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ABSTRACT In this study, analytical expressions are derived by using probability density function approach
over millimeter wave fluctuating two-ray (FTR) fading channels for average symbol error rate (ASER) of
rectangular quadrature amplitudemodulation (RQAM) and cross quadrature amplitudemodulation (XQAM)
schemes. First, an exact ASER expression for RQAM over millimeter wave FTR fading channels is derived.
Second, two different upper bound ASER expressions of RQAM scheme under millimeter wave FTR fading
conditions are obtained by using Chernoff and Chiani approximations of Gaussian Q-function. In addition
to this, an asymptotic ASER expression for RQAM is also proposed. Then, an analytical formulation
is presented for XQAM signaling over millimeter wave FTR fading channels in terms of infinite series
representations which rapidly converge. Finally, the numerical results of the proposed analytical expressions
are compared with the simulation results in order to validate the analytical findings in this work.

INDEX TERMS Rectangular QAM, Cross QAM, ASER, fluctuating two-ray fading.

I. INTRODUCTION
Quadrature amplitude modulation (QAM) is a bandwidth
efficient modulation type and it is used in the field of digi-
tal multimedia transmission. The advantages of high power
and bandwidth efficiency makes the use of QAM signal-
ing in LTE Advanced and beyond preferable [1]. QAM,
is one of many existingmodulation techniques, is a promising
way of enhancing the spectral efficiency [2]. Besides, QAM
schemes are known as useful adaptive modulation schemes,
since the constellation size of the QAM signaling can be
adjusted depending on the channel quality. QAM methods
have drawn considerable research attention due to the fact
that it is broadly used in many wireless communication appli-
cations such as microwave, high-speed mobile communica-
tion systems, and asymmetric subscriber loop, etc [3]–[5].
There are several QAM schemes which are called as rect-
angular QAM (RQAM), cross QAM (XQAM) and square
QAM (SQAM). RQAM is a general modulation technique
since it covers a variety of well-known modulations such as
SQAM, orthogonal binary frequency-shift keying, quadrature
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phase-shift keying, binary phase-shift keying [5]. Practically,
RQAM has the implementation fields in microwave commu-
nications, high rate wireless communications, and telephone-
line modems [6], [7]. Among the QAM schemes mentioned
above, the optimal QAM signaling is XQAM scheme when
the odd number of bits per symbol is transmitted due to its low
average symbol energy compared to RQAM [8]. For instance,
constellation size between 5-15 bits for XQAMs can be used
in asymmetric and high speed subscriber lines [9], [10],
while 32-XQAM and 128-XQAM are utilized in digital video
broadcasting [11].

Recently, QAM methods have become popular due to
its suitability in high speed communications and bandwidth
efficiency. The researchers have reported a number of stud-
ies on average symbol error rate (ASER) performance of
QAM schemes used in different communication systems over
different fading channels [12]–[22]. In [12], the ASER of
RQAM and XQAM signaling was presented in two-wave
with diffuse power (TWDP) fading channels. Closed-form
error probability expressions for M -ary XQAM signaling
were proposed by using a maximal-ratio combining (MRC)
technique in η-µ fading environments in [13]. The authors
of [14] analyzed the ASER performance of QAM techniques
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in two-way relaying communication networks in the pres-
ence of Nakagami-m fading. Dixit and Sahu [15] derived an
expression for RQAM technique with selection combining
over Nakagami-m fading conditions. The effects of imper-
fect channel state information on the ASER of hexagonal
QAM and RQAM schemes were studied for an amplify-
and-forward (AF) protocol under Nakagami-m fading condi-
tions [16]. The impact of the channel estimation [23], [24]
is important for the realization of the practical scenarios.
In another study [17], the authors performed an analytical
evaluation on the performance of QAM methods used in
multiple AF relaying system over Rayleigh fading channels.
In [18], a simple approximation was developed for general-
order RQAM with MRC receiver in Nakagami-m environ-
ments. In addition, hexagonal QAM and RQAM schemes
were used in an orthogonal frequency division multiplexing
with 3-hop AF relaying system and the authors presented
the performance results over mixed Rician/Rayleigh fading
links [19]. In [20], error probability of XQAM method was
derived over Nakagami-m, Hoyt, Rice, and Rayleigh condi-
tions by performing MRC at the receiver. Khan et al. [21]
proposed two algorithms called rectangular contour algo-
rithm (RCA) and improved RCA for blind equalization
techniques of RQAM signaling with odd bit. In [22], a
comprehensive study for QAM analysis over κ-µ shadowed
fading channels is presented.

The studies mentioned above have focused on the perfor-
mance analysis of QAM signaling over well-known fading
conditions such as Rice, Rayleigh, Hoyt, Nakagami-m, and
shadowed etc. As far as we know, there is no work that
analyses and presents the ASER performance of RQAM
and XQAM techniques over millimeter wave (mmWave)
fluctuating two-ray (FTR) fading channels. FTR fading dis-
tribution has been recently presented as a channel model
which well captures the effects of wireless medium in
mmWave and device-to-device environments [25], [26]. Very
recently, an outdoormeasurement at 28 GHz explored that the
well-known small-scale fading distributions such as Rician,
Nakagami-m and Rayleigh cannot accurately reflect the ran-
dom fluctuations in millimeter wave signals [27]. In order to
overcome this, the FTR fading is proposed which is more
accurate compared to Rayleigh, Nakagami-m, Rician mod-
els and to the best of our knowledge, there are only a few
works over this new fading channel which can be found
in [28]–[30]. Although the FTR fading distribution contains
classical unimodal fading models such as Rician or Rayleigh
special cases, this model is inherently bimodal. At the same
time, the mmWave FTR model is a great and appropriate
fading model which takes the large heterogeneity of random
fluctuations into consideration that effect the mmWave radio
signal when propagating in the presence of multiple scatters.
Also, this model is a native generalization of the TWDP
fading model that allows the fixed amplitude specular waves
associated with line-of-sight propagation to randomly fluctu-
ate. In addition to these advantages, it also contains some con-
ventional fading distributions as special cases, i.e., Rayleigh,

Rician, Rician shadowed, one-sided Gaussian, Nakagami-q
(Hoyt), Nakagami-m, and TWDP. The mmWave FTR fading
model turns into these particular cases by using the parameter
definitions [25], [26].

Motivated by the suitability of FTR fading for millimeter
wave communications and bandwidth efficient high speed
transmission capability of QAM signaling, we derive new
and novel analytical expressions for RQAM and XQAM
schemes over millimeter wave FTR fading channels for the
first time in the literature in this work. First, we derive the
exact expression for ASER of RQAM system over millimeter
wave FTR fading channels in terms of bivariate Meijer’s G
function and then, we propose two different upper bounds
for the ASER of RQAM based on well-known approxima-
tions of Gaussian Q-function. Second, we also obtain an
asymptotic ASER expression of RQAM system to illustrate
the behaviors of the considered system at the high signal
to noise ratio (SNR) regime. Then, we evaluate the perfor-
mance of XQAM scheme over FTR fading channels. Finally,
the obtained analytical results are compared to the corre-
sponding simulations for validation purpose.

II. SYSTEM AND CHANNEL MODELS
Consider a single-input single-output (SISO) wireless net-
work over FTR fading channels and let γ denote the instan-
taneous SNR. γ = (Eb/N0) 2σ 2 (1+ K ) is the average
SNR [28]. Eb is the energy per bit, N0 is the additive white
Gaussian noise (AWGN) and σ 2 is the variance of Gaussian
noise. The probability density function (PDF) of instanta-
neous SNR, fγ (γ ), can be given as [28]

fγ (γ ) = v
∞∑
j=0

Ajγ j exp
(
−
γ

2σ 2

)
(1)

where v = mm
0(m) , Aj =

K jdj
j!0(j+1)(2σ 2)

j+1 and

dj =
∞∑
k=0

(
j
k

)(
1

2

)k k∑
l=0

(
k
l

)
0 (j+ m+ 2l − k)

× exp
(
π (2l − k) i

2

)
×

(
(m+ K )2 − (K1)2

)− (j+m)2

×Pk−2lj+m−1

(
m+ K√

(m+ K )2 − (K1)2

)
(2)

where 0 (·) is the Gamma function, m is a Nakagami-m
random variable, K is the ratio of the average power of the
dominant waves to the average power of the remaining diffuse

multipath and it is defined by K =
V 2
1+V

2
2

2σ 2
. 1 denotes the

relation between the powers of two dominant waves and given
by 1 = 2V1V2

V 2
1+V

2
2
. V1 and V2 are two specular components,

Pab (·) is the Legendre functions of the first kind [31, eq.
(8.702)]. j and l are the indexes of the summations in eqs (1)
and (2). The FTR fading model includes several well-known
fading models for different values of m, K and 1 such as
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Rayleigh, Nakagami-q, Rician, Rician shadowed and the one-
sided Gaussian as mentioned before.

III. PERFORMANCE ANALYSIS
In this section, we provide an exact and two different approx-
imate derivations of ASER for RQAM and an ASER expres-
sion for XQAM of the considered system under FTR fading
conditions.

A. EXACT ASER ANALYSIS FOR RQAM
The ASER, Pe, is generally defined as [5]

Pe =

∞∫
0

p (e| γ )fγ (γ ) dγ (3)

where p (e| γ ) is the conditional error probability for AWGN
and it is given for M -ary RQAM as [32]

p (e| γ ) = 2pQ
(
a
√
γ
)
+ 2qQ

(
b
√
γ
)

− 4pqQ
(
a
√
γ
)
Q
(
b
√
γ
)

(4)

where Q (·) is the Gaussian Q-function. M = MI × MQ,
p = 1 − (1/MI ), q = 1 −

(
1/MQ

)
, b = βa, β = dQ/dI ,

a =

√
6/
(
M2
I − 1

)
+

(
M2
Q − 1

)
β2, dQ and dI are the

quadrature and in-phase decision distance, respectively.
Substituting (1) and (4) into (3), we have

Pe=

∞∫
0

{
2pQ

(
a
√
γ
)
+2qQ

(
b
√
γ
)
−4pqQ

(
a
√
γ
)
Q
(
b
√
γ
)}

× v
∞∑
j=0

Ajγ j exp
(
−
γ

2σ 2

)
dγ (5)

After some manipulations and using
Q (x) = (1/2) erfc

(
x/
√
2
)
, the expression in (5) can be

rewritten as follows

Pe=

∞∫
0

{
p erfc

(
a

√
γ

2

)
+q erfc

(
b

√
γ

2

)
−pqerfc

(
a

√
γ

2

)

× erfc
(
b

√
γ

2

)}
v
∞∑
j=0

Ajγ j exp
(
−
γ

2σ 2

)
dγ (6)

where erfc (·) is the complementary error function. By using
[33, eq. (8.4.14.2)], 6 becomes as shown in (7) at the top of
next page.
where G (· |· ) is the Meijer’s G function [31]. Then, F1 and
F2 are derived with the aid of [33, eq. (2.24.3.1)] as

F1 =
(

1
2σ 2

)−(j+1)
G2,1
2,2

(
a2σ 2

∣∣∣∣1(1,−j) ,1 (1, 1)1 (1, 0.5)

)
F2 =

(
1

2σ 2

)−(j+1)
G2,1
2,2

(
b2σ 2

∣∣∣∣1(1,−j) ,1 (1, 1)1 (1, 0.5)

)
(8)

where 1(u, t) = t
u ,

t+1
u , ...,

t+u−1
u . In order to obtain a

solution for F3, we use the identity between exponential
function and Meijer’s G function in [33, eq. (8.4.3.1)] and
we get

F3 =
pq
π

∞∫
0

G2,0
1,2

(
a2γ
2

∣∣∣∣ 1
0, 0.5

)
G2,0
1,2

(
b2γ
2

∣∣∣∣ 1
0, 0.5

)

×G1,0
0,1

(
γ

2σ 2

∣∣∣∣−0
)
γ jdγ (9)

With the help of [34, eq. (07.34.21.0081.01)], F3 is
derived as

F3 =
(
a2

2

)−(j+1)
×G0,2:2,0:1,0

2,1:1,2:0,1

(
−j,−j− 0.5
−j− 1

∣∣∣∣ 1
0, 0.5

∣∣∣∣−0
∣∣∣∣b2a2 , 1

σ 2a2

)
(10)

where Gm,n:m1,n1:m2,n2
p,q:p1,q1:p2,q2 [· |· |· |·, · ] is the bivariate Meijer’s G

function. The exact ASER expression for RQAM is obtained
by inserting (8) and (10) into (7), as shown at the top of the
next page, and it is given below

Pe= v
∞∑
j=0

Aj

[(
1

2σ 2

)−(j+1)

×G2,1
2,2

(
a2σ 2

∣∣∣∣1(1,−j) ,1 (1, 1)1 (1, 0.5)

)
+

(
1

2σ 2

)−(j+1)

×G2,1
2,2

(
b2σ 2

∣∣∣∣1(1,−j) ,1 (1, 1)1 (1, 0.5)

)
−

(
a2

2

)−(j+1)

×G0,2:2,0:1,0
2,1:1,2:0,1

(
−j,−j− 0.5
−j− 1

∣∣∣∣ 1
0, 0.5

∣∣∣∣−0
∣∣∣∣b2a2 , 1

σ 2a2

)]
(11)

Even though (11) is an exact ASER expression for RQAM
schemes over mmWave FTR fading channels, this expression
is very difficult to compute in common software packages
since the bivariate Meijer’sG function is not built-in function
in Matlab, Mathematica, and Maple. In what follows, two
different approximations for the ASER of RQAM in simple
and easy-to-compute form will be derived.

B. ASER ANALYSIS WITH CHERNOFF
APPROXIMATION FOR RQAM
To facilitate the analysis, we require to use an approximation
for Q (·) functions in (4). The Chernoff approximation is a
well-known approximation of Q (·) and it is given byQ (z) ≈
1
2e
−z2/2 [35]. By using the Chernoff approximation, p (e| γ )

in (4) is rewritten as

p (e| γ ) ≈ p
[
e−

a2
2 γ

]
+ q

[
e−

b2
2 γ

]
− pq

[
e−

a2+b2
2 γ

]
(12)
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Pe = v
∞∑
j=0

Aj


p
√
π

∞∫
0

G2,0
1,2

(
a2γ
2

∣∣∣∣ 1
0, 0.5

)
γ j exp

(
−
γ

2σ 2

)
dγ

︸ ︷︷ ︸
F1

+
q
√
π

∞∫
0

G2,0
1,2

(
b2γ
2

∣∣∣∣ 1
0, 0.5

)
γ j exp

(
−
γ

2σ 2

)
dγ

︸ ︷︷ ︸
F2

−
pq
π

∞∫
0

G2,0
1,2

(
a2γ
2

∣∣∣∣ 1
0, 0.5

)
G2,0
1,2

(
b2γ
2

∣∣∣∣ 1
0, 0.5

)
γ j exp

(
−
γ

2σ 2

)
dγ

︸ ︷︷ ︸
F3

 (7)

Substituting (1) and (12) into (3), the ASER formulation with
Chernoff approximation for RQAM becomes

PeChernoff =

∞∫
0

{
p
[
e−

a2
2 γ

]
+ q

[
e−

b2
2 γ

]
−pq

[
e−

a2+b2
2 γ

]}
× v

∞∑
j=0

Ajγ j exp
(
−
γ

2σ 2

)
dγ (13)

Since the PeChernoff expression in (13) has three similar inte-
grals, after some mathematical manipulations and using [31,
eq. (3.381.4)], we derive the ASER as follows

PeChernoff = pv
∞∑
j=0

Aj

(
a2

2
+

1
2σ 2

)−(j+1)
0 (j+ 1)

+ qv
∞∑
j=0

Aj

(
b2

2
+

1
2σ 2

)−(j+1)
0 (j+ 1)

− pqv
∞∑
j=0

Aj

(
a2

2
+
b2

2
+

1
2σ 2

)−(j+1)
0 (j+ 1)

(14)

C. ASER ANALYSIS WITH CHIANI APPROXIMATION
FOR RQAM
To analyze the ASER for RQAMwith a different way, we use
the Chiani approximation of Gaussian Q-function which is
expressed by Q (z) ≈ 1

12e
−z2/2
+

1
4e
−2z2/3 [36]. By using the

Chiani approximation, p (e| γ ) in (4) is rewritten as

p (e| γ ) ≈ 2p
[
1
12
e−

a2
2 γ +

1
4
e−

2a2
3 γ

]
+ 2q

[
1
12
e−

b2
2 γ +

1
4
e−

2b2
3 γ

]
− 4pq

[
1

144
e
−

(
a2+b2

2

)
γ
+

1
48
e
−

(
a2
2 +

2b2
3

)
γ

+
1
48
e
−

(
2a2
3 +

b2
2

)
γ
+

1
16
e
−

(
2a2+2b2

3

)
γ
]

(15)

By inserting (15) and (1) into (3), we have

PeChiani = v
∞∑
j=0

Aj [Q1 + Q2 − Q3] (16)

where

Q1 = 2p

∞∫
0

[
1
12
e−

a2
2 γ +

1
4
e−

2a2
3 γ

]
γ j exp

(
−
γ

2σ 2

)
dγ

(17)

Q2 = 2q

∞∫
0

[
1
12
e−

b2
2 γ +

1
4
e−

2b2
3 γ

]
γ j exp

(
−
γ

2σ 2

)
dγ

(18)

Q3 = 4pq

∞∫
0

[
1

144
e
−

(
a2+b2

2

)
γ
+

1
48
e
−

(
a2
2 +

2b2
3

)
γ

+
1
48
e
−

(
2a2
3 +

b2
2

)
γ
+

1
16
e
−

(
2a2+2b2

3

)
γ
]

× γ j exp
(
−
γ

2σ 2

)
dγ (19)

Now, we have eight similar integrals in Q1, Q2 and Q3 to be
solved for deriving an ASER expression with Chiani approx-
imation for RQAM over FTR fading channels. To proceed,
with the use of [31, eq. (3.381.4)] and after performing some
analytical manipulations, we get

Q1 = 2p

(
1
12

(
a2

2
+

1
2σ 2

)−(j+1)
0 (j+ 1)

+
1
4

(
2a2

3
+

1
2σ 2

)−(j+1)
0 (j+ 1)

)
(20)

Q2 = 2q

(
1
12

(
b2

2
+

1
2σ 2

)−(j+1)
0 (j+ 1)
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+
1
4

(
2b2

3
+

1
2σ 2

)−(j+1)
0 (j+ 1)

)
(21)

Q3 = 4pq

(
1

144

(
a2 + b2

2
+

1
2σ 2

)−(j+1)
0 (j+ 1)

+
1
48

(
a2

2
+

2b2

3
+

1
2σ 2

)−(j+1)
0 (j+ 1)

+
1
48

(
2a2

3
+
b2

2
+

1
2σ 2

)−(j+1)
0 (j+ 1)

+
1
16

(
2a2 + 2b2

3
+

1
2σ 2

)−(j+1)
0 (j+ 1)

)
(22)

After puttingQ1,Q2 andQ3 in (16), anASER expressionwith
Chiani approximation for RQAM of the considered system in
the presence of FTR fading is derived as follows

PeChiani = v
∞∑
j=0

K jdj

j!
(
2σ 2

)j+1
×

[{
2p

(
1
12

(
a2

2
+

1
2σ 2

)−(j+1)

+
1
4

(
2a2

3
+

1
2σ 2

)−(j+1))}

+

{
2q

(
1
12

(
b2

2
+

1
2σ 2

)−(j+1)

+
1
4

(
2b2

3
+

1
2σ 2

)−(j+1))}

−

{
4pq

(
1

144

(
a2 + b2

2
+

1
2σ 2

)−(j+1)

+
1
48

(
a2

2
+

2b2

3
+

1
2σ 2

)−(j+1)

+
1
48

(
2a2

3
+
b2

2
+

1
2σ 2

)−(j+1)

+
1
16

(
2a2 + 2b2

3
+

1
2σ 2

)−(j+1))}]
(23)

So far as we know that the expressions, PeChiani in (23)
and PeChernoff in (14), are presented for the first time in
the literature. Now, we investigate the asymptotic behavior
of the ASER at high SNR to specify the diversity order
acquired by the considered system when Chiani approxima-
tion is used. With the assumption of γ → ∞, the 2σ 2

approaches to ∞ and truncating the infinite summation at
j = 0, the expression in (23) is simplified and obtained in

asymptotic form as

Pe∞Chiani

= v
d0
2σ 2 ×

[{
2p

(
1
12

(
a2

2

)−1
+

1
4

(
2a2

3

)−1)}

+

{
2q

(
1
12

(
b2

2

)−1
+

1
4

(
2b2

3

)−1)}

−

{
4pq

(
1
144

(
a2 + b2

2

)−1
+

1
48

(
a2

2
+

2b2

3

)−1
+

1
48

(
2a2

3
+
b2

2

)−1
+

1
16

(
2a2 + 2b2

3

)−1)}]
(24)

D. EXACT ASER ANALYSIS FOR XQAM
For XQAM, p (e| γ ) is given as [13]

p (e| γ )

= g1Qz
(
a0
√
γ , π/2

)
+

4
M
Qz
(
a1
√
γ , π/2

)
− g2Qz

(
a0
√
γ , π/4

)
−

8
M

w−1∑
k=1

Qz
(
a0
√
γ , αk

)
−

4
M

w−1∑
k=1

Qz
(
ak
√
γ , β+k

)
+

4
M

w∑
k=2

Qz
(
ak
√
γ , β−k

)
(25)

where M = 25, 27, ..., w =
√
2M
8 , a0 =

√
96

(31M−32) , ak =
√
2 ka0, k = 1, 2, 3, ...,w, g2 = 4 − 12

√
2M
+

12
2M , g1 =

4 − 6
√
2M

, αk = arctan
(

1
2k+1

)
, k = 1, 2, ..., (w− 1),

β−k = arctan
(

k
k−1

)
, k = 2, 3...,w, β+k = arctan

(
k

k+1

)
and,

k = 1, 2, ..., (w− 1). Qz (·, ·) is the generalized Marcum Q-
function. Substituting (25) and (1) into (3), we have

PeXQAM

= v
∞∑
j=0

Aj


∞∫
0

g1Qz
(
a0
√
γ , π/2

)
γ j exp

(
−
γ

2σ 2

)
dγ

︸ ︷︷ ︸
D1

+

∞∫
0

4
M
Qz
(
a1
√
γ , π/2

)
γ j exp

(
−
γ

2σ 2

)
dγ

︸ ︷︷ ︸
D2

−

∞∫
0

g2Qz
(
a0
√
γ , π/4

)
γ j exp

(
−
γ

2σ 2

)
dγ

︸ ︷︷ ︸
D3
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−

∞∫
0

8
M

w−1∑
k=1

Qz
(
a0
√
γ , αk

)
γ j exp

(
−
γ

2σ 2

)
dγ

︸ ︷︷ ︸
D4

−

∞∫
0

4
M

w−1∑
k=1

Qz
(
ak
√
γ , β+k

)
γ j exp

(
−
γ

2σ 2

)
dγ

︸ ︷︷ ︸
D5

+

∞∫
0

4
M

w∑
k=2

Qz
(
ak
√
γ , β−k

)
γ j exp

(
−
γ

2σ 2

)
dγ

︸ ︷︷ ︸
D6


(26)

The expression in (26) contains six similar integrals such as
D1-D6. In order to solve D1, D1 is re-arranged with the use
of the infinite series representation of generalized Marcum
Q-function [37, eq. (4.37)] as follows

D1 =

∞∫
0

g1Qz
(
a0
√
γ , π/2

)
γ j exp

(
−
γ

2σ 2

)
dγ

= g1 exp

(
−

(
π
/
2
)2

2

)
∞∑

r=1−z

(
a0(
π
/
2
))r

×

∞∫
0

exp

(
−
(a0)2 γ

2
−

γ

2σ 2

)
γ r+jIr

(a0π
2
√
γ
)
dγ

(27)

where Ir (·) is the modified Bessel function. To proceed,
we need to use the series representation of Ir (·) which

is defined by Ir (x) =
((
1
/
2
)
x
)r ∞∑

h=0

(
(1/4)x2

)h
h!0(r+h+1) [38,

eq. (9.6.10)]. Hence, D1 becomes

D1 = g1 exp

(
−

(
π
/
2
)2

2

)
∞∑

r=1−z

(
a0(
π
/
2
))r (a0π

4

)r
×

∞∑
h=0

( ( a0π
2

)2 1
4

h!0 (r + h+ 1)

)h

×

∞∫
0

exp

(
−
(a0)2 γ

2
−

γ

2σ 2

)
γ r+j+hdγ (28)

By using [31, eq. (3.381.4)], D1 is derived as

D1 = g1 exp

(
−

(
π
/
2
)2

2

)
∞∑

r=1−z

(
a0(
π
/
2
))r (a0π

4

)r
×

∞∑
h=0

( ( a0π
2

)2 1
4

h!0 (r + h+ 1)

)h

×

(
(a0)2

2
+

1
2σ 2

)−(r+j+h+1)
0 (r + j+ h+ 1)

(29)

Then, D2-D6 are obtained by following the same analytical
steps used for D1 as

D2 =
4
M

exp

(
−

(
π
/
2
)2

2

)
∞∑

r=1−z

(
(a1)2

2

)r

×

∞∑
h=0

( ( a1π
2

)2 1
4

h!0 (r + h+ 1)

)h

×

(
(a1)2

2
+

1
2σ 2

)−(r+j+h+1)
0 (r + j+ h+ 1)

(30)

D3 = g2 exp

(
−

(
π
/
4
)2

2

)
∞∑

r=1−z

(
(a0)2

2

)r

×

∞∑
h=0

( ( a0π
2

)2 1
4

h!0 (r + h+ 1)

)h

×

(
(a0)2

2
+

1
2σ 2

)−(r+j+h+1)
0 (r + j+ h+ 1)

(31)

D4 =
8
M

w−1∑
k=1

exp

(
−
(αk)

2

2

)
∞∑

r=1−z

(
a0
αk

)r (a0αk
2

)r
×

∞∑
h=0

(
(a0αk)2 1

4

h!0 (r + h+ 1)

)h

×

(
(a0)2

2
+

1
2σ 2

)−(r+j+h+1)
0 (r + j+ h+ 1)

(32)

D5 =
4
M

w−1∑
k=1

exp

(
−

(
β+k

)2
2

)
∞∑

r=1−z

(
ak
β+k

)r (
akβ
+

k

2

)r

×

∞∑
h=0

( (
akβ
+

k

)2 1
4

h!0 (r + h+ 1)

)h

×

(
(ak)2

2
+

1
2σ 2

)−(r+j+h+1)
0 (r + j+ h+ 1)

(33)

D6 =
4
M

w∑
k=2

exp

(
−

(
β−k

)2
2

)
∞∑

r=1−z

(
ak
β−k

)r (
akβ
−

k

2

)r

×

∞∑
h=0

( (
akβ
−

k

)2 1
4

h!0 (r + h+ 1)

)h

×

(
(ak)2

2
+

1
2σ 2

)−(r+j+h+1)
0 (r + j+ h+ 1)

(34)
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FIGURE 1. ASER performance of 4× 2 RQAM with K = 30, 1 = 0.5 and
different m parameter values.

FIGURE 2. ASER performance of 8× 4 RQAM with m = 5, 1 = 0.5 and
different K parameter values.

Then, anASER expression for XQAM in the presence of FTR
fading is obtained by inserting (29)-(34) into (26). To the best
of the authors’ knowledge, an ASER expression for XQAM
over FTR fading has not been reported in the literature, yet.

IV. NUMERICAL RESULTS
We provide the numerical results for the proposed ASER
expressions of RQAM and XQAM to show the effect of
fading parameters of FTR distribution. It should be noted
that infinite series are truncated after 40th terms to accurately
calculate the derived expressions for all results in this paper.
Analytical results of RQAM and XQAM are approved by
the numerical solution of (5) and (26) by using Mathematica
and Matlab softwares. Figs. 1 and 2 compare the PeChiani
and PeChernoff performances of 4 × 2 RQAM and 8 × 4

TABLE 1. Absolute relative difference between exact and approximate
values of the chiani and chernoff approximations for ASER of 4× 2 RQAM
with K = 30, 1 = 0.5, m = 10.

TABLE 2. Absolute relative difference between exact and approximate
values of the chiani and chernoff approximations for ASER of 8× 4 RQAM
with K = 15, 1 = 0.5, m = 5.

RQAMover FTR fading channels for different configurations
of parameters.

While Fig. 1 shows the effect of the m parameter for 4× 2
RQAM with K = 30, 1 = 0.5, the impact of K parameter
for 8 × 4 RQAM with 1 = 0.5, m = 5 is presented
in Fig. 2. In Fig 1, it can be observed that as value of the m
parameter increases, the performance of 4×2 RQAM system
over mmWave FTR fading channels improves. For example,
an ASER of 10−4 occurs at γ ≈ 30 dB when m = 5 and
the same ASER value occurs at γ ≈ 23 dB when m = 10.
On the other hand in Fig 2, an ASER level of 10−3 takes
place at γ ≈ 28 dB when K = 30, the same ASER result
with K = 15 occurs at γ ≈ 33 dB. It can be concluded that
increasing value of K provides performance improvement of
8 × 4 RQAM system over mmWave FTR fading channels.
Furthermore, the asymptotic behaviors of both 4× 2 RQAM
and 8 × 4 RQAM are given in Figs 1 and 2. It should be
emphasized that the asymptotic curves are close to analytical
curves and simulations at high SNR regime. Besides, when
the 40 terms are used for the infinite series, Table I tabulates
the absolute relative difference values for ASER of 4 × 2
RQAM with K = 30, 1 = 0.5, m = 10 over mmWave
FTR fading channels.

We can see from these results that the simulations of the
RQAM over FTR fading become very tight with theoretical
results for all SNR values. From the Fig 1, one can see that
the best performance is obtained with m = 10. It is observed
that PeChiani results are closer than the PeChernoff results to
the analytical findings for all fading parameter configurations
since the Chiani approximation is tighter than the Cher-
noff approximation. The Chiani approximation for Gaussian
Q-function includes two exponential terms, so it ensures
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FIGURE 3. ASER performance of 32-XQAM over FTR fading channels.

preferable agreement with the simulations when compared to
the Chernoff approximation which contains one exponential
term for Gaussian Q-function. For this reason, the ASER
results of RQAMover mmWave FTR channels obtained from
the Chiani approximation indicate good agreement to the sim-
ulations. This can be viewed as the reason for the deviation
of the results obtained by two bounds.

The absolute relative difference percentage for ASER of
8 × 4 RQAM with K = 15, 1 = 0.5, m = 5 over
mmWave FTR fading channels is given in Table II by using
the first 40 terms for the infinite series in the approximate
ASER expressions. In addition, Table III presents the results
of evaluating the ASER expressions in (14) and (23) at a
certain upper limit namely J . The table demonstrates the
decimal places that have not been affected with adding more
terms to the summations, in bold. From table III, it is clear
that the first 40 terms for the ASER calculation of RQAM is
quite sufficient.

In Fig. 3, the ASER performance of 32-XQAM under FTR
fading conditions is illustrated when K = 30, 1 = 0.5,
m = 4, 5 and 10. The ASER performance of XQAM
scheme withm = 10 outperforms the performance of XQAM
with m = 4, 5 as expected since the higher m param-
eter values correspond to good fading conditions in FTR
channels. In this figure, the results of the special cases are
provided for mmWave FTR fading channels as Nakagami-
m case (K → ∞, 1 = 0, m = m) and Rayleigh case
(K → ∞, 1 = 0, m = 1) are included. The case of
1 = 0, K → ∞, m = 1 represents NLOS environments
as the channel model turns into Rayleigh fading. In order to
reflect the LOS effects, the fading parameters should be set
as1 = 0, K = K , m→∞ which corresponds to the case of
Rician fading. It should be noted that the analytical results are
very close to the exact simulations for 32-XQAM. By these
means, the accuracy of analytical work proposed in this study
is demonstrated. In Table IV, the results of evaluating the
ASER expression of XQAM by inserting (29)-(34) into (26)

TABLE 3. Values of ASER with cherfnoff (14) and chiani (23)
approximations for different levels of truncation (γ = 35 dB, K = 15,
1 = 0.5, m = 5).

TABLE 4. Values of ASER FOR 32-XQAM with H = 100 and R = 40 for
different levels of truncation (γ = 45 dB, K = 30, 1 = 0.5, m = 4).

at upper limits J, H and R are illustrated. It is seen that
40 terms for the ASER computation of XQAM are enough
to get a given accuracy in this paper.

V. CONCLUSION
In this study, we have presented the ASER performance of
RQAM and XQAM signaling schemes over millimeter wave
FTR fading channels. New and novel expressions are derived
and evaluated for various configurations of channel parame-
ters. An exact ASER expression of RQAM over millimeter
wave FTR fading channels is obtained. In addition to this,
two upper bound ASER expressions are proposed for RQAM
scheme based on two different approximations of Gaussian
Q-function for comparison purpose. Then, an exact ASER
expression is obtained for the ASER of XQAM technique in
terms of infinite series representation. Furthermore, the ana-
lytical results are validated by exact simulations which show
the accuracy of proposed analysis in this paper.
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