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ABSTRACT This paper presents a forward-path, novel, two-dimensional (2-D) sliding discrete Fourier
transform (SDFT) algorithm based on the column-row 2-D DFT concept and the shifted window property.
After applying a descending dimension method (DDM), a mixed-radix and butterfly-based structure can be
further employed to effectively implement the proposed algorithm. Conceptually, it has many advantages,
including greater stability, more accuracy, and less computational complexity because there are no extra
feedback loops in the calculation. The evaluation results are based on the following conditions: (1) the
window size (N ) to 16 × 16; (2) the test pattern is an SVC grayscale video, and the formats are CIF
and 4CIF with 30fps; (3) one multiplication involves four real multiplications and two real additions. The
proposed 2-D SDFT method clearly reduced the number of multiplications by 43.8% and only increased the
number of additions by 33%, compared with the state-of-the-art Park’s method. Additionally, for the first
100 frames of the CIF and 4CIF sequences, the proposed method saves 10.8% and 10.9% of the processing
time, respectively, on average. Overall, the proposed DDM-based 2-D SDFT algorithm can be applied to
calculate not only 1-D but also 2-D SDFT spectrum, and are especially appropriate for hybrid applications.

INDEX TERMS Sliding discrete Fourier transform (SDFT), two-dimension SDFT (2-D SDFT), column-row
2-D DFT, descending dimension method (DDM), DDM-based 2-D SDFT.

I. INTRODUCTION
The discrete Fourier transform (DFT) has been widely
employed in many digital signal processing applications to
analyze signal power spectral density (PSD). To observe
variations in the time-frequency spectrum in detail, a sliding/
hopping sinusoidal transform, such as the sliding DFT
(SDFT) [1]–[4] and hopping DFT (HDFT) [5]–[8], has been
proposed to offer appropriate amounts of information in a
short time period. These algorithms are applied on a sample-
by-sample basis to analyze the time-frequency spectrum of
the desired signals. Recently, SDFT has been used in vari-
ous applications, e.g., acoustic echo cancellation [9], vibra-
tion mode estimators [10], [11], and in defect detection in
the rotor bars of an induction motor [12]. The SDFT algo-
rithm directly uses the previous DFT bins to iteratively
compute each new output bin, thus making the SDFT’s
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computational requirement significantly lower than that for
the traditional DFT. In addition, both the SDFT algorithm
and the DFT computation have to perform all of the time
indices, and thus the output data rate of the spectral bin is the
same as that of the input data rate. This implies that SDFT
would have better resolution in the time domain than the
traditional DFT and fast Fourier transform (FFT). Consid-
ering the problem of an adjustable resolution for the time-
frequency representation, the SDFT algorithm has to perform
the DFT computation for all of the time indices even though
it requires fewer DFT bins, which are calculated every L
(L > 0) samples. In other words, the resolution of the time-
frequency spectrumwill be affected by different samples of L.
Therefore, several HDFT approaches [5]–[8] are proposed to
reduce the workload required for computation.

Recently, Park proposed the idea of time hopping to
lower the computational requirement for SDFT algorithms,
i.e., the generalized SDFT (gSDFT) in [3] and the opti-
mal SDFT (oSDFT) in [4]. Based on the same concept,
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it was found that 1) SDFT can be combined with the adap-
tive DFT for the purpose of performing synchro-phasor
measurements [13], [14], and 2) it can be applied to extract a
more accurate feature vector for the speech/music recognition
process [15]–[18]. On the other hand, the trend of the devel-
opment of HDFT algorithms can be roughly categorized into
two classes: 1) the development of fast algorithms, as in the
methods used in [5], [6] to derive a radix-2 FFT parallel struc-
ture to reduce computational complexity, and 2) considering
the simple accelerator design, the methods used in [7], [8] to
derive a compact recursive structure intended to achieve a uni-
fied recursive kernel for hops of arbitrary lengths. However,
most of the existing SDFT/HDFT algorithms have potential
problems, including stability, accuracy, and computational
complexity, due to the fact that their structures have a recur-
sive loop with multiplication, i.e., the transfer function is only
marginally stable.

Currently, the DSP is being gradually emphasized for
multi-dimensional applications, especially in the field of
image processing. Similarly, the Fourier spectrum analysis
based on the sliding transform process has also been extended
from one- to multi-dimensions. It is mainly used in the
field of computer vision and image recognition, e.g., tex-
ture description/segmentation [19], [20], template matching
[21], [22], and shoeprint/fingerprint recognition [23], [24].
The process is a type of front-end processing, and it is applied
to extract the eigenvalue of a video/image. Traditionally,
2-D SDFT can be directly calculated using the vector-radix
2-D FFT (VRFFT) algorithm [25], but it has heavy computa-
tional complexity in the sliding transform scenario. To obtain
the advantages of low computational complexity, recursive
calculation methods have been proposed. Park proposed a
typical recursive-based 2-D SDFT algorithm [26] based on
Jacobsen and Lyons’ 1-D SDFT concept [1].

Compared to existing algorithms, Park’s method signifi-
cantly reduces the computational workload because the 2-D
structure is very similar to the traditional 1-D SDFT. This
implies that there is a marginally stable transfer function with
the instabilities and accumulated errors which are caused
by a recursive kernel process. In addition, Park’s algorithm
focuses on the 2-D sequential process, so the algorithm archi-
tecture is only suitable for 2-D computations. Therefore, it is
critical to effectively overcome these problems.

This paper provides a discussion of the development of
a proposed low-complexity, non-feedback-loop novel 2-D
SDFT algorithm. After applying a descending dimension
method (DDM), a mixed-radix and butterfly-based structure
can be employed to effectively implement a forward-path 2-D
SDFT algorithm. Conceptually, the proposed design would
be more stable, more accurate, and would have less compu-
tational complexity than Park’s recursive structure [26].

The rest of the paper is organized as follows: Section II
provides a brief review of Park’s 2-D SDFT. In Section III,
the proposed forward-path 2-D SDFT algorithm is derived in
detail. The overall computational complexity of the proposed
algorithm is analyzed in Section IV. Section V compares

FIGURE 1. The sliding window behavior in the horizontal direction.

the performance of the proposed design with other existing
approaches. Finally, conclusions and remarks are provided in
Section VI.

II. EXISTING 2-D SDFT ALGORITHM
The N -by-N point DFT standard formula is defined as (1),
where px,y and Px,y (u, v) are, respectively, the time-domain
and frequency-domain sequences of the (x, y)-th pixel of the
input image. In addition, we assume the sliding window is
shifted in the horizontal direction, as shown in Fig. 1.

Px,y (u, v) =
N−1∑
m=0

N−1∑
n=0

p_x+m,_y+nW
−um
N W−vnN , (1)

where _x = x−N +1, _y = y−N +1, u, v = 0, 1, . . . ,N −1,
and the twiddle factor of WN is denoted by

WN = ej2π/N . (2)

Based on Park’s algorithm [26], the relationship between
successive DFT bins can be derived as

Px,y (u, v) = W u
N

Px−1,y (u, v)+
N−1∑
n=0

p_x+N−1,_y+nW
−vn
N

−

N−1∑
n=0

p_x−1,_y+nW
−vn
N

,
(3)

where Px−1, y (u, v) is defined as the (u, v)th DFT bin of the
(x–1, y)-th pixel, which is represented as

Px−1,y (u, v) =
N−1∑
m=0

N−1∑
n=0

p_x+m−1,_y+nW
−um
N W−vnN . (4)

Here, the linearity of the DFT is utilized to reduce these
redundant DFT computations. The two 1-D DFTs in (3) are
merged into one as follows:

Dx,y (v) =
N−1∑
n=0

dx,yW
−vn
N , (5)

where the pixel difference, dx,y, is denoted by

dx,y = px,y − px−N ,y. (6)
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FIGURE 2. Park’s 2-D SDFT structure with a dual-recursive-kernel process.

By substituting (4) and (5) into (3), the 2-D Fourier transform
expression can be rewritten as

Px,y (u, v) = W u
N
(
Px−1,y (u, v)+ Dx,y (v)

)
. (7)

To efficiently implement the function of Dx,y (v) in (5), Park
adopts a recursive computation according to the relationship
between Dx,y(v) and Dx,y−1(v), which is represented by

Dx,y (v) = W v
N
(
Dx,y−1 (v)+ dx,y − dx,y−N

)
. (8)

From (6) to (8), these derivations can be easily mapped into
a dual recursive structure. The flow graph is shown in Fig. 2.
In general, the 2-D SDFT is applied to a plane, and the archi-
tectural design essentially uses two similar resonator cascade
filters to handle the corresponding directions, respectively.
Therefore, the source of errors would come from both the
horizontal and vertical directions simultaneously. Since the
SDFT computation is being employed in more and more 2-D
applications, the accumulated errors caused by the recursive
structure tends become a serious issue.

III. ALGORITHM DERIVATION OF THE PROPOSED
FORWARD-PATH 2-D SDFT
In this section, we derive a forward-path computation for
the 2-D SDFT algorithm. Considering the computational
complexity, the proposed algorithm should be effectively
implemented by using a DDM. For the kernel computations
of the 2-D SDFT algorithm, we also develop and design
the proposed 1-D and mixed-radix structure SDFT algorithm
as well [27]. In this way, the algorithm not only has fewer
computations but also can be used in a hybrid application.

A. DDM-BASED 2-D SDFT
According to the separable property of the 2-D DFT [28], the
standard formula [see (1)] can be separated into a series of

1-D DFTs, which can be written as

Px,y (u, v) =
N−1∑
m=0

(
N−1∑
n=0

p_x+m,_y+nW
−vn
N

)
W−umN . (9)

Equation (9) is easily implemented by column-row DFT
operations [28] as shown in Fig. 3 (a). The overall processes
can be calculated as 2N times the length-of-N 1-D DFT
computation, and it takes (2N × N 2) complex multiplica-
tions and (2N × N 2) complex additions for each complex-
input sample. This column-row-based 2-D algorithm has
more computational complexity than the vector-radix 2-D
FFT algorithm [25], but it can be easily simplified into a
1-D computation. In addition, it also gains the advantage
of reducing the complexity of memory access during the
transform process and can also be applied to achieve parallel
processing on a broadcast mode multiprocessor [29].
We next consider the sliding transform process and assume

that the sliding window is shifted in the horizontal direction.
It is already known that the first and the last samples are
shifted between the current window and the pre-window for
the 1-D SDFT process [as Fig. 3 shown in [1]]. However,
the first column information for the current window and the
removal of the last column information in the pre-window are
required for the 2-D SDFT process, as shown on the left side
of Fig 3 (b). In the column-row-based case, the 2-D sliding
process is equivalent to performDFT computation once along
one new column followed by the N -point SDFT along the N
rows, as shown in Fig 3 (b).
Here, we make another assumption: that the 1-D sliding

window is shifted in the vertical direction for each column.
Simultaneously, we apply the concept of SDFT to substitute
once 1-D DFT calculation on the left side of Fig. 3 (b). This
implies that the column-row-based 2-D SDFT is simplified
into (N+ 1) times the 1-D SDFT computations. Hence, the
proposed DDM has been successfully done.
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FIGURE 3. The schematic principle of column-row-based 2-D DFT. (a) Without the sliding property. (b) With the sliding property.

B. MIXED-RADIX BUTTERFLY-BASED
1-D SDFT STRUCTURE
Let xn be a time-varying signal at time index n; the k-th
spectral bin of an N -point 1-D DFT standard formula is
defined as

Xn (k) =
N−1∑
m=0

x_n+mW
−km
N , (10)

where _n = n − N + 1 and the twiddle factor (WN ) are same
as (2). Assume that the transform length of N is restricted to
be a power-of-two integer, and the number can be divisible
by four as

N = 2r = 4Q, (11)

where the parameter r is more than or equal to two. Using
variable substitution, the index m is represented by

m = Qm1 + m2

{
m1 = 0, 1, 2, 3.
m2 = 0, 1, . . . ,Q− 1.

(12)

By taking (12) into (10), the DFT formula can be further
rewritten as follows:

Xn (k) =
Q−1∑
m2=0

3∑
m1=0

x_n+Qm1+m2
W−k(Qm1+m2)
N

=

Q−1∑
m2=0

3∑
m1=0

x_n+Qm1+m2
W−kQm1
N W−km2

N

=

Q−1∑
m2=0

Pn,m2 (k)W
−km2
N , (13)

where

Pn,m2 (k) =
3∑

m1=0

x_n+Qm1+m2
W−km1

4 . (14)

Let us apply the properties of the twiddle factor and the mod-
ulo function, which are expressed as (15) and (16), respec-
tively. Equation (14) can be simplified as (17). It is treated as
a 4-point DFT and can be realized using one butterfly radix-4
DIT-FFT algorithm [30].

W n+N
N = W n

N . (15)
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ab mod n = [(a mod n) (b mod n)] mod n. (16)

Pn,m2

(
_

k
)
=

3∑
m1=0

x_n+Qm1+m2
W−

_
k m1

4 , (17)

where
_

k is the results of the modulo operation, and its value
ranging from 0 to 3 can be represented as

_

k = k mod 4. (18)

By using a data re-mapping scheme, it is very easy to generate
a radix-4 DFT computation. It is worth noting that there are
no extra complex multiplications for calculating either (14)
or (18).

A traditional radix-2 DIT-FFT algorithm is then adopted,
where the index m2 can be further divided into even-
numbered and odd-numbered parts. Based on the decompo-
sition approach [31], the resultant formula is given by

Xn (k) =
Q−1∑
m2=0

Pn,m2

(
_

k
)
W−km2
N

=

∑
m2even

Pn,m2

(
_

k
)
W−km2
N +

∑
m2odd

Pn,m2

(
_

k
)
W−km2
N

=

(Q/2)−1∑
p=0

Pn,2p
(
_

k
)
W−k2pN

+

(Q/2)−1∑
p=0

Pn,2p+1
(
_

k
)
W−k(2p+1)N

= L̈n (k)+W
−k
N L̇n (k) , (19)

where L̈n (k) and L̇n (k) are, respectively, defined as the even-
and odd-parts of the interleaved sequences, as shown in (20)
and (21).

L̈n (k) =
(Q/2)−1∑
p=0

Pn,2p
(
_

k
)
W−kpN /2 . (20)

L̇n (k) =
(Q/2)−1∑
p=0

Pn,2p+1
(
_

k
)
W−kpN /2 . (21)

Then, we employ the properties of the shifted window, i.e.,
equation (20) can be further derived as (22) by using the
intermediate calculations from previous windows.

L̈n (k) =
(Q/2)−1∑
p=0

Pn,2p
(
_

k
)
W−kpN /2

=

(Q/2)−1∑
p=0

Pn−1,2p+1
(
_

k
)
W−kpN /2

= L̇n−1 (k) . (22)

The above results show that the even parts [see (20)] can be
obtained by exploiting the delayed calculations of the odd

parts [see (21)]. After taking (22) into (19), the N -point DFT
formula of L̇n (k)’s has the following relationship

Xn (k) = L̇n−1 (k)+W
−k
N L̇n (k) . (23)

In addition, in order to fully understand the sequential
decimation operations during the next decimation process,
we define Lsn (k) as the k-th bin of the Q/2

s-point interleaved
sequence transform at the decimation stage s, which yields

Lsn (k) =
(Q/2s)−1∑
p=0

Pn,2s(p+1)−1
(
_

k
)
W−kpN /2s , (24)

where the superscript s ranges from 0 to log2Q – 1. The
notation Lsn (k) can be further used to instead of L̇n (k), and
equation (23) can be generally rewritten as

Xn (k) = L0n (k)

= L1n−1 (k)+W
−k
N L1n (k) . (25)

The interleaved decimation process is repeated at each dec-
imation stage until the sequences cannot be decimated. For
example, L1n (k) can be decimated as

L1n (k) =
(Q/2)−1∑
p=0

Pn,2p+2−1
(
_

k
)
W−kpN /2

=

(Q/4)−1∑
p=0

Pn,4p+1
(
_

k
)
W−k2pN /2

+

(Q/4)−1∑
p=0

Pn,4p+2+1
(
_

k
)
W−k(2p+1)N /2

=

(Q/4)−1∑
p=0

Pn−2,4p+3
(
_

k
)
W−kpN /4

+W−kN /2

(Q/4)−1∑
p=0

Pn,4p+3
(
_

k
)
W−kpN /4

= L2n−2 (k)+W
−k
N /2L

2
n (k) . (26)

Based on above derivations, we can obtain the recursive
formula of Lsn (k) during the sliding transform process, which
is given as follows:

Lsn (k) = Ls+1n−2s (k)+W
−k
N /2sL

s+1
n (k) . (27)

According to (17), (24), (25), and (27), the derivations can
be easily mapped into a novel algorithm. The flow graph is
shown in Fig. 4. Note that the function of the gray rectangle
is similar to the sample-and-hold operation, where the value
can be used to update the intermediate result (Ls+1n−2s (k)) in
the sliding transform scenario. The black rectangle can be
directly viewed as a group of registers, which is stored the
pre-calculated intermediate results of previous windows.
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FIGURE 4. Proposed forward-path structure of the 1-D SDFT with a
mixed-radix structure for ‘‘N = 22×4’’.

IV. OVERALL COMPLEXITY ANALYSIS OF THE
PROPOSED 1-D/2-D SDFT ALGORITHM
Next, the computational complexity of the proposed algo-
rithm is considered. For simplicity of analysis, we assume
the input is a complex sequence and that intermediate calcu-
lations of previous windows already exist. The overall steps
of the proposed algorithm are listed as follows:
Step 1: Make the 4-point DFT calculation based on the

radix-4 structure. Here, eight complex additions are required.
Step 2: Compute the intermediate calculations at the last

decimation stage, i.e., s = log2Q – 1. Furthermore, the real
and imaginary parts of the twiddle factorW−N /8N andW−3N /8N
are identical. Here, one complex multiplication can be treated
as two real additions and two real multiplications. In addition,
eight complex additions, four real additions, and four real
multiplications are required.
Step 3: Compute Lsn (k) using the recursive relationship

in (27) at remaining decimation stage except when s = 0.
Here, N /2s complex additions and N /2(s+1) complex multi-
plications are required at each stage. Thus, the number of the
computational complexities totals (N – 16) complex additions
and (N /2 – 8) complex multiplications.
Step 4: According to (25), the DFT bins calculated using

L1n (k) and L
1
n−1 (k), where L

1
n−1 (k) is pre-calculated in the

TABLE 1. Pseudo code for the proposed forward-path 1-D SDFT
algorithm.

previous window. Here, (N ) complex additions and (N /2)
complex multiplications are required.

Table 1 shows a pseudo code for the proposed forward-
path 1-D SDFT algorithm, where RA, RM , CA, and CM are,
respectively, the numbers of real additions, real multiplica-
tions, complex additions, and complex multiplications.

The overall computation requirement of the proposed
forward-path 1-D SDFT is summarized as

RA = 6N − 12 (28)

and

RM = 4N − 28, (29)

where one complex addition (CA) involves two real addi-
tions (RA), and one complex multiplication (CM ) involves
four real multiplications (RM ) and two RA.

As mentioned in the end of part A of Section III, the
column-row-based 2-D SDFT can be simplified into (N+ 1)
times 1-D SDFT computations. If the proposed method is
applied to the 2-D SDFT structures, the overall computation
requirement is counted as

RA = 6N 2
− 6N − 12 (30)

and

RM = 4N 2
− 24N − 28. (31)

In this section, a new approach to the SDFT algorithm based
on a blend of the radix-2 and radix-4 structures is proposed.
The proposed method has the same precision as that of the
traditional FFT due to the fact that the proposed structure is
quite similar to the traditional butterfiy-based FFT algorithm.
Furthermore, the forward-path 1-D SDFT is guaranteed to be
stable due to the presence of non-feedback loops. This means
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that, compared with the recursive Park’s structure, accumu-
lated imprecise twiddle factor errors do not occur regardless
of whether the proposed 1-D or 2-D SDFT algorithm are
used, [26].

V. DISCUSSION AND COMPARISON
A. COMPUTATIONAL COMPLEXITY
For the sliding issues in various 2-D SDFT algorithms, the
performance metrics in terms of number of multiplications
and additions are evaluated in Table 2, where RM and RA
denote the number of real multiplications and additions,
respectively.

TABLE 2. Computational complexity comparison of N-by-N point-related
DFT algorithms for 2-D sliding applications.

To provide a fair comparison with other algorithms [25],
[26], [28], [31], [32], one complex multiplication (CM ) is
equivalent to two real additions and four real multiplica-
tions, and one complex addition (CA) is equivalent to two
real additions. In order to conveniently observe the trend in
the growth rate of RM and RA, Fig. 5 shows the amount
of computation required for various 2-D SDFT algorithms
with varying window size (N× N ). For example, if the
computational complexity for a window size of 16 × 16,
the proposed algorithm shows that the number of additions
and multiplications are 1,428 and 612, representing 74.64%
and 80.08% reductions compared to the VRFFT, respectively.
The Park’s algorithm [26] has the lowest number of additions
(RA = 1, 074) but requires the highest number of multiplica-
tions (RM = 1, 088). Overall, it is still more computationally
complex than the proposed algorithm.

For the detailed comparison of computational complexity,
the proposed algorithm totally takes (4N 2 – 24N – 28) mul-
tiplications and (6N 2 – 6N – 12) additions. In Byun et al.
[Table 1, 32], various algorithms and their combinations
were compared to the proposed VR-2 × 2 SFFT algorithm.
The results clearly showed that their algorithm requires
(4N 2 – 4N ) multiplications and (8N 2 - 8N ) additions.
Therefore, the computational complexity of Byun et al. [32]

FIGURE 5. The trend growth rate of computational complexity with
varying window sizes for various 2-D sliding approaches. (a) RM . (b) RA.

is more complex than that of this work. Moreover,
Kuchan et al. algorithm [33] has the same complexity as well
as 2-D SDFT [26]. It requires (4N 2 – 4N ) multiplications and
(2N 2

+ 3N+ 2) additions. Conceptually, the complexity of
multiplication is quite higher than that of addition. That is the
reason that the proposed method has better processing time
saving than Kuchan et al. [33] and 2-D SDFT [26] as shown
in Fig. 6. Although these approaches [26, 33] have very simi-
lar derivations, the proposed algorithm still has its individual
contribution based on the derivations of DDM-based 2-D
SDFT and mixed-radix butterfly-based 1-D SDFT structure.

B. EXECUTION TIME
It is known that experimental simulations are a better
aggregative index for both multiplication and addition than
other alternatives. Therefore, a simulation environment is
applied to measure the processing time of the 2-D SDFT.
Here, the simulation environment is set as follows: Various
algorithms were performed on a 64-bit Windows 7 system
with an Intel i7 3.60 GHz processor with 16.0 GB random
access memory (RAM). The window size was set to 16× 16;
a practical SVCvideowas adopted for the test signal [34], and
the formats included the CIF and 4CIF with 30 fps. In order
to shorten the simulation time, the sliding process was only

104918 VOLUME 7, 2019



W.-H. Juang, S.-C. Lai: Non-Feedback-Loop and Low-Computation-Complexity Algorithm Design

TABLE 3. Execution time analysis of various algorithms with different CIF sequences for 2-D sliding applications.

TABLE 4. Execution time analysis of various algorithms with different 4CIF sequences for 2-D sliding applications.

FIGURE 6. Time saving analysis of various algorithms with different CIF
sequences for 2-D sliding applications.

performed on the grayscale component, and we focused on
the time of the first 100 frames for each test sequence.

First, we measured the processing time of each algo-
rithm under the CIF sequences, for which the results are
shown in Table 3. Simultaneously, the time savings as shown
in Fig. 6 was calculated using the formula in (32).

TimeSaving (%) =
TAlgorithm − TProposed

TAlgorithm
× 100 (32)

where TAlgorithm and TProposed denote the measured process-
ing time of other algorithms and the proposedmethod, respec-
tively. The results show that the execution time for this work
can be reduced by 96.7%, 74.8%, 70%, and 10.9%, respec-
tively, compared with the DFT, FFT, VRFFT, and 2-D SDFT.
In summary, this work consistently outperforms the other
methods under consideration in terms of processing time.

We next change the test format from CIF to 4CIF. Under
the same simulation conditions, the time consumed in the

FIGURE 7. Time saving analysis of various algorithms with different 4CIF
sequences for 2-D sliding applications.

various sequences is recorded in Table 4. The time savings
results are provided in Fig. 7. For all the sequences, the exe-
cution time reduction, respectively, was 96.7%, 74.7%, 70%,
and 10.9%, compared with [25], [26], [28], [31]. According
to the Fig. 6 and Fig. 7, it shows that this work achieves sig-
nificant time savings and has a quite consistent performance
result based on the simulations of CIF and 4CIF sequences.

VI. CONCLUSION
This paper presented a low-complexity, low-execution-time
2-D sliding DFT algorithm for a time-frequency analyzer
design. The proposed 2-D SDFT employs a descending
dimension method and a mixed-radix structure to achieve
a faster sliding transform process. The results indicate that
the proposed method had superior performance compared
to other approaches and thus provides a new direction in
which to apply these fast transforms to the applications of
biomedical/speech signal processing, computer vision, and
image recognition/processing.
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