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ABSTRACT This paper investigates a method for imaginary hand fisting pattern recognition based on the
electroencephalography (EEG). The proposedmethod estimate the largest Lyapunov exponent (LLE) chaotic
feature that is based on approximation of mutual information (MI) and false nearest neighbor (FNN)methods
for reconstructing a phase space. The selected method for MI and FNN approximation approaches is a new
version of Tug of War optimization algorithm. The new algorithm utilizes chaotic maps to update candidate
solutions. The chaotic approximation of the LLE (CALLE) is the utilized method for extracting the chaotic
features and then categorizing features by means of soft margin support vector machine with a generalized
radial basis function kernel classifier. Accuracy and paired t-test values are obtained and compared with the
traditional LLE method; 18 candidates were participated to record the EEG for imaginary right-hand fisting
task. The results show improvements for the CALLE algorithm in comparison with the traditional LLE by
achieving a higher accuracy of 68.25%. Feature changes between two imaginary statuses were significant
for 17 subjects, and the paired t-test values were (p < 0.05). From the results, it is concluded that the Tug of
War optimization method finds different values to reach a higher accuracy than the traditional LLE method,
and the traditional methods for the LLE are not optimum.

INDEX TERMS Chaos optimization, largest Lyapunov exponent (LLE), mutual information, false nearest
neighbor (FNN), Tug of War optimization.

I. INTRODUCTION
Brain computer interface (BCI) based on electroencephalog-
raphy (EEG) signal processing is one of the methods for
assisting paralyzed patients for a convenient life. For this
purpose, different methods are developed to diagnose the
patients thinking of fisting through the EEG signals. Some
well-known methods are the common spatial pattern (CSP)
[1], [2], wavelet [3], [4], fractal dimensions [5], [6] and
chaotic features [7]. Chaos theory has been used to predict
nonlinear system’s behavior such as EEG signals. In the
chaotic computations, initial values are significant to avoid
instability of nonlinear systems. To investigate the chaotic
behavior of systems, quantifiers are employed, such as fractal
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dimensions and Largest Lyapunov Exponent (LLE) [8]. One
prominent chaotic quantifier is the LLE, which is based on
reconstructing system’s trajectory in a phase space. The LLE
is a successful method for detecting different EEG patterns,
such as epilepsy [9], spindle patterns [8] and ADHD [10]. For
instance, Allahverdy et al. [11] used a set of chaotic features
such as the LLE, Higuchi fractal dimension (FD), Sevcik FD
and Katz FD to diagnose the ADHD patterns in the EEG
signals. In a recent study, Korda et al. [12] used the LLE
features for detecting eye movement patterns automatically.
Moreover, Dahat et al. [13] utilized the LLE feature to investi-
gate the chaotic brain’s behavior in sleep stages. In this study,
the LLE will be used to diagnose the two imaginary status
of right hand fisting imagination and no fisting imagination.
The initial values for the traditional LLE will be optimized
by artificial intelligence (AI) methods.
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On the other hand, the usage of the different methods of
the AI, neural networks [14], fuzzy logic [15] and evolu-
tionary algorithms [16] has been increased in recent years.
For instance, a type-2 fuzzy system has been used for sig-
nal classification. The fuzzy logic based approach has been
used to classify the EEG signals [17]. In another research,
a neural network based method has been investigated for
different purposes. The method has been developed in a
way that, the neural network has been used for learning,
classification, and comparative analysis of brain data [18].
Evolutionary algorithms are one of the most strong methods
of the AI. These algorithms are widely used to solve engineer-
ing problems [19]. For example, particle swarm optimization
algorithm has been employed to optimize a neural network
weights [20]. The optimized one has been used to detect and
extract features from the EEG signals. In [21], a binary flower
pollination algorithm has been used to identify persons based
on EEG signals. The method has been developed for sensor
selection in the EEG signals. The Tug of War Optimization
has been introduced recently by Kaveh [22]. The algorithm
has been used to solve different engineering problems. For
instance, it has been used to optimize the design of castel-
lated beams [23]. Considering its results of its applying on
different benchmark optimization problems, however it can
be supposed as one of strong new optimization methods,
new improvements can be applied on the basic algorithm to
enhance its performance.

In this study, our contribution is reconstructing two phase
spaces based on the traditional LLE and Chaotic Approx-
imation LLE (CALLE) and drawing the trajectory of the
EEG to diagnose right hand fisting imagination and no
fisting imagination status. For reconstructing the phase
space, mutual information (MI) and false nearest neighbor
(FNN) approaches are computed. Thereafter, the approxi-
mated phase space is reconstructed based on the AI method
as substitute of traditional delay for the MI and embedding
dimension for the FNN. The new developed chaotic tug of
war optimization (CTWO) algorithm is selected as the AI
method. The new developed algorithm uses chaotic maps to
update the candidate solutions. The LLE feature is extracted
from the trajectories of the right hand fisting imagination and
no fisting imagination status in the phase spaces. To classify
the CALLE features of the status in the reconstructed phase
spaces, the Soft Margin Support Vector Machine (SMSVM)
with the Generalized Radial Basis Function (GRBF) is
utilized.

II. METHODS & MATERIALS
Regarding the Taken’s theory [24] for computing the CALLE,
the phase space is first reconstructed using the MI and FNN
methods, and then the MI and FNN are computed tradi-
tionally. Next, the MI (lag parameter) and FNN (embed-
ding dimension) values are updated by the Tug of War
approach. The reconstructed phase spaces are employed for
extracting the traditional LLE and CALLE features, and also

considering the trajectory differences. As the first step the MI
approach is implemented as follows:

A. PRE-PROCESSING
In order to prepare the signal for processing, pre-processing
procedures are applied. The raw EEG signal is first seg-
mented from 200 ms before displaying pictures to 2500 ms
after displaying pictures. The segmented signals are then
passed through a six order Butterworth filter with 8-15 Hz
edges [4]. Finally the filtered signal is normalized between
zero and one for the further processing.

B. MUTUAL INFORMATION (MI)
One of the principals of the phase space reconstruction
is computing an optimum time lag (ζ ), which is obtained
through the MI approach [11]. The MI required two input
values, signal and maximum delay as a function criterion,
which is selected maxζ = 10 as a constant value. Then,
theMI is utilized to extract information between two intervals
of xt and xt+ζ . TheMI is amethod to compute the ζ parameter
as follows:

MI (ζ ) =
j∑

i=1

j∑
s=1

Pr i,s(ζ )log2(
Pr i,s(ζ )
Pr iPrs

), (1)

where, i and s are the interval indexes for xt , xt+ζ , respec-
tively. Also, Pri and Prs are existing probabilities of the xt
value in the i − th and the s − th, respectively. The second
step for computing the LLE is computing the FNN algorithm
as follows:

C. FALSE NEAREST NEIGHBOR (FNN)
The second important parameter for reconstructing a phase
space is estimating the embedded dimension (n). The FNN
algorithm required signal and maximum embedding dimen-
sion criterion as inputs, which is selected three based on
the traditional computations. Each phase space’s dimension
is computed by xj = xs, xs+ζ , xs+2ζ , ..., xs+(n−1)ζ , s =
1, ...,N . The proper value for n-dimension is obtained by
the FNN approach. Two delayed of the EEG signal is used
to reconstruct the signal attractor with assumption of no
intersection in the reconstructed phase space based on the
MI and FNN. Attractors are trajectory of a system that tends
to grow. If an intersection occur, the phase space dimension
will be increased since no intersection is counted. Therefore,
the number of intersections are the FNN value that is utilized
for increasing the phase space dimension [25]. For computing
the LLE, the MI and FNN parameters are determined and the
LLE is computed as follows:

D. LARGEST LYAPUNOV EXPONENT (LLE)
For each input segments, the average value of exponential
divergence along the grew trajectory will be computed and
called the Lyapunov Exponent (LE). To compute the LLE
(γ ), the FNN and MI parameters are used as inputs for
constructing the phase space. Next, through Q(t) = Eeγ t

divergence of the grew trajectory is applied on pair neighbor
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trajectories at time t and initial separationE . The Logarithmic
distance Qj(m) is computed between the pair of neighbors by
ln(Qj(m)) ≈ γ (m.1t)+ ln(Ej), where m is the counter for the
pairs [26], [27]. Finally, the maximum exponential slopes for
each segment is called the LE and obtained as follows [25]:

LE(i) =
1
1t
×

1
j

j∑
1

ln[Qj(i)]. (2)

The computed LLE (γ ) has following conditions:
1- γ > 0 indicates chaotic;
2- γ = 0 indicates limit cycle;
3- γ < 0 indicates stable behavior.

The largest LE for each segment is the LLE. Then, the LLE
values are then classified by the SMSVM classifier with
the GRBF kernel. In the traditional LLE, the MI and FNN
algorithms have two constant values that are obtained experi-
mentally. In the next section, the delay and embedding dimen-
sion parameters in the MI and FNN methods in the CALLE
algorithm is updated by the CTWO algorithm.

E. CHAOTIC TUG OF WAR OPTIMIZATION (CTWO)
The Tug of war optimization algorithm has been introduced
recently by Kaveh [23]. The algorithm has been built on the
concept of Tug of War between two groups. The author has
developed the physical principal on the groups and the inter-
action between them. Considering these principles, the Tug
of War Optimization has been developed as following steps:
Step 1 Initialization: The initial population is generated as

following:

X0
i =LB + rand ∗ (UB − LB) , i=1, . . . ,N (3)

where X0
i is the initial value of the ith candidate

solution, and N is the number of candidates. The
upper and lower bound of the search space are shown
by UB, and LB, respectively.

Step 2 Weight assignment: Each candidate solution is sup-
posed as a team in the competition, and it is needed
that the weight of each candidate is calculated in
comparison between others. The weight of each one
can be calculated as following:

Wi=
Fi − Fworst
Fbest − Fworst

+ 1, i = 1, . . . ,N (4)

where Wi is the weight of ith team, and its fitness
value is shown by Fi. At current iteration, the best
and worst value of the fitness function between pop-
ulation are given by Fbest , and Fworst , respectively.

Step 3 Competition and displacement: Each candidate team
has a displacement after competing with each other
team. The displacement can be given as following
equation:

1Xi =
N∑
j=1

1Xij,

1Xij =
1
2
aij1t2 + αβ (UB − LB) ∗ rand, (5)

where 1Xij is the displacement of the ith candidate,
and 1Xij is the displacement of the ith candidate in
competition with the jth candidate. The parameter
α is proportional factor, and β is a factor between
(0, 1]. The parameter aij is the acceleration of the ith
candidate in comparison with the jth candidate, and
can be computed as following:

aij = gij ∗
Fr,ij
Wiµ

,

gij = Xj − Xi,

Fr,ij = Fp,ij −Wiµ, (6)

where gij is gravitational acceleration constant, and
Fr,ij is resultant force affecting factor. The pulling
force between ith and jth teams is given by Fp,ij, and
is the maximum of two values (Wiµ,Wjµ).

Step 4 New generation: The new candidates is computed by
following formula:

Xnewi = Xoldi +1Xi. (7)

Step 5 Termination: If any of stop criteria is reached, stop
algorithm and return the best solution, else, go to
step 2 [28].

The above mentioned steps, a random number has been used
in equation (5). This random factor can be changed in a way
that can consider the fitness value of the candidate solution
to update it. Let suppose that a chaotic map is chosen to
calculate the factor regarding to the value of the fitness func-
tion. By considering this definition, the equation (5) can be
expressed as following:

1Xij =
1
2
aij1t2 + ξij ∗ (UB − LB) , (8)

where ξij is the chaotic factor and it is calculated as

ξij = 4
(
Fi − Fj

)
,

where the chaotic map is shown by function4. The definition
and well-known chaotic maps are reviewed in the following
section.

1) CHAOTIC MAPS
One of the well-known random based methods, which is used
in solving optimization problems, is chaotic optimization
algorithms. These algorithms use chaotic variables. Unlike
stochastic searches, which are based on probabilities, chaos
is based on two features: the non-repetition and the ergodicity.
Therefore, it has higher full search speed than stochastic
searches. Chaos applies 12 one-dimensional non-invertible
maps and generates chaotic sets as shown in Table 1. These
sets are used to achieve chaos goal, which is providing high
full search speed. For more information about COA method
and 12 chaotic maps readers can refer to [29].
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TABLE 1. Chaotic maps.

TABLE 2. The detail of benchmark functions.

2) CTWO VALIDATION
This section compares the performance of the CTWO with
different chaotic maps to the performance of Tug ofWarOpti-
mization using 10 benchmark functions. The new designed
algorithm is applied on different kind of benchmark func-
tions. The functions can be divided into two generic groups:
separable and non-separable. The mathematical formula and
details of these functions are presented in Table 2. In order
to have the same condition for the comparison between

different algorithms, reaching to the maximum number of
evaluation of the cost function is supposed as stop criteria.
The maximum number is set on 10000. In the report about
the comparison, any value less than 10−10, is considered as
zero. The result of the application of the CTWO on different
benchmark functions with different chaotic maps, which is
indicated by Mi, are presented in Table 3. The performance
of the proposed algorithm are compared with the result of tra-
ditional algorithms, genetic algorithm (GA), particle swarm
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TABLE 3. Comparative results of CTWO with different chaotic map, TWO, GA, and PSO.

optimization (PSO), and basic tug of war optimiza-
tion (TWO) in the Table. The enhancement of the behavior
of the basic algorithm and the verification of new algorithm
as an optimization method can be drawn regarding the com-
parative results which are given. Based on the previously
introduced method which are implemented to enhance the
performance of evolutionary algorithm, there is not any spe-
cific method to select a specific chaotic map, which can have
a global optimized results [30], [31]. Considering this fact
and the comparative results in Table. 3, it is obvious that the
chaotic map should be selected based on the experience of
the designer and/or trial and error. The obtained optimized
values for the delay and embedding dimension are then used
to compute the LLE features. Next, the CALLE features are
classified using the SMSVM classifier with the GRBF kernel,
that is described as follows:

F. CLASSIFIER
The extracted LLE and CALLE features for the status imag-
inary hand fisting and no imagination are classified by the
SMSVM with the GRBF kernel. The GRBF kernel computa-
tions are presented as follows:

1) GENERALIZED RADIAL BASIS FUNCTION
One effective modification of RBF is the GRBF, which is
implemented by adding three free parameters of Ce, τ and
We instead of the fixed values for center, shape and width of
the Gaussian distribution function in Eq. 9, respectively. It is
showed that the GRBF is flexible and reliable method that is
described in Eqs. 9-11 [5], [6], [32]. Figs. 1a and 1b are the
prof of the flexibility of the Generalized Gaussian Function
(GGF) and it’s effects in the GRBF for different 10 τ values

FIGURE 1. Generalized Radial Basis Function.

with c = 2 and W = 1.

G(g;Ce,We, τ ) =
τ

2Weψ(1/τ )
exp(−

‖g− Ce‖
Weτ

), (9)

ψ is a factorial extension, which is obtained by Eq. 10:

ψ(t) =

∞∫
0

l t−1e−tdt, for l > 0. (10)
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The final weight We is computed by standard deviation (SD)
in Eq. 10:

We = SD

√
ψ(1/τ )
ψ(3/τ )

, (11)

To classify the LLE and CALLE features, the GRBF func-
tion is used as a kernel of the SMSVM classifier algorithm as
follows:

2) SOFT MARGIN SUPPORT VECTOR MACHINE (SMSVM)
SMSVM is a powerful method for classifying [33]. Based on
the extracted LLE features, two label classes of S = [−1,+1]
and a training data set of Yi ∈ Rn,j = 1, ..., l are defined.

The utilized decision boundary in the SVM-based classi-
fiers is wT zi + C = 0 with following criterion:

W TYi + C ≥ 1 if Si = 1,
W TYi + C ≤ −1 if Si = −1, (12)

where Y , W and C are the input values, achieved weights
and bias, respectively. To find the best decision boundary a
hyper plane is defined and adjusted between the two classes
data set. The best location of the hyper plane is specified by
some selected features called support vectors (SVs). explor-
ing the hyperplane location is based on maximizing margin
distance between the features of the two classes. The selected
maximized features are named support vectors (SVs) that are
computed using Eq. 13:

f (Y ) = sgn(W TY + C). (13)

In cases of nonlinear data set a nonlinear kernel of φ(Yi)
is defined. To this purpose, the φ(Yi) is used as a transfer
function to map the obtained features into higher dimen-
sion. By greatly increasing the number of features, fea-
ture space dimension is increased and duality problem is
occurred. To solve the duality problem, a number of features
are controlled using Lagrange’s theorem, Eq. 14. Therefore,
the decision boundary is modified to W Tφ(Y ) + C = 0 as
follows [34]:

min
W ,C,α

(
1
2
W TW + Re

l∑
i=1

αi)

Yi(W Tφ(Yi)+ C) ≥ 1− αi
Subject to αi ≥ 0

i = 1, ..., l, (14)

In order to control the cost of computations (αi) in the
training set of (α(W ;Y , S) ≡ (1− SW TY )2) a regularized
parameter Re is defined as follows:

min
α

(
1
2

N∑
i,j=1

αi
T SiSjK (Yi,Yj)αj −

N∑
i=1

uTαi)

STα = 0,

Subject to 0 ≤ αi ≤ Re

i = 1, ..., l, (15)

FIGURE 2. Designed task procedure based on the relative research [3].

FIGURE 3. The utilized Enobio amplifier with 32 sensor locations.

FIGURE 4. Imaginary hand fisting experiment.

where u is unit matrix and α is the Lagrange obtained coef-
ficients, respectively; and k is the selected kernel function in
Eq. 15, K (Yi,Yj) ≡ φ(Yi)Tφ(Yj). To find the best decision
boundary in Eq. 15, the W must be optimized by W =
l∑
i=1

Siαiφ(Yi). The final hyper plane is applied using Eq. 16:

sgn(W Tφ(Y )+ C) = sgn(
l∑
i=1

SiαiK (yi, y)+ C). (16)

III. DATA ACQUISITION
18 subjects (S1-S18) with the average age of 29.5 years
old are participated in the experiment. It was considered
that participants did have history of addiction to alcohol
and narcotic drugs. Also, it was considered that they did
not use caffeinated materials at least four hours before test.
To record the EEG data the same procedure is defined in [3].
In summary, the procedure has four steps in following order
(Fig. 2): 1- a black screen with fixation cross at the center;
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TABLE 4. Accuracy results of imaginary the hand fisting detection based on the CALLE feature. The estimated average dimensions and delays based on
the CTWO method for the hand fisting imagination and no fisting imagination status are presented. The paired t-test between the two status for the
CALLE features are computed.

TABLE 5. Accuracy results of imaginary hand fisting detection based on the traditional LLE features. The obtained average dimensions and delays based
on the traditional methods for the right hand fisting imagination and no fisting imagination status are presented. The paired t-test between the two
status for the LLE features are computed.

2- displaying photos of hand fisting; 3- imagination of right
hand fisting; 4- resting for three to four sec randomly.
The pictures were sketch of a hand and a black page for

no imagination. After displaying the sketch of the right
hand, the subjects have to imagine the right hand fist-
ing for 2500 msec; and displaying a black screen means no
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FIGURE 5. The Raw and filtered EEG data for the C3 and CP5 channels for the two status of imaginary fisting and no
imagination.

fisting imagination. This cycle is presented for 150 trials for
offline processing and 20 trails for real-time processing. The
system is synchronized with a bionic hand to investigate the
speed and accuracy of the system in real-time mode, Fig.4.
The data is recorded utilizing ENObio amplifier with 32 dry
electrodes, Fig. 3. The frequency sampling of the ENObio
amplifier is adjusted to 500 Hz.

IV. RESULTS
In the BCI experiment the EEG is recorded based on the
presented procedure in Fig. 2. The CALLE features are clas-
sified with the SMSVM method that the obtained results
are presented in Tables 4 and 5. The results are evaluated

based on accuracy and paired t-test evaluations. To consider
the properties of the reconstructed phase space and CALLE
values, Figs. 6 and 7 for S13 are showed and discussed. The
32 EEG channels gives information of the neurons activ-
ity in 32 locations. More specifically, C3 (channel 15) and
CP5 (channel 28) locations are the aim areas of generating
imaginary movement patterns in this data set, Fig. 5 [3].
Trajectory of the mentioned channels for S13 are presented in
the Figs. 8-10. Fig. 8 is the trajectory of the channels C3 and
CP5 using traditional method for reconstructing the phase
space. Figs. 9 and 10 are the trajectories in the estimated
reconstructed phase space for the two different projections
from the channels C3 and CP5.
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FIGURE 6. Trajectory of the S13’s EEG in the reconstructed phase space based on the CTWO method for the 32 channels. The Tug of War
optimizer method achieved FNN = 82 and MI = 11. The blue line is the trajectory of the imaginary right hand fisting and the red line is the no
imagination.

FIGURE 7. Trajectory of the S13’s EEG in the reconstructed phase space based on the traditional method for the 32 channels. Based on the
traditional method FNN = 3 and the MI = 5 are achieved. The blue line is the trajectory of the imaginary right hand fisting and the red line is
the no imagination.

V. DISCUSSION
It is revealed that the Chaos Theory is helpful for the EEG
signal processing interpretation and analyzing. One promi-
nent chaos-based feature is the LLE. To compute the LLE,
first a phase space is reconstructed and trajectory of the

EEG is then grew in the phase space. Regarding the Taken’s
Theory [24] a phase space is reconstruct able by specifying
appropriate embedding dimension and time lag. For this pur-
pose, a time lag and an embedding dimension are specified
through MI and FNN approaches, respectively. In this study,
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FIGURE 8. Trajectory of the EEG in the reconstructed phase space based
on the traditional method for the C3 and CP5 channels.

an approximation method is utilized to obtain the optimum
values for the FNN the MI approaches to reconstruct a phase
space and classifying the extracted CALLE features.

The Tug of War optimization algorithm works on the
definition in a competitive league. In the algorithm, each
candidate solution is supposed as one of the teams in the
league. The update formula of candidates is developed based
on the qualities of the teams, which are interacted with each
other. The basic algorithm, uses stochastic updating formula
to find better solutions. In order to improve its performance,
a new version named CTWO is investigated, which utilizes
chaotic maps instead of stochastic approach. The chaotic
maps is applied on the approach because of non-repeating and
ergodicity behavior.

Based on the approximated values for the FNN and MI,
features are extracted from the most informative channels and
frequency bands. Demonstrated Fig. 5 gives overall infor-
mation of the EEG trajectories in different locations and
helped for finding the right channels for further computations.
Regarding our previous experiment, the C3 and CP5 channels
among the 32 channels are the most informative locations
for identifying the imaginary movement patterns; and the

FIGURE 9. Changing the trajectory projection of the EEG in the
reconstructed phase space for the channel C3.

8-13 Hz frequency band is determined as the most informa-
tive frequency range for detecting the imaginary movement
patterns [3]. Regarding the Taken’s theory [24], two parame-
ters of a time lag and an embedding dimension are required
for reconstructing the phase space. Traditionally, the time lag
and embedding dimension are computed based on the MI and
FNN methods, respectively. The criterion for the maximum
time lag (τ = 10) in theMI andmaximum embedding dimen-
sion (n = 3) in the FNN are determined experimentally.
Also, methods are utilized to predict the best value for the
maximum lag such as Fraser and Swinney methods [35]. The
MI approach was utilized to exploit data between two interval
samples with τ lag. More specifically, in the MI computa-
tions, two inputs of the segmented EEG signal and maximum
time lag are required, in which the lag is a constant value and
computed by Fraser and Swinney methods [35]. The second
parameter in the Taken’s theory is the FNN approach, which
is utilized for specifying the embedding space dimension.
More specifically, the FNN is also required two parame-
ters, which are the segmented EEG signal and maximum
embedding dimension. The maximum embedding dimen-
sion is a constant value and estimated by different methods
[25], [36], [37]. Afterward, two phase spaces are recon-
structed based on the traditional and approximated FNN and
MI for growing the trajectories of the EEG data. The CALLE
and LLE features are then extracted separately. In summary,
four free parameters are defined at the same time to estimate
the FNN and MI values for imaginary right-hand fisting
and no fisting status. The CTWO approach was trained for
100 times and the average values of the maximum embedding
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FIGURE 10. Changing the trajectory projection of the EEG in the
reconstructed phase space for channel CP5.

dimensions and maximum time lags are utilized and pre-
sented in Table 4. The CTWO, specified different sets of solu-
tions to reach the same reported accuracy values in Table 4.

Regarding Figs 8a, 8b and 7, it is revealed that the trajecto-
ries in the phase space based on the traditional MI and FNN
are highly mixed that the obtained average accuracy of the
identifying imaginary patterns is similar to random (average
accuracy 57.77%), Table 5. Regarding Table 5, the computed
MIs and FNNs based on the traditional approaches for the
fisting imaginary state are between 5 to 30 (mostly close to 5)
and 1.94 to 2 (mostly close to 2), respectively. Although,
Table 4 shows that the MIs and FNNs based on the CTWO
for the same imaginary movement state are obtained differ-
ent values between 2 to 70 and 6 to 47, respectively. Also,
Regarding Table 5, the computed traditional MIs and FNNs
for no imaginary movement are the same as the imaginary
movement. Although, Table 4 shows that the MIs and FNNs
for the no imaginary movement are obtained different values
between 5 to 81 and 2 to 48, respectively. By investigat-
ing Figs. 6, 9 and 10, meaningful enhancement for the two
obtained state trajectories in the channels C3 and CP5 are
seen, respectively. More specifically, Figs. 9a and 10a shows
that no fisting imagination’s trajectories are centered at the
middle of the hand fisting imagination trajectories. By chang-
ing the Figs’. 9b and 10b projections separability of the
trajectories for the two classes is recognizable and results

are improved consequently, Table 4. The LLE values and
Figs. 9a and 10 shows that at the moment of the imagination,
the EEG tends to have chaotic behavior (blue lines) and
thereafter the EEG behavior back to previous state (red lines).
The extracted CALLE and traditional LLE features are then
classified status using the SMSVM classifier with the GRBF
kernel separately.

The obtained average accuracies in Tables 4 and 5 shows
that the estimated MI and FNN reconstructed a better phase
space and attained higher average accuracy of 67.60%. The
presented results shows 9.83%higher accuracy in comparison
with the traditional method. In order to consider the meaning-
fulness of the feature changes between the two status, statisti-
cal analysis paired t-test for individual subjects is employed.
Tables 4 and 5 shows that one subject’s paired t-test for the
CALLE changes were not significant (P > 0.05), 17 sub-
jects’ paired t-test were significant (P < 0.05), while the
seven subjects for the traditional LLE changes were not
significant (P > 0.05). A trained algorithm of the SMSVM
classifier is utilized for controlling a bionic hand in the real-
time mode that the results were not reliable enough and needs
more de-noising computations to have better EEG signals and
results.

VI. CONCLUSION
LLE is a successful chaotic method for the EEG pattern
recognition. In the presented approach, the traditional LLE
has been approximated utilizing the CTWO method. In the
procedure, the EEG signals based on imaginary fisting move-
ments are recorded, filtered and segmented. The best values
for the FNN and MI have been computed based on the tra-
ditional and chaotic Tug of War optimization methods for
reconstructing a phase space. The new developed algorithm
has been employed the chaotic maps to update the candi-
date solution. The proposed algorithm has been applied on
benchmark functions and results are compared with tradi-
tional methods. Achieved accuracy results and obtained fig-
ures have depicted significant enhancement for the CALLE
in comparison with the traditional LLE. The averaged results
based on the CALLE has reached to 68.25% with 17 signifi-
cant P−vales among 18 subjects. Also, it has been achieved
that the optimum values of the FNN and MI to reach the best
accuracy are not unique.
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