single
particle coal gangue based on the impact vibration signal of
metal plate is completed finally, and the recognition scheme
is discussed considering the different recognition sample data
and the specific application requirements.

The remainder of the paper is organized as follows:
Section 2 designs and introduces the single particle coal
gangue impact testing system and the experimental scheme.
Section 3 introduces the standardized processing method of
the signal intercepted. Section 4 extracts the signal traditional
time domain characteristics and time-frequency characteris-
tics and determines the 10 recognition features. Section 5 con-
ducts the recognition of single coal gangue based on the
recognition Eigenvector. Section 6 conducts the recognition
of single coal gangue based on the original intercepted sig-
nal, and discusses the selection basis of recognition scheme.
Section 7 shows some related work and our conclusions.

Il. EXPERIMENT DESIGN
Collision contact and relative sliding friction between the coal
gangue and the tail beam cause the vibration response of
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the tail beam. However, in the process of top coal caving,
underground condition is complicated and the number of
coal gangue particles is large, there are complex particle
interaction and collision behaviors between coal gangue and
the metal plate of the tail beam and shield beam. This greatly
increases the difficulty of the research on the recognition
technology of coal gangue under the cover of all factors,
which leads to the inability to clearly understand the essential
causes of signal generation and the real propagation law under
various field conditions. It seriously restricts the theoretical
development of coal gangue recognition based on data anal-
ysis and the practical application of coal gangue recognition
technology in top coal caving mining. Therefore, this paper
adopts the research method of breaking up the whole into
parts, only based on the study of single particle coal gangue
direct impact on the metal plate, and carries out the research
on the identification technology of coal and gangue based on
single particle coal gangue direct impact on the metal plate
through single particle impact vibration test in the laboratory
and impact vibration response analysis. The design and test
scheme of the single particle impact test system is described
as follows:

A. DESIGN OF THE IMPACT TEST SYSTEM

In this paper, single particle coal gangue impact on the metal
plate is taken as the direct research object. Single particle
impact test system mainly realizes the functions of vertical
impact between coal gangue and the metal plate, the extrac-
tion of vibration signal as well as the subsequent signal pro-
cessing. According to this, single particle impact test system
is constituted by the impact object (coal gangue), impact test-
bed, signal acquisition system and signal analysis system four
parts, as is shown in Figure 2.

Coal and Gaugue Shock Table

Signal analysis ~ Signal acquisition
system system

FIGURE 2. Single particle impact test system.

Among them, the impact test-bed is responsible for dis-
charging coal gangue and completing particle impact on
metal plate test. The structure of the impact experiment table
is shown in Figure 3.

As is shown in the figure, the impact test-bed is mainly
composed of supporting portal frame 1 (European standard
8080Q aluminum alloy profile), cylindrical guide rail 2, steel
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FIGURE 3. Single particle impact test-bed.

wire rope 3, winch 4, lifting pulley 5, moving coal dropping
device 6, shock table 7 and T-shaped platform 8. Supporting
portal frame is fixed on the T-shaped platform to support the
cylindrical guide rail and the moving coal dropping device,
and the cylindrical guide rail is installed on the inner side
of the supporting portal frame. The shock table is composed
of the screw rod, the fixing nut and a metal plate, which is
fixed on the T-shaped platform through the T-shaped slider
and the screw rod, and the metal plate is fixed on the screw
rod through the fixing nut on the upper and lower sides. The
moving coal dropping device is composed of lifting cross
rod 9, blanking port 10, valve 11, electromagnetic lock 12,
electromagnetic lock controller 13, moving frame 14 and
slider 15. The lifting cross rod is fixed on the upper end of
the blanking port and connected with the steel wire rope,
two rotational valves installed on the bottom of the blanking
port, the blanking port and electromagnetic locks as well as
the electromagnetic lock controller are fixed in the moving
frame. Two rotational valves can be opened and closed under
the action of electromagnetic locks and the electromagnetic
lock controller. The moving frame is fixedly connected with
the slider so as to realize the integral sliding connection of the
moving coal dropping device on the cylindrical guide rails
on both sides, and then the moving coal falling device can
vertical lifting go up and down along the cylindrical guide rail
under the action of the comprehensive action of the winch,
the lifting pulley and the steel wire rope. The center point of
the metal plate of the shock table and the center point of the
moving coal dropping device are located on the same vertical
line.

The main function of the signal acquisition system is to
realize the acquisition and storage of the original test data.
It mainly includes signal detection device sensor and acqui-
sition device. This paper mainly studies the vibration signal
of metal plate after it is impacted by single particle coal
and gangue, so the test data to be collected is the vibra-
tion signal of metal plate. In order to accurately obtain the
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FIGURE 4. Sensor 1A102E.

vibration signal of the metal plate, the general piezoelectric
acceleration sensor 1A102E of DongHua testing company
was selected. The sensor is shown in Figure 4. It has a wide
measuring range, a small strain on the base, a shear design and
a minimum output impedance, which are not easily affected
by external factors. Its mass is only 5.6g, and it has little
interference to the vibration attenuation of the vibration metal
plate. The sensor is equipped with a magnet at the end, which
can be directly mounted on the metal plate for magnetic
adsorption, it is convenient and fast, and is very suitable for
quick and effective acquisition of vibration signals at the top
coal caving condition, and can reduce disturbance factors
during signal acquisition.

TABLE 1. Parameters of the sensor 1A102E.

Type 1A102E
Sensitivity(mV/g) 10
Measuring range (g) +500
Frequency (Hz£10%) 0.5~10,000
Resolution ratio (m-s?2) 0.005
Impact limit (g) 5,000
Temperature (°C) -40~+120
Boundary dimension (mm) $10x22
Weight (g) 5.6

Install type M5

Output Top L5
Form Single-track

Undersurface

Metal plate

FIGURE 5. Installation of the sensor.

The specific parameters of the sensor are shown in Table 1.
In order to improve the effectiveness of the collected signals,
the acceleration sensor is installed in the central position of
the bottom of the metal plate, as is shown in Figure 5.
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FIGURE 6. DH8302 dynamic signal acquisition system.

The acquisition device is DH8302 dynamic signal acqui-
sition system, as showed in Figure 6. This system has the
advantage of high bridge pressure automatic calibration, and
can timely capture the real-time status of different channels
through the field calibrated stress and strain channels. The
measurement parameters can be set automatically according
to the requirements of the project and the set module, and
it also has the function of intelligent wire identification.
Real-time and effective transmission of data is realized
through DMA, which ensures that the collected data is high-
speed, not dead, effective, stable and not leaking during the
transmission process. It communicates with the computer
through the GbE gigabit Ethernet, so that the communication
between different channels can be achieved continuous real-
time, multi-channel signal measurement and storage records,
and the parallel work can be completed synchronously
between the channels. The channel is flexible and easy to
operate, it can test and analyze various physical quantities
such as force, electricity, impact, acoustics and voltage, etc.
By selecting and matching charge adapter and piezoelectric
sensor, the dynamic pressure and acceleration can be accu-
rately collected. And it has the extremely high test precision
and the anti-interference ability, which guarantees the accu-
racy of the collection results. Therefore, the DH8302 high-
performance dynamic signal acquisition system was selected
for signal acquisition.

The analysis system is DHDAS dynamic signal acquisition
and analysis system (Figure 7), which can realize the control
of DH8302 dynamic signal acquisition system and complete
the system setting in the process of signal acquisition, display
the collected signals, add basic filtering and other signal
preprocessing functions, and save the original signal and pre-
processed signal record on PC.

B. TEST SCHEME

In the process of top-coal caving, there are a large number
of coal gangue particles with different shapes and sizes, and
the impact speed when colliding with the hydraulic support is
also different. In order to obtain the test data of coal gangue
with different shapes and impacts at different speed, coal
gangue with different sizes and shapes are randomly selected
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and piled up for the test. In the process of caving, the impact
velocity of coal gangue and metal plate is different, so the
random dropping of coal gangue is adopted in this paper, that
is, the height of the randomly selected coal gangue particles
is not specified and unified, and the coal gangue is carried
out at a certain height through winch, steel wire rope, lifting
pulley and moving coal dropping device.

Before the test, parameters of DH8302 dynamic signal
acquisition system shall be set and signal pre-processing
module shall be added in the DHDAS dynamic signal analysis
system in advance. In this paper, single channel is adopted
for signal acquisition, sampling frequency is set as 5,000 Hz,
and storage mode is continuous storage. The measurement is
voltage measurement, the measurement is acceleration of the
metal plate when coal and gangue impact, the measurement
range is 5,000 m/s, the sensitivity is set as 1, and the input
mode is IEPE piezoelectric input. At the same time, the noise
reduction module and the anti - mixing filter are turned on
to realize the preliminary filtering of the signal. The specific
test process is as follows:

(1) Install the sensor at the specified location, open
the DH8302 dynamic signal acquisition system and
DHDAS dynamic signal analysis system, and com-
plete the parameter setting. Before each impact tests,
clear the natural vibration signal of the metal plate.
Control the electromagnetic lock of the two valves to
close, put the single coal gangue into the blanking port.
Then start the winch and bring the blanking device
reach to any height along the guide rail through the steel
wire rope traction.

(2) Opened the electromagnetic lock remotely by the elec-
tromagnetic locking controller, and the coal or gangue
free falling and finally impact on the metal plate.

(3) After the metal plate of the shock table is excited by
the rock, the vibration sensor and the DH8302 dynamic
signal acquisition system collect the acceleration time
history response of the vibration metal plate, and trans-
mit it to the DHDAS dynamic signal analysis system in
PC to save the data.

Carried out 1,000 groups of coal impact tests first, and
labeled as 1-1,000 group of coal impact tests respectively
according to the test sequence. After that, 1,000 groups
of gangue impact tests are conducted and are labeled as
1-1,000 group gangue impact tests respectively according
to the test sequence. The data were classified and saved
and 2,000 groups acceleration response data of coal gangue
impact on the metal plates are obtained. Caving height of
coal and gangue in each impact test is arbitrarily set, and the
accurate caving height is not counted.

IIl. INTERCEPT A PART OF VIBRATION

SIGNAL (SIGNAL INTERCEPTED)

After the test is completed, acceleration data after pretreat-
ment exported by the DHDAS dynamic signal analysis sys-
tem are shown in Figure 8 (Take 3 groups of coal and gangue
test data as examples, respectively). According to the figure,
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FIGURE 8. Pre-processed acceleration data.

the obtained data are the acceleration records of the metal
plate in the whole dynamic process, including the natural
vibration of the metal plate before the contact between the
rock and the metal plate, and the repeated or multiple collision
course after the first collision.
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Due to the different falling height of the coal and gangue,
the interval time from the falling of coal and gangue to the
contact between coal gangue and the metal plate is different.
The impact contact speed, the shape and size of coal gangue
particles are different, so the re-collision phenomenon after
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FIGURE 9. Acceleration data after Signal intercepted processing.

the first collision is also different, and the time length of
each group acceleration is different. In order to standardize
the analysis and facilitate the subsequent signal reprocessing,
the 2,000 groups acceleration after pretreatment obtained
from the experiments was standardized by means of Signal
intercepted, the specific operation is described below: It is
observed that the natural vibration acceleration of the metal
plate is very small, almost to zero, while the vibration acceler-
ation of the metal plate increases sharply after being impacted
(After 3-5 sample points, it can be increased to more than
100 m/s2.). In this paper, the threshold of data extraction is
set at 10 m/s2, that is to say, the data is valid from the first
point greater than 10 m/s?, and all the 4,999 sample points
thereafter are valid data, totaling 5,000 sample points are
taken as a set of valid data samples, and the duration of each
set of valid data is 1s. The acceleration signal after Signal
intercepted is shown in Figure 9.

IV. EXTRACTION OF SIGNAL FEATURES AND
DETER-MINATION OF RECOGNITION FEATURES

The vibration signal produced by the impact of coal gangue
on the metal plate is non-stationary and nonlinear, which can-
not be expressed by accurate time function relation, but can
only be described by mathematical methods of probability
and statistics. In order to identify coal and gangue according
to the difference of impact vibration signals, signals are pro-
cessed in this paper. Through a certain mathematical theory
and algorithm, extracts characteristic indexes that can effec-
tively reflect the metal plate vibration signals produced by
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the impact of coal gangue from the non-stationary vibration
signals, so as to further identify the signals.

A. EXTRACTION OF THE TRADITIONAL

TIME DOMAIN FEATURE

After the Signal intercepted processing, each group vibration
signal of the metal plate after coal gangue impact test is
quantified into a discrete sample containing 5,000 signal
points. The traditional time domain parameters such as the
mean value (yy), the absolute mean value (yjj), the square root
amplitude (yrr), the variance (yrc), the skewness (ypx), the
kurtosis index (ygp), the Peak-to-Peak value (yg—), the mar-
gin index (yyp), and the waveform index (ypx) of each group
vibration signal were calculated respectively. The specific
calculation formulas are shown in follows:

1
== "% (1
m
1
== vl @)
1
yer = (3 0 ) 3)
! 2
yre = D oo —¥) 4
1
= LY ®
l Zm (y _ 4
—10p = 1)
yop = == (6)
Yrc
YF— = Ypmax — Ypmin @)
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TABLE 2. Traditional time domain parameters of the coal.

Absolute Square

Peak-to-

Serial Mean . Kurtosis Margin ~ Wavefor
number value mean root Variance Skewness index Peak index m index
value amplitude value
1 -0.145 22.065 486.861 2,123.1 11,610.0 27.246 971.35 1.072 2.088
2 -0.166 45.001 2,025.100  16,235.0 -561,600.0 34.637 2,647.70 0.630 2.832
3 -0.374 28.258 798.501 6,214.8 -591,830.0 48.646 2,161.00 1.059 2.790
4 0.903 41.175 1,695.400  12,922.0 -609,300.0 45.998 3,203.90 0.725 2.761
5 -0.173 33.947 1,152,400 11,076.0 1,320,900.0 83.672 3,449.80 1.209 3.100
6 -0.709 14.387 206.990 635.9 -1,530.8 9.600 346.08 0.918 1.753
7 -0.505 47.123 2,220.500 9,198.1 -333,150.0 29.671 2,104.70 0.429 2.035
8 -0.986 30.587 935.541 4,161.2 2,502.1 20.636 1,156.20 0.616 2.109
9 -1.012 30.929 956.614 3,397.7 35,347.0 15.334 873.19 0.506 1.885
10 -1.164 39.627 1,570.300  10,519.0 163,030.0 25.628 2,131.00 0.729 2.588
11 -1.126 35.575 1,265.600 5,198.4 34,274.0 17.849 1,237.80 0.537 2.027
12 -1.159 31.425 987.534 4,149.0 46,941.0 27.000 1,536.50 0.769 2.050
13 -0.884 60.678 3,681.800  18,669.0 44,691.0 32.144 2,922.10 0.366 2.252
14 1.102 33.809 1,143.100 6,369.4 -28,226.0 26.426 1,487.70 0.639 2.361
15 0.245 30.162 909.742 4,852.3 110,240.0 33.597 1,675.20 0.938 2.310
TABLE 3. Traditional time domain parameters of the gangue.
Serial Mean ~ Absolute Square . Kurtosis L cak-to- Margin ~ Wavefor
number value mean root Variance Skewness index Peak index m index
value amplitude value
1 -20.749 64.561 4,168.1 21,047.0  -2,443,300 50.283 3,842.6 0.415 2.270
2 -22.021 73.210 5,359.7 43,050.0 -190,240 66.007 5,742.1 0.433 2.850
3 -0.830 45.612 2,080.4 15,949.0 305,990 53.167 3,694.9 0.885 2.769
4 5.732 61.132 3,737.2 27,2440  -1,089,600 49.240 4,852.3 0.589 2.702
5 31.481 70.409 4,957.4 25,908.0  -3,981,300 58.772 4,378.5 0.447 2.329
6 6.412 54.827 3,006.0 25,840.0  -1,830,600 71.844 5,029.3 0.883 2.934
7 18.063 47.833 2,288.0 11,300.0 -812,070 47.651 2,895.5 0.590 2.254
8 -1.221 53.507 2,863.0 22,196.0 -52,867 63.346 4,380.4 0.835 2.785
9 20.903 67.786 4,595.0 29,683.0  -8,163,300 78.770 5,022.1 0.491 2.560
10 12.090 103.646 10,742.0 67,859.0 4,850,300 46.272 6,627.3 0.345 2.516
11 -27.818 75.067 5,635.0 30,349.0 3,454,200 48.859 4,096.1 0.435 2.350
12 8.127 66.947 4,481.8 31,904.0  -3,498,900 80.975 5,893.6 0.652 2.671
13 21.326 92.486 8,553.7 64,5140  -8,056,400 50.661 6,614.6 0.391 2.756
14 3.968 74.528 5,554.5 37,027.0  -2,396,100 46.030 4,992 0.447 2.582
15 6.941 66.630 4,439.6 31,502.0 824,890 48.071 4,516.4 0.495 2.666
Yp max .
Yyp = —— ®) the range of [635.9, 18,669], among which only two groups
YFF m o have a variance greater than 15,000. However, the variance of
. l D p—1 Yp ) the vibration signal during gangue impact is within the range
VBX m  yjy of [11,300, 67,859]. And only two groups had a variance less

where p is the p™ sample point of a vibration signal, Yp is
the vibration acceleration value of the p sample point of
an intercepted vibration signal, m is the total number of the
sample points of each intercepted vibration signal, in this
paper m = 5,000, ypmax is the maximum vibration acceler-
ation value of an intercepted vibration signal, and ypmin is
the minimum vibration acceleration value of an intercepted
vibration signal.

According to the formula, 2,000 sets of test vibration sig-
nals are calculated, and 9 traditional time domain parameters
of each set of signal are obtained. 15 groups of coal gangue
are randomly selected as examples here. The obtained time
domain parameters are shown in Table 2 and Table 3.

Comparing the data in the two tables, we can see that: the
variance of the vibration signals under coal impact is within
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than 18669, only one group had a variance less than 15,000,
and the other 13 groups vibration signals of gangue impact
had variance over 21,000. The vibration signal variance of
the metal plate under the impact of gangue is much higher
than that of coal.

The Peak-to-Peak value of the metal plate vibration signal
during coal impact is within the range of [346.08, 3,449.80],
only three of the 15 groups of coal impact vibration signals
are higher than 2895. However, the peak-to-peak value of the
vibration signal during gangue impact is within the range
of [2,895.5, 6,627.3]. Only one group of the peak-to-peak
value is less than 3,449.80 while the other 14 groups of
gangue impact vibration signals are all above 3,690, and the
maximum peak-to-peak value is even more than 6,600. The
peak-to-peak value of vibration signals of the metal plate
under the impact of gangue is much higher than that of coal.
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The kurtosis index of the metal plate vibration signal
during coal impact is within the range of [9.600, 83.672],
only two of the 15 groups of vibration signals are higher
than 47, and the other 13 groups are lower than 46.
However, the kurtosis index of the vibration signal during
gangue impact is within the range of [46.030, 80.975]. Only
two groups of gangue impact vibration signals are lower than
47, and 12 groups are above 48. The kurtosis index of the
metal plate vibration signals under the impact of gangue is
much higher than that of coal.

The mean value of the vibration signal during coal impact
is within the range of [-1.2, 0], while that during gangue
impact is within the range of [-27.818, 31.481]. The mean
value of the vibration signal under coal impact is within
the mean value range of the vibration signal under gangue
impact. Although there is a significant difference in the
vibration signal mean value of coal gangue impact, it is not
suitable for the classification basis of coal gangue signals
due to the complete overlap of intervals. The absolute mean
value and square root amplitude of the metal plate vibration
signal under coal gangue impact have great difference and
little overlap of value range. However, five groups of time
domain parameters, namely mean value, absolute mean value,
square root amplitude, variance and peak-peak value, are
belonging to the same type of time domain index, and have
the high correlation with each other. All of them are taken as
characteristic parameters have little effect on improving the
recognition rate.

The skewness of the vibration signal during coal impact is
within the range of [-609,300, 1,320,900], while that during
gangue impact is within the range of [-8,056,400, 4,850,300].
The skewness of vibration signal under coal impact is within
the skewness range of vibration signal under gangue impact
and cannot be taken as the identification feature. The margin
index of vibration signal during coal impact is within the
range of [0.366, 1.209], while that during gangue impact is
within the range of [0.345, 0.885], the interval overlap is
too high to be used as a recognition feature. The waveform
index of the vibration signal during coal impact is within the
range of [1.753, 3.100], while that during gangue impact is
within the range of [2.254, 2.934], it also can’t be taken as
the recognition feature.

The signal variance represents the deviation degree
between the signal value and the signal center value, which
is used to measure the fluctuation of the signal. The peak-
to-peak value of a signal refers to the difference between the
highest and lowest values of a set of signal sample points,
which show the magnitude of the variation range of the vibra-
tion signal. The kurtosis index refers to the ratio of the fourth-
order center distance to the square of the signal variance,
which reflects the impact characteristics of the signal. In this
paper, variance, peak-to-peak value and kurtosis index are
selected as three identification features from nine traditional
time domain parameters.

106792

B. TIME-FREQUENCY FEATURE EXTRACTION

BASED ON HHT

HHT [63]-[67] signal processing methods include EMD
(empirical mode decomposition) [68]-[76] and HAS (Hilbert
spectrum analysis). The IMF component decomposed by
EMD can reflect the essential characteristics of signals, and
the Hilbert energy spectrum obtained by HAS analysis can
clearly show the characteristics of energy distribution at any
time and frequency. In order to comprehensively grasp the
non-stationary and non-linear vibration signals produced by
coal gangue impact on the metal plate and obtain their effec-
tive characteristics, this paper uses HHT method to process
the signals after standardized intercepted.

1) EMD TO SIGNALS
The vibration signals are decomposed by EMD, and the
expression of the Intercepted signals is as follows:

n

YO =€) +ra (1) (10)
i=1

The stopping criterion for decomposition is as follows:
T | h . 2
—1(1) = hg (1)]
Sa (1) = ! 11
a (1) ,; 0 (1D

Among them, y(t) is the Intercepted signal, Sq(t) is the
stop quantization parameter, and it is generally believed that
Sq(t) is between 0.2 and 0.3, i is the serial number of the
IMF component, ci(t) is the i-th IMF component, hg1(t) and
hy(t) are sample sequences of the two continuous processing
results in the decomposition of the IMF component, q is the
q'h sample sequence in the decomposition process of the IMF
component, 1,(t) is the residual term after n times of EMD,
and n is the number of IMF components when decomposition
stops, T is the total time length of y(t), t is the time at any
sample point.

The vibration signals of metal plates after 2000 groups
of coal gangue impact are decomposed by EMD. Take the
vibration signals of the metal plate after the impact of the 7"
group coal and the 29" group gangue as examples, 10 IMF
components and one residual term RES of the signals (That
is, after EMD process to the metal plate vibration signal,
which is produced by the impact of the displayed coal gangue,
n = 10) are obtained respectively, as shown in Figures 10-11.

By integrating to the square of the IMF component c;(t) in
time T (T is the total sampling time for each impact signal,
T = 1s in this paper), the energy characteristic functions of
each IMF component can be obtained:

T
Ei (1) = / Ci2 (1) dt (12)

0
In Eq. (12), Ei(t) is the energy eigenvalue of the i IMF

component. Through observing the IMF component and its
energy value decomposed by EMD of 2,000 groups metal
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FIGURE 10. EMD process to the vibration signals of the metal plate under coal impact.

plate vibration signals after coal gangue impact, the decay
rate of the first 6 IMF components is relatively large and
stable, so the energy value of the first six IMF components
of each group signal is taken as 6 identification features
respectively.

2) HAS TREATMENT OF THE SIGNALS

The c;(t) of the intercepted vibration signal y(t) decomposed
by EMD is transformed by Hilbert transform, and the results

are as follows:
1 [T®¢ (T
Zi(l)=—/ i (©)
T ) o t—T

dt

13)
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After Hilbert transform is applied to each IMF compo-
nent of the intercepted vibration signal y(t), y(t) can be
expressed as:

y(t) =Re ) ai(t)eP ) =Re Y " ait)e Jeidt (14
i=1 i=1

where the instantaneous amplitude of the IMF components is

o (1) = ,/cl-z 1) + zf (), the instantaneous phase is §; (1) =

arctan 2% | the instantaneous frequency is w; () = d%#, Re

means the real part.
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FIGURE 11. EMD process to the vibration signals of the metal plate under gangue impact.

Define w is the signal frequency, in the above formula, the
instantaneous frequency and the instantaneous amplitude of
the signal are both functions of time. Based on this, the sig-
nal amplitude-time function and signal amplitude-frequency
function can be obtained in the form:

Re > «; () e[ @0d o (1) = w

H(w,1) = i=1 (15)

0, Other

Taking the vibration signal of the metal plate after the
impact of the 7" group coal and the 29" group gangue as
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the examples, the Hilbert spectrum were obtained after HHT
transformation of the signals, as shown in Figure 12:

Integrating the Hilbert spectrum of the signal (Eq. (15))
over time, we can obtain the Hilbert marginal spectrum of
the signal h(w) is:

T
h(w) = / H (w,t)dt (16)
0

Hilbert marginal spectrum which reflects the global ampli-
tude or energy contribution of each frequency can accu-
rately represent the amplitude fluctuation of each frequency
of impact signal. Taking the vibration signal of metal plate
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FIGURE 13. Hilbert marginal spectrum of the signals when coal gangue impact on the metal plate.

after impact of the 7™ group coal and the 29" group gangue
as the examples, Hilbert marginal spectrum of the signals
were obtained after integrating Hilbert spectrum of the signal,
as shown in Figure 13:

By integrating the square of Hilbert marginal spectrum in
frequency domain, the energy characteristic functions of the
Hilbert marginal spectrum E(w) are obtained as follows:

E (w) = /wz h(w)? dw (17)

w1

where w; and w; are two interval frequencies respectively.
In this paper, w; = 0 and wp = 2, 500.

According to Eq. (3) and Eq. (8), the vibration signals of
metal plates after the impact of coal gangue in Tables 3-4
are processed respectively, and the energy values of the IMF
components and the energy of the Hilbert marginal spectrum
are obtained, as shown in Tables 4- 5.
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According to Tables 4-5, the range of the Hilbert marginal
spectral energy value in the 15 groups of coal impact vibration
signal is [6.673,1 x 103, 6.466, 1 x 10°]. Only one group
Hilbert marginal spectral energy value of the vibration signal
was higher than 5.976, 8 x 10° in total 15 groups coal impact,
while the rest were lower than 4.1 x 10°. The Hilbert marginal
spectral energy value range of the vibration signals when
gangue impact is [5.976, 8 x 10, 2.077,5 x 1071, only two
groups were lower than 6.4661 x 10°, and the rest were
higher than 8.3 x 10°. The Hilbert marginal spectrum energy
values of the metal plate vibration signals in gangue impact
are significantly higher than that of coal, and the ranges of the
Hilbert marginal spectrum energy values when coal gangue
impact are less overlapped, so it can be used as a recognition
feature.

In the end, this paper determined 10 features, including
the variance, peak-to-peak value, kurtosis index, energy value
of the first six IMF components and the Hilbert marginal
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TABLE 4. Energy of the IMF components and the hilbert marginal spectrum after coal impact.

No IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 Hilbert marginal
) (1019 (10 (10'9 (10 (10 (10 spectrum (107)
1 0.598,1 1.221,0 0.073,5 0.454,8 0.010,8 0.109,7 0.405,98
2 0.045,17 0.092.,45 0.342,09 0.016,5 0.070,1 0.010,45 0.111,48
3 0.442,2 0.120,8 0.119,1 0.692,5 0.256,6 0.570,7 0.302,79
4 0.055,9 0.164,53 0.060,5 0.022,1 0.011,0 0.017,5 0.159,39
5 0.261,9 1.068,4 0.005,2 0.019,3 0.003,3 0.574,3 0.253,58
6 3.228,2 0.519,5 0.055,9 0.446,9 0.229,3 0.016,1 0.066,731
7 0.646,4 0.459,04 0.171,4 0.323,0 0.005,9 0.006,6 0.108,84
8 0.028,3 0.004,799 0.003,5 0.004,1 0.025,4 0.057,2 0.069,947
9 0.016,4 0.594,05 0.004,4 0.180,1 0.032,3 0.414,4 0.179,85
10 0.031,2 0.359,2 0.001,6 0.002,7 0.016,1 0.002,3 0.112,98
11 0.067,0 0.607,5 0.001,1 0.125,6 0.038,1 0.009,6 0.101,41
12 0.038,5 0.053,8 0.027,2 0.821,1 0.086,9 0.031,1 0.149,53
13 0.103,6 2.612,9 5.497,0 6.915,5 0.506,3 1.257,5 0.646,61
14 0.924,2 0.013,1 0.161,2 0.994,5 0.004,8 0.034,5 0.247,19
15 0.088,4 0.077,8 0.003,4 0.074,8 0.008,2 0.049,0 0.102,17
TABLE 5. Energy of the IMF components and the hilbert marginal spectrum after gangue impact.
No IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 Hilbert marginal
) (10" (10" (10'%) (10" (10" (10" spectrum (107)
1 1.041,7 0.699.4 0.228,6 0.882,6 3.627,3 0.042,5 1.005,2
2 0.635,2 2.574,749 0.064,7 0.104,5 0.338,7 0.258,8 0.833,61
3 1.023,6 15.263,0 0.025,9 0.117,1 0.115,8 0.015,9 1.539,5
4 2.718,6 2911,0 0.494,5 3.567.9 1.903,6 0.812,8 1.381,4
5 6.279,7 0.831,916 0.324,1 2.893,5 0.741,8 0.018,0 1.414,0
6 27.624,3 5.970,9 0.841,1 0.041,3 0.253,6 0.033,7 1.497,6
7 1.484,3 0.187,1 1.133,4 8.376,8 0.513,9 0.607,9 2.077,5
8 2.206,5 0.816,786 1.559,8 0.257,3 8.783,2 0.322,0 0.641,31
9 0.089,1 2.430,7 0.085,6 0.031,2 0.018,7 3.914,6 1.250,8
10 0.228,7 1.333,6 0.609,4 0.209,7 0.579,6 0.907,5 1.009,5
11 0.289,1 0.339,149 0.163,3 1.874,4 0.799,6 0.055,9 0.597,68
12 19.603,2 1.167,0 0.025,0 5.392,3 3.3524 1.133,9 1.385,2
13 0.374,1 2.085,8 0.496,6 2.489,3 2.494,1 0.456,6 0.878,69
14 0.799,2 2.759,882 2.315,0 0.629,9 1.294,2 2.618,5 0.990,03
15 4.265,6 1.913,5 3.446,0 0.226,0 13.622,7 0.050,2 1.510,4

spectrum energy value, to constitute the feature vector of coal
rock detection.

V. RECOGNITION OF SINGLE PARTICLE COAL GANG-UE
BASED ON VIBRATION SIGNAL RECOGNITION FEA-TURE
VECTOR AND STACKING INTEGRATION

The essence of the single particle coal gangue recognition is
to classify the active impact body (coal and gangue) based on
the difference of the metal plate vibration signals after coal
gangue impact. Based on the feature vector of the vibration
signals, the classification algorithm is applied to identify the
single particle coal and gangue.

A. SINGLE PARTICLE COAL GANGUE RECOGNITION
BASED ON THE VIBRATION SIGNAL RECOGNITION
FEATURE VECTOR AND THE GENERAL

CLASSIFICA-TION ALGORITHM

In the field of computer, machine learning methods such as
Bayesian, Support Vector Machine (SVM), Logic Regres-
sion, Decision Tree, and in-depth learning methods based
on Neural Network have been proposed for the material
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recognition and classification. Based on the recognition
features extracted from the vibration signals obtained by
the experiments, this paper selects 6 kinds of machine
learning and in-depth learning algorithms include Deci-
sion Tree (DT) algorithms [77]-[81], Random Forest (RF)
algorithm [82]—[86] based on bagging algorithm, XGBoost
algorithm [87]-[90] based on boosting algorithm, Long short-
term memory neural network (LSTM) [91]-[95], Support
vector machine (SVM) algorithm [96]-[101] based on min-
imum risk principle and Factorization Machine algorithm
(FM) [102]-[105] for coal gangue detection. In 2,000 groups
of coal gangue impact test, 1,600 groups of data (800 groups
of the coal and 800 groups of the gangue) were selected for
model training, and the remaining 400 groups of data were
used for model accuracy testing.

1) ARITHMETIC PARAMETER SETTING

The algorithms used in this paper are all those in sklearn
model library called from the Jupyter Notebook program of
the Anaconda 3 GPU software. Parameters of each algorithm
are set as follows:
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FIGURE 14. The flow chart of the coal gangue impact signal recognition by XGBoost.

1) XGBoost: The classifier function is selected as XGB-

Classifier. Parameters type includes three kinds: rou-
tine parameters, model parameters and learning task
parameters. And for the routine parameters, acquies-
cent Gbtree regression tree model is selected for the
booster. Only the final result is needed, and there is
no need to output the intermediate process, so here
silent is set to 0. To speed up the computation, all CPUs
are used for parallel computation, so the nthread is set
to —1. More subtrees can make the model have better
performance, but too many subtrees are easy to cause
over-fitting, based on this, for the model parameters,
n_estimatores is set to 300. The depth of the tree affects
the fitting effect, the larger the value is, the easier it
is to over-fit; the smaller the value is, the easier it is
to under-fit. Its typical value is 3-10, here max_depth
is set to 5. In this paper, there are 2000 groups test
data, 1600 groups are taken as the training set and
400 groups as the test set, so the subsample is set to 0.8.
Min_child_weight and colsample_bytree are defaulted
to 1. For the learning task parameters, gamma is default
to 0 and lambda is set to 1. The output recognition rate
is required, so the objective chooses the logistic prob-
ability function. learning_rate is set to 0.5. The flow
chart of the coal gangue impact signals recognition by
XGBoost is shown in Figure 14.

2) RF: The classifier function is selected as Random-

ForestClassifier. The Framework parameters include
n_estimators, oob_score and criterion three kinds. For
the n_estimators, adopt the maximum number is 100,
oob_score is set for True. Criterion is correspondence
to the CART classification tree, and take the Gini index

VOLUME 7, 2019

3)

4)

5)

6)

as the evaluation standard. The decision tree parameters
in the random forest are set as follows: max_feature
is set to ‘“‘auto”, max_depth is set to ‘‘default”,
min_samples_split is set to 2, min_samples_leaf is
set to 1, min_weight_fraction_leaf is default to O,
max_leaf_nodes is default to “None”’, bootstrap is set
to “True”.

LSTM: input_dim is set as 4000, output_dim is
set as 64, activation =‘‘sigmoid”, loss is set as
“binary_crossentropy’’, optimizer is set as ‘“‘rmsprop”’,
metrics is set as ‘“‘accuracy”, batch_size =100,
epochs = 5.

DT: random max_depth is set to 10, decision_function_
shape is ovr; criterion correspondence to the
CART classification tree, splitter is set to ‘“best”,
max_features is set to “‘auto’’, min_samples_leaf is set
to 1, and min_samples_split is set to 2.

SVM: SVM adopt the sklearn.svm.SVC(), the penalty
coefficient ¢ of the error term is default to 1, kernel
use the linear kernel function, gamma is set to auto,
probability is set to True, decision_function_shape is
set to ovr, Probability is set to “False”, and cache_size
is set to “200”.

FM: Task is set as “‘classification”, num_iteris setto 5,
and loss adopt the sigmoid function.

The rest non-setting parameters of the study all are adopt-
ing the system default setting. The parameters shown above in
the research have already been adjusted to achieve the optimal
recognition results of the each model as far as possible. The
parameter adjusting process is tedious, and some parameters
have little influence on the final results before and after the
parameter adjusting. Meanwhile, the parameter adjusting is
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TABLE 6. Recognition success rate of the six selected algorithms (%).

Train no. DT RF XGBoost LSTM SVM M
1 85.75 91.25 92.25 83.92 88.5 51.75
2 86.75 89 91 83.98 91.5 50.5
3 85.5 91.5 91.75 84.61 89.5 48.75
4 85.25 92 90.75 84.86 90.25 44
5 85.5 89.75 91.25 85.04 89.75 50
6 87.75 90.5 90 83.85 91 48.25
7 86 91.75 89.5 85.29 90.5 37.75
8 87.75 90.25 91 84.67 90.5 69
9 87.25 90 90.5 84.42 91.25 62.25
Average recognition rate 86.39 90.67 90.89 84.52 90.31 51.36
Average time(s) 0.221 0.855 0.689 1.745 0.294 0.089

not the focus in this paper, therefore this process is not show
in the article.

2) RECOGNITION BY THE GENERAL

CLASSIFICATION ALGORITHM

In order to prevent the error of recognition accuracy and
response time caused by the contingency of single group
experiment, 9 times training and 9 times corresponding test
experiments were carried out for the six selected algorithms,
and the recognition success rate of the 400 groups of coal
gangue test data is obtained, as shown in Table 6.

From Table 6, it can be seen that from training to the
recognition completed, the computing time of the six algo-
rithms is within 2s, and the response speed is faster. If the
training model is generated in advance, the speed of the coal
gangue recognition will be greatly improved. Based on this,
it can be inferred that the time just for the single coal gangue
identifying stage is very short, and the calculation time of
the several models can meet the application requirements.
The average recognition rates of random forest, XGBoost and
SVM algorithms are above 90%. The average recognition
rate of the other three models is lower than 86.5%, and the
recognition effect of the other three models is poor. Therefore,
the recognition success rate of random forest, XGBoost and
SVM algorithm in the 6 selected models is higher. However,
the average recognition rate of the six algorithms is less than
91%, and the recognition rate needs to be further improved.

B. DETERMINE THE OPTIMAL IDENTIFICATION SCHEME
BASED ON STACKING INTEGRATION

Stacking algorithm [106]-[112] is an ensemble learning algo-
rithm that can combine multiple different categories classifi-
cation algorithms. Based on the same data samples, different
basic classifier models are trained by different classes of algo-
rithms. Then the output data of these classifiers are input into
the meta classifiers as the meta-features, and a new classifier
model is trained as the final classification from the meta clas-
sifiers. The Stacking model can effectively improve the clas-
sification accuracy. Using Stacking algorithm, the Random
forest, XGBoost and SVM, which have the high recognition
success rate, were selected as the recognition base model,
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and the meta classifier was trained by fusing the three above
algorithms with Logistic regression function to develop a
new single particle coal gangue fusion recognition model.
The single particle coal gangue recognition process based on
Staking integration is shown in Figure 15.

The detailed recognition scheme is as the follow:

(1) N groups (In this paper, N is 1600, 800 groups coal
and 800 groups gangue) of 2000 groups coal gangue
vibration signal samples (1000 groups coal and 1000
groups gangue) were taken as the training set, and the
rest M groups (In this paper, it is the rest 400 groups)
as the test set. Random Forest, XGBoost and SVM
algorithms were used as the base classifier, and take the
training subset 1, training subset 2...the training subset
N is the verification set in turn, and N-1 parts subsets
are the training set. N-fold cross-validation training is
conducted to obtain the base trainer, and the recognition
and the prediction are made on the respective test sets.
In the Random Forest algorithm model, N training pre-
dicted values and test predicted values are obtained, and
N predicted values of the training set are superposed
to get X1, and N predicted values of the training set
are averaged to get Y1, and the XGBoost (X2,Y2) and
SVM (X3,Y3) algorithm models are also processed in
the same way.

(2) After the model training of the three base classifiers
is completed, model training is carried out by using
the (X1, X2, X3) obtained from the training set in
the process of the model training of the base classifier
as the feature input value of the logistic regression
algorithm to obtain the LR classifier model, which is
also called the meta-classifier.

(3) The trained meta-classifier is used to identify the three
eigenvalues (Y1, Y2, Y3) which is obtained from
the prediction set, and the final recognition result is
obtained.

The parameters of the Stacking algorithm are set as fol-
lows: (1) XGBoost: the learning rate is 0.2, the maximum
number of the regression trees that can be generated is 300,
the tree depth is 5, and the sample extraction ratio is 0.8.
(2) Random Forest: the maximum number of decision trees
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FIGURE 15. Single particle coal gangue recognition process based on Stacking integration.

TABLE 7. Recognition success rate of the stacking algorithm (%).

1 2 3 4 5 6 7 8 Avgfage Average Time (s)
recognition rate
93.75 93.5 94 93.5 93 92.75 95 94 93 93.61 4.197

that can be generated is 300. The splitting evaluation stan-
dard is based on the Gini index, and the out-of-bag sample
estimation is adopted. (3) Support Vector Machine: using
the linear kernel function, and the penalty coefficient is 2.
The remaining parameters of the XGBoost, the RF, and the
SVM are set as the same with the above corresponding model
settings. The penalty coefficient of the logistic regression is 8,
which is also used as the meta-classifier.

The recognition feature vector of each group test sig-
nal in 2,000 groups of coal gangue impact test was also
obtained. 1,600 groups of data (800 groups of coal impact and
800 groups of gangue impact) were selected to train the recog-
nition model, and the remaining 400 groups of data were used
to test the accuracy of the model. Through 9 time training
and corresponding 9 time test experiments, the recognition
success rate of the 400 groups of coal and gangue test data
obtained is shown in Table 7.

According to the table, the average recognition success
rate of the Stacking integration algorithm is 93.61%, which
is 2.99% higher than the highest one 90.888,89% among ran-
dom forest, XGBoost and SVM algorithms. And the highest
recognition rate of the Stacking integration is 95%, if it is
used in practical engineering application, it will be helpful
to improve accuracy and efficiency. However, the average
computing time also increased to 4.197s. Because the com-
putational time includes training the model and test exper-
iment in this paper, if the training model is completed in

VOLUME 7, 2019

advance, the actual recognition time is very short, and the
time of 4.197s is within the permissible range. Compared
with six general classification algorithms, the recognition
accuracy of the Stacking integration algorithm is improved by
prolonging part of the computational time. By comprehensive
comparison, the stacking integration algorithm based on the
recognition feature vector of the intercepted signal satisfies
the time effect and recognition rate, so it is more suitable
for single coal gangue recognition than general classification
algorithm.

VI. SINGLE PARTICLE COAL GANGUE RECOGNITION AND
TWO KINDS OF SAMPLE RECOGNITION COMPARATIVE
ANALYSIS BASED ON THE INTERCEPTED SIGNALS
The above 7 groups of algorithms were used to identify the
coal and gangue based on the original intercepted vibration
signals obtained from 2000 groups of coal gangue impact
tests, and the recognition accuracy was shown in Table 8.
Compared with Tables 6-8, we can learn that each algo-
rithm’s recognition success rate by using the original inter-
cepted signals to identify directly is higher than using the
recognition feature vector of the intercepted signals. The rea-
son is that the recognition feature extracting process lost the
other features of the intercepted signals. However, because
of the original intercepted signals data quantity is greater
than the data quantity of the recognition feature vector of the
intercepted signals, the time cost increase greatly when using
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TABLE 8. Recognition success rate based on the original intercepted vibration signals (%).

Train no. DT RF XGBoost LSTM SVM FM Stacking

1 84.94 95.27 95.32 76.8 92.53 52.01 97.04

2 84.3 95.15 95.2 76.93 89.73 55.71 96.55

3 82.93 94.05 94.97 77.03 90.43 61.97 97.64

4 81.75 93.92 94.95 76.24 90.45 58.9 97.08

5 82.26 94.33 95.16 76.4 914 51.87 96.78

6 85.83 94.69 94.93 75.95 89.52 73.23 98.12

7 83.24 95.49 95.48 75.77 90.53 59.79 97.11

8 82.2 94.98 95.08 77.02 89.84 73.33 97.38

9 80.32 93.68 95.32 76.62 88.65 69.74 97.62

Average recognition rate 83.09 94.62 95.16 76.53 90.34 61.84 97.26
Average time(s) 10.673 16.829 59.433 247.288 16.048 31.661 182.970

the same recognition algorithm to identify the coal gangue
directly through the original intercepted signals.

Compared with the recognition by using Stacking inte-
grated algorithm with the recognition feature vector of the
intercepted signals, the recognition by using the DT, LSTM,
SVM and FM with the original intercepted signals need the
longer time but the low recognition success rate. Although
the recognition success rate of the random forest algorithm
with the original intercepted signals is 1.01% higher than that
of Stacking integrated algorithm with the recognition feature
vector of the intercepted signals, the calculate time of the
former is more than 4 times of the latter. The recognition
success rate of the XGBoost algorithm with the original inter-
cepted signals is improved by 1.55% than that of Stacking
integrated algorithm with the recognition feature vector of the
intercepted signals, but it takes nearly 1min, which is more
than 14 times of the latter. The recognition rate of Stacking
integrated algorithm using the original intercepted signals is
stable above 96.5%, up to 98%, but the time consumption
increases to more than 3min. But with the same data sample
condition, the Stacking integrated algorithm has the highest
recognition rate.

Under the different social and economic situations, the coal
production enterprises are facing the different pressures and
therefore have the different requirements for the coal produc-
tion technology and the mining rate (Mining rate: refers to the
percentage of the mined raw coal in its recoverable reserves).
At the same time, transportation and washing costs of coal
gangue in the later stage also have some requirements for its
mining rate and the proportion of coal gangue. (1) When the
economic situation of the coal is poor, in order to improve the
competitiveness of the enterprises, coal producers often try
their best to increase the mining rate of the coal and to mine
more coal (or even all coal). When gangue is identified in the
process of top coal caving, it is not required to stop caving
immediately. At this moment there are two options: when
the mining rate of the coal is required as high as possible,
but the quality of the coal is allowed to poor, there is no
requirement for time, so the Stacking integrated algorithm
based on the original intercepted signal can be selected for
the coal gangue recognition; when the requirement for coal
quality in the coal using area is lower and the requirement
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for time is not high, the Random Forest algorithm based on
the original intercepted signal can be chosen. (2) When coal
production enterprises have a large amount of coal resources
and the social demand for the coal is high with good benefits,
the existence of gangue will reduce the coal quality, increase
the cost of transportation and washing, also the washing
process will increase the cycle of the coal from production to
market. At this point, when gangue is identified, the caving
shall be stopped immediately, and requiring the recognition
response to be extremely rapid, so the XGBoost algorithm
based on the recognition feature vector of the intercepted
signal can be selected for recognition. (3) When the economic
situation, the demand and the benefit of the coal are at a
general level, a certain proportion of gangue is allowed in
top coal caving mining, such as the ratio of mixed gangue is
10%-30%. At this time, there are certain requirements for the
recognition rate and recognition response time (higher recog-
nition rate, shorter response time). At this point, the Staking
integrated algorithm based on the recognition feature vec-
tor of the integrated signal can be selected for recognition.
For the normal working conditions of the top coal caving,
the production enterprises have the complete top coal mining,
transportation, washing and sales processes, allowing some
gangue mixing in the mining process to achieve the balance
of the high mining rate and the low post-treatment cost.
Considering the application requirements comprehensively,
the Staking integrated algorithm based on the feature vectors
of the integrated signals is the most suitable method to meet
the usage requirements.

VIl. CONCLUSIONS

The realization of unmanned automation technology in fully
mechanized top-coal caving can release manpower, improve
the production safety and efficiency, and reduce the mining
cost. However, coal gangue recognition in the process of
the fully mechanized top-coal caving has always been the
bottleneck problem of the unmanned automation technology
realization in fully mechanized top-coal caving. Because of
the underground complex environment, more dust, less light
and more noise in the top coal caving, it is very difficult to
directly recognize the coal gangue interface on the working
face. In order to realize the recognition of the coal gangue

VOLUME 7, 2019



Y. Yang et al.: Vibration Test of Single Coal Gangue Particle Directly Impacting the Metal Plate

IEEE Access

interface in the complicated underground caving mining pro-
cess, this paper adopts the research idea of breaking up the
whole into parts and the point-to-surface research thinking,
extracts the recognition problem of the single-particle coal
gangue from the study of the coal gangue interface recog-
nition on fully mechanized mining face, and puts forward a
scheme of the coal gangue recognition based on the collision
vibration signal between coal gangue particles and the metal
plate. Based on this, the vibration test device and test system
of single-particle coal gangue direct impact on the metal plate
were designed and conducted independently. To simulate the
random impact between any coal gangue particle and the
tail beam metal plate during the top coal caving, the tests
which 1,000 groups of random shape coal and 1,000 groups of
random shape gangue from the random height impact on the
metal plate were carried out respectively. Through the signal
acquisition, signal processing and signal recognition of the
2,000 groups metal plate vibration signals, the coal gangue
identification rate and calculation time are finally obtained,
and the following conclusions are drawn:

(1) Aiming at the problem of the coal gangue recognition in
the complex fully mechanized face, the idea of break-
ing up the whole into parts and the point-to-surface
research thinking is put forward. The coal gangue inter-
face recognition is disassembled into the single-particle
coal gangue recognition, the multi-particle coal gangue
recognition, the group-particle coal gangue recogni-
tion, and the coal gangue interface recognition based
on the top coal caving characteristics, which formed
the step-by-step study and reduces the difficulty of the
research. This paper focuses on the recognition tech-
nology of the single-particle coal gangue. Based on the
vibration signal of the metal plate, the signal process-
ing means and the recognition classification algorithm,
the recognition of the single-particle coal gangue is
successfully realized, which provides research meth-
ods and foundations for the multi-particle coal gangue
recognition, the group-particle coal gangue recogni-
tion, and the coal gangue interface recognition based
on the top coal caving characteristics.

(2) In order to acquire the characteristics of the metal
plate vibration acceleration signal which can be used
to recognize the coal gangue, the standardized pro-
cessing method of the signal intercepting to the test
signals is presented, and 5,000 effective sample points
of each group of the signal are obtained to constitute
the intercepted signal. Through the traditional time-
domain characteristic calculation, EMD decomposi-
tion and HAS processing to the intercepted signals,
the time-frequency domain characteristics of the metal
plate vibration signals when coal gangue impacts are
obtained respectively. After the comparative analysis,
the Variance, Peak-to-Peak value and Kurtosis index
of the Intercepted signals and the energy value of
the Hilbert marginal spectrum which the coal gangue
impact vibration signal has the low overlap of the value
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(6)

range, and the energy values of the first six IMF com-
ponents with the large attenuation speed and the stable
attenuation, are finally determined as 10 recognition
features of the coal gangue impact vibration signals,
and forming the coal gangue recognition feature vector.
In order to realize the identification of the coal
and gangue, based on the recognition feature vector
(Each group of the test signal has 10 sample points.)
and 6 classification algorithms such as the DT, RF,
XGBoost, LSTM, SVM and FM, 9 times recogni-
tion model trainings were conducted for 800 groups
of the coal impact signals and 800 groups of the
gangue impact signals respectively. And the corre-
sponding 9 time test experiments were carried out for
the remaining 200 groups of the coal impact signals
and 200 groups of the gangue impact signals. Among
them, the average recognition rate of RF, XGBoost
and SVM is between 90% and 91%, while the average
recognition rate of the other three algorithms is lower
than 86.5%.

In order to improve the coal gangue recognition accu-
racy, random forest, three algorithms with the relatively
high average recognition rate, RF, XGBoost and SVM
were selected as the recognition base model for the
Stacking integrated algorithm. The average recognition
rate of the Stacking integrated algorithm based on the
recognition feature vector of the intercepted signals is
93.61%, while the highest recognition rate is 95%. The
recognition accuracy is increased by more than 2.99%
compared with the three groups of the base models.
For the comparative analysis, the above 7 algorithms
are adopted to the coal gangue recognition based on the
original intercepted signals (each set of test signals has
5,000 sample points) respectively. The extraction pro-
cess of the recognition feature vector greatly reduces
the amount of the data calculation, but other features
of the intercepted signal are lost. Compared with the
recognition based on the recognition feature vector,
the same algorithm based on the original intercepted
signals has the higher recognition accuracy, but it’s
time costs have increased considerably. Among the two
different recognition samples, the Stacking integrated
algorithm has the highest recognition rate.

The production requirements of the coal are related
to the socio-economic situation, the demand for the
coal, the cost of the transportation and washing, and
the using place. In order to determine the best identi-
fication scheme in the application process, a recogni-
tion scheme is formulated by taking into account the
two indicators of recognition accuracy and time cost.
If the mining rate is required as high as possible, but
there is no requirement for the coal quality, then there
is no time requirement. Stacking integrated algorithm
based on the original intercepted signal can be used
to identify the coal gangue. If coal quality has some
requirement but is not high, the requirement for time is
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low, the Random Forest algorithm based on the origi-
nal intercepted signal can be used to identify the coal
gangue. If the caving should be stopped immediately
when gangue is identified and the recognition response
shall be extremely rapid, the XGBoost algorithm based
on the recognition feature vector of the intercepted
signal can be used for the coal gangue recognition.
If a certain proportion of gangue is allowed to exist,
the recognition rate must be higher and the response
time must be shorter, Stacking integrated algorithm
based on the intercepted signal recognition feature vec-
tor can be selected for the coal gangue recognition.
Considering the requirement in the top coal caving
process comprehensively, Staking integrated algorithm
based on the feature vector of the intercepted signal to
identify is the best.

The conclusions of this paper will provide processing
methods for the non-stationary and non-linear vibration sig-

nals,

provides theoretical guidance for the selection of the

recognition algorithms, provide analysis ideas for the deter-
mination of the recognition features. It also provides the idea
of breaking up the whole into parts and the point-to-surface
research thinking for the research of the coal gangue interface
recognition technology in top coal caving, as well as the
research basis for the realization of the coal gangue interface
recognition technology in top coal caving. However, how
to further improve the recognition accuracy and reduce the
operation time, and apply the recognition method to the actual
top coal caving production, will be an important research goal
in the future.
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