
Received July 10, 2019, accepted July 20, 2019, date of publication July 31, 2019, date of current version August 15, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2932151

Parallel BVH Construction Using Locally
Density Clustering
YINGSONG HU, WEIJIAN WANG, DAN LI , QINGZHI ZENG , AND YUNFEI HU
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding author: Dan Li (lidanhust@hust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61502185 and in part by the
Fundamental Research Funds for the Central Universities under Grant 2017KFYXJJ071.

ABSTRACT A novel bounding volume hierarchy (BVH) construction method based on locally dense
clustering (LDC) was proposed for the low quality of BVH constructed in a complex scene with uneven
distribution of primitives. The quality of the BVH was effectively improved by defining primitive density,
analyzing the relation between density and traversal efficiency, selecting primitives with high density as the
clustering center at the early stages of construction, and combining with top-down iterative clustering and
bottom-up agglomerative clustering (AC). In order to effectively calculate primitive density, a local search
strategy based on Morton coding was adopted. This strategy can quickly get approximate primitive density
information through GPU.We evaluate the method and show that, in the complex building scene with uneven
distribution of primitives, ourmethod is 13% higher in traversal speed and 11% lower in surface area heuristic
(SAH) cost. That means our method can improve the rendering speed of ray tracing effectively.

INDEX TERMS Primitive density, Morton code, local search, parallel Construction.

I. INTRODUCTION
Ray tracing is a global illumination rendering algorithm. Its
physical principle based on ray propagation can better render
the light phenomena of the scene such as blurring, shading,
and highlighting, thus making the image more realistic and
closer to the goal of photo-quality image pursued by humans.
Although ray tracing has many advantages, it also has limita-
tions. It is a computationally expensive recursive operation
and its key is to find the nearest intersection between a
given ray and the scene. In order to get high-quality ren-
derings, a lot of rays will certainly be traced. In the actual
calculation process, billions of rays may be required for the
intersection test with millions of primitives in the scene.
Therefore, we must organize and manage the 3D scenes with
specific acceleration structures to improve computational
efficiency. The most common acceleration structure is BVH.
Compared with other acceleration structures based on space
division, such as uniform lattice and K-D tree, the BVH
has the following advantages: (1) Each triangular facet is
stored only one reference in the BVH, thus the BVH has a
predictable memory usage. (2) The BVH can better process

The associate editor coordinating the review of this manuscript and
approving it for publication was Noor Zaman.

dynamic scenes by adjusting the topology. In recent years,
many scholars have improved and optimized the construction
algorithm of the BVH. Currently, the construction methods
of the BVH can be roughly divided into three categories:
top-down, bottom-up and incremental construction methods.
Among these methods, in terms of SAH cost, the bottom-
up construction method can generate high-quality BVH [1].
Recently, some novel construction ideas have been proposed.
Weller et al. [2] proposed to construct BVH on the GPU by
the clustering algorithm Batch Neural Gas (BNG) of machine
learning. However, their method is not for the 3D scenes
represented by the mesh model, but for those represented by
the voxel. The construction of BVH is to divide the graphics
primitives in 3D scenes and actually is a hierarchical cluster-
ing problem. Therefore, Meister and Bittner [3] first applied
K-Means clustering method to the construction methods of
BVH and completed the construction on the GPU. Mean-
while, tests have shown that their results are comparable to
the most advanced methods available today.

In this paper, we proposed, by analyzing the distribution
of primitive density, to construct BVH on the GPU by the
method based on LDC. Our method selects the clustering
center by calculating the local primitive density to construct a
BVH by top-down iteration and then construct the final BVH

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 105827

https://orcid.org/0000-0003-4826-9423
https://orcid.org/0000-0002-8974-8116

Y. Hu et al.: Parallel BVH Construction Using LDC

FIGURE 1. An example of the bounding volume hierarchy in 2D. The root
nodes in this figure represent the bounding boxes in the whole scene; A,
B and C represent the bounding boxes of geometric primitives, forming
the internal nodes of the BVH.

by simple AC on this basis. The experimental comparison
showed that our method is equivalent to that of Meister
and Bittner [3] in terms of construction speed. Meanwhile,
in most scenes with uneven distribution of primitives, our
SAH cost, traversal speed, end-point overlap (EPO) [4] and
other quantitative criteria are superior to their method.

II. RELATED WORK
As an object-based scene management technique, the BVH
has been widely applied in collision detection and ray tracing.
It can generate ordered structured data, i.e. a binary tree, from
the polygon soup with no structure or topological information
by following certain strategies. The BVH can organize scenes
in a hierarchical tree structure. Leaf nodes contain geometric
primitives; the internal nodes represent the bounding box
containing all descendants; root nodes are expressed as the
bounding box containing the whole scene. The schematic
diagram of BVH is shown in Figure 1.

Based on BVH, a tree structure, the average ray intersec-
tion complexity of ray tracing decreases fromO(n^2) toO(log
n). Currently, the construction methods of the BVH can be
roughly divided into three categories: top-down, bottom-up
and incremental construction algorithms.

A. TOP-DOWN CONSTRUCTION ALGORITHM
This method is the earliest method and starts with the root
nodes that initially contain all primitives and recursively
divides the set of primitives into two subsets according to a
certain strategy until all leaf nodes are processed. In 1980,
Rubin andWhitted [5] first proposed the concept of BVH and
manually constructed the BVH acceleration structure of 3D
scene objects. Afterwards, Weghorst et al. [6] proposed to
construct the BVH with modeling hierarchy. The selection
of each internal node in the BVH has O(n) selection modes.
The key problem is how to select the division mode. Kay and
Kajiya [7] designed and used the BVH construction algorithm
based on median division. In this algorithm, by selecting the

bounding boxes of the geometric primitives closest to the
two sides of the axis, a segment is obtained by connecting
the centers of the two bounding boxes; the midpoint of the
segment is selected as the division point, with the left part
divided into the left treelet and the right part into the right
treelet. However, this method has poor performance for the
circumstance where objects are unevenly distributed. Later,
Goldsmith and Salmon [8] proposed the SAH cost model,
the main idea of which is that on the selected divisional plane,
it should be possible to boundmore geometric primitives with
fewer domains. The division is carried out according to this
strategy. The smallest divisional plane of the SAH cost is
selected at each level of BVH construction, with the final
results constructed in a top-down and greed manner. This
method can obtain a superior balance between the traversal
times and intersection times of rays, thus the acceleration
structure with higher quality can be obtained. However, since
the computational complexity of the SAH cost is O(n^2) and
almost every node needs to be calculated, the construction
time of this cost model is much longer. Within a period
afterwards, many scholars have improved the SAH-based
top-down construction algorithm. For example, Wald [9],
Wald et al. [10], and Ize et al. [11] used the approximate
SAH cost function of binning thought for BVH construction;
and Hunt [12] recommended using the structure of the scene
graph to accelerate the BVH construction process and reduce
the computational complexity. Dammertz et al. [13] proposed
to use the BVH with a high branching coefficient to make
better use of the SIMD units of modern CPU.

With the rapid development of modern CPU and GPU,
many top-down parallel BVH construction methods based on
multi-core CPU and GPU have been proposed accordingly.
Lauterbach et al. [14] held that the objects that are adjacent
in space should be divided into the same level of the bounding
box, thus they put forward a GPU method based on Morton
code. This method is known as LBVH and is deemed as
the fastest BVH construction algorithm. However, the BVH
constructed by this method is of low quality. Pantaleoni and
Luebke [15] expanded the LBVH and proposed the HLBVH
method. Thismethod divides the construction process into the
upper and lower levels. The construction method based on the
SAH cost model is adopted in the higher level and the parallel
construction method based on Morton coding in the lower
level, thus improving the quality of the BVH to some extent.
Apetrei [16] optimized the LBVH by reducing the number
of iterations. Afterwards, the studies on the BVH construc-
tion based on Morton code did not stop. Vinkler et al. [17]
extended on the basis that the original Morton code only
encodes the spatial coordinates, increased a coding bit of
geometric primitive size. The objects with more primitives
can be conveniently split out via the primitive size bit at a
higher level during the construction as soon as possible. The
top-down method is advantageous in the construction speed.
However, since the divisional plane selected is optimal in
the current step, it is difficult to obtain the global optimal
results.

105828 VOLUME 7, 2019

Y. Hu et al.: Parallel BVH Construction Using LDC

B. BOTTOM-UP CONSTRUCTION ALGORITHM
Different from the top-down method, the bottom-up method
focuses on the selection of the global optimal divisional
plane. This method starts with leaf nodes and combines the
primitives in pairs according to different combination meth-
ods to form an internal node of BVH until the final root node
is completed.

Walter et al. [18] first used Agglomerative Clustering(AC)
algorithm to construct a BVH. Compared with the top-down
construction algorithm, AC can obtain the BVH with min-
imal SAH cost, but it also takes a longer time. The AC
time complexity is O(n^3). Later, Gu et al. [19] improved
this algorithm and proposed approximate agglomerative clus-
tering (AAC) algorithm. Their method first conducts space
division of the 3D space. The AC algorithm is separately
performed in each space after the division, thus the calcu-
lation amount of AC method can be reduced; the treelet
with the lowest local cost in each part is approximately
obtained, thus improving the construction speed. Inspired by
this idea, Meister and Bittner [20] proposed the bottom-up
ordered clustering construction algorithm PLOC. The clus-
tering step was completed by bottom-up iteration and by
assigning the two primitives that are close to each other into
the same cluster. Although this method is slower than the
top-down method in terms of construction speed, the BVH
constructed is of higher quality and is more suitable for
complex scenes.

C. INCREMENTAL CONSTRUCTION ALGORITHM
The incremental construction method is quite different from
the former two methods and is based on the existing BVH
structure. On this basis, certain strategies are optimized to
obtain a BVH with higher quality. Its main research direc-
tion also focuses on optimizing strategies. Bittner et al. [21]
significantly optimized the SAH cost by the deletion, search
and insertion operations of nodes. Karras and Aila [22] suc-
cessively proposed to optimize the quality of the BVH by
means of the topological modification of the existing BVH.
Meister and Bittner [23] completed the incremental construc-
tion on the GPU on this basis, improving the construction
speed. Hendrich et al. [24] proposed a progressively refined
cut strategy, by which the refined cutting is performed on
the BVH constructed by LBVH method. This method can
reduce the workload involved in each step in the construction
process. Currently, the incremental construction method is
more suitable for dynamic scenes with object updates. Its
disadvantage is that it takes a longer time to construct and
relies on the existing BVH construction methods.

In conclusion, the construction methods of BVH are still
continuously studied. How to ensure real-time construction
and the quality of BVH is still the major problem at present.
On the one hand, although the top-down method has high
construction speed and is convenient and parallel, the quality
of the final BVH is not as high as that constructed by the
bottom-up method. Therefore, this method is not suitable for
complex scenes. On the other hand, the construction speed

of bottom-up and incremental methods is much lower than
that of the top-down method. Considering the advantages and
disadvantages of the three methods, our method started in
two dimensions. In the horizontal dimension, the fast iterative
clustering is performed on the nodes at each level of the BVH;
in the vertical dimension,

AC is conducted on the treelet to optimize the quality of
the BVH. Our method maintained high-quality BVH struc-
ture while ensuring the construction speed by the separate
parallel processing in two dimensions, and showed excellent
performance in complex scenes with uneven distribution.

III. PRIMITIVE DENSITY
A BVH with the higher quality should have the following
characteristics: (1) higher construction speed: the timeliness
of the construction speed is the basis to ensure the timeliness
of ray tracing; (2) lower SAH cost; and (3) lower spatial
overlap. The excessive spatial overlap is a major cause for
the low quality of BVH. The higher the ‘‘overlap’’ of the
bounding boxes corresponding to the two treelets, the more
likely it is that a ray will hit both treelets as it passes through
the region. This means that both treelets have to undergo
intersection test and that the costs of traversal and intersection
tests will be increased accordingly, thus lowering the final
rendering efficiency. On this basis, we established a primitive
density model via the experimental contrastive analysis of the
relation between primitive density and the traversal speed of
BVH. This paper first introduces the definition of primitive
density and then the relation between primitive density and
traversal efficiency.

A. DEFINITION OF PRIMITIVE DENSITY
This paper defines primitive density by analyzing the dis-
tribution of geometric primitives in 3D scenes to determine
the closeness between primitives. In a given 3D scene model
with a size of n, n represents the number of primitives, i.e.
C = {C1,C2, · · · ,Cn}. The search radius r is defined. For
any primitive Ci, i ∈ n. A sphere is created in the 3D space
with the primitive center as the center of sphere and the search
radius r as the radius Qi, then the density ρi of the primitive
Ci is defined as follows:

ρi =
∑
j∈C/Ci

χ (dist(Ci,Cj)− r)

χ (d) =

{
1, x ≤ 0
0, x > 0

(1)

where, dist represents the Euclidean distance between the two
primitive centers. For the sake of convenient calculation, the
distance between the centers of primitive bounding boxes is
simply used to replace the Euclidean distance. The specific
definition of the primitive density ρi expressed by this equa-
tion is as follows: the number of other primitives contained
in the sphere with the primitive center as the center of sphere
and with a radius of r . Figure 2 is the two-dimensional (2D)
diagram of primitive density.

VOLUME 7, 2019 105829

Y. Hu et al.: Parallel BVH Construction Using LDC

FIGURE 2. 2D diagram of primitive density. In this figure, the triangles
represent primitives, red circles the circle with a radius of r and with the
center of the primitive as its center. It can be seen from the above
definition of primitive density that the density of the upper red primitives
is 3 and that of the lower red primitives 4.

According to the definition of primitive density, the greater
the primitive density, the greater the number of adjacent prim-
itives in space, the higher the closeness between primitives,
and the more likely it is to be the center of the objects in
the scene. The density map of the scene can be obtained by
calculating the density of each primitive by the primitives in
the traversal scene. Figure 3 provides the density and heat
maps of the three scenes under three different fields of view.

B. RELATION BETWEEN PRIMITIVE DENSITY AND
TRAVERSAL EFFICIENCY
When the left and right nodes of BVH have high spatial
overlap, in the stack-based traversal process, the left and right
nodes will be pushed into a stack for traversal to determine
whether a ray intersects with the nodes. Therefore, when this
happens in the higher level of the BVH, the traversal of the
corresponding several levels may be needed to determine
the nearest intersection, which increases the computation
overhead of traversal steps and primitives intersections. The
following conclusion is drawn by calculating the Pearson
correlation coefficient between primitive density and traver-
sal times: there is a certain degree of correlation between
primitive density and traversal times. For primitives with
greater primitive density, their computation overhead in the
ray traversal process is also greater. Figure 4 provides the
correlation between primitive density maps and traversal heat
maps.

During the experiment, we selected 6 scenes with differ-
ent complexity; for each experimental scene, we selected 5

different views for ray traversal. The construction method
of the BVH was LBVH, the fastest method at present. The
traversal times of each ray in the BVH, the density of the
nearest primitive that intersects with the ray were recorded
respectively to generate the traversal heat map T and the
density heat map G, respectively. The correlation coefficient
between T and G was obtained by calculating the color dis-
tribution between the two heat maps:

Correlation :=
N
∑
xiyi −

∑
xi
∑
yi

σxσy
(2)

where, xi and yi represent the color values of the traversal
heat map T and the density heat map G at pixel I, σx =√
N
∑
x2i − (

∑
xi)2, σy =

√
N
∑
y2i − (

∑
yi)

2
. We calcu-

lated the correlation coefficient between ray traversal times
and primitive density by experiment. The data is shown
in Table 1.

TABLE 1. Correlation coefficient between density and traversal efficiency.

According to the calculation of the correlation coefficient,
the primitive density is deemed to be significantly correlated
to the speed at which the ray traverses the primitive. The
reason for this is that since the primitive density is great and
there is a lot of overlap with surrounding primitives when
constructing the BVH, the overhead of traversal times will be
increased accordingly in the traversal process. On this basis,
this paper proposed a BVH construction method based on
local primitive density clustering. This method can position
the clustering center to the model center in combination
with the density distribution information of geometric primi-
tives, separate the primitives with greater density from other
primitives at the higher level of hierarchical clustering, and
can effectively improve the quality of the BVH, make the

FIGURE 3. Sponza (262K) (Left), Sibenik (752K) (Middle) and FairyForest (174K) (Right) and their density maps in the corresponding three
views the white part represents that the density of the region is greater.

105830 VOLUME 7, 2019

Y. Hu et al.: Parallel BVH Construction Using LDC

FIGURE 4. Traversal heat map (Upper). The darker the color, the more the traversal times at the primitive. The lower one is the primitive density
map obtained by calculating the primitive density. The brighter the color, the greater the primitive density. The left, middle and right are models
Sponza (262K), Sibenik (752K) and FairyForest (174K), respectively.

FIGURE 5. Frame diagram of the algorithm. In this figure, our algorithm is
mainly divided into two phases: Local density calculation and BVH
construction phases.

bounding box more compact and reduce redundant space.
The steps of the algorithm proposed in this paper will be
introduced in detail.

IV. BVH CONSTRUCTION VIA LDC
This paper focuses on the construction of BVH by the LDC
method. The overall framework is shown in Figure 5.

This method can be roughly divided into two phases:
1) Calculation of local density. We found in the study that

the computation overhead of the density is very high. The
time complexity is O(n^2). In the test, we adopted a local
density calculation method based on Morton coding. We can
get the approximate local density map of the whole scene by
the local search strategy. Later, k primitives with the greatest
local density were selected as the initial clustering center to
be entered into the next phase.

2) BVH construction. This phase can be specifically
divided into two subphases: horizontal iterative clustering
and vertical optimization subphases. (1) Horizontal itera-
tive clustering Each iterative process clusters the primitives
currently processed and assigns them to the corresponding
clusters represented by the clustering center according to the
distance formula. All primitives in the scene can be divided
into K clusters by an iteration. The K clusters form a one-
level structure in the BVH. Later, each cluster is iteratively
re-clustered to obtain a k-ary tree. (2) Vertical optimization
For the k-ary tree obtained in the previous phase, a simple AC
method is used to optimize it into a complete binary tree in a
bottom-up manner, thus the BVH construction of the whole
scene is finally completed.

In the next part, we will specifically describe the detailed
process of these two steps and later provide the process
outline of the whole algorithm.

A. CALCULATION OF LOCAL PRIMITIVE DENSITY
In the study, we found that the calculation of the density
of 3D scene is time-consuming for the calculation of the
density of a primitive needs to traverse the distance between
this primitive and all other primitive in the scene. The time
complexity is O(n^2). It obviously cannot meet the speed of
BVH construction. In fact, we do not need to traverse all
primitives, when the center distance of a certain primitive
is greater than the density radius r, we can sort out all the
primitives after that primitive for the center distance of such
primitives must be greater than the density radius r. For this
purpose, we adopted a local density calculation method based
on Morton code. This method can significantly improve the
calculation efficiency by performing parallel computing on
the GPU. The calculation process is roughly divided into
two steps: (1) sorting all primitives in the space with Morton
curve; and (2) performing a local search in sorted primitives
and calculating the approximate primitive density, i.e. the
local density. Next, we will specifically describe the local

VOLUME 7, 2019 105831

Y. Hu et al.: Parallel BVH Construction Using LDC

FIGURE 6. 2D diagram of Morton code. The continuous Morton curve on
a 2D plane is obtained by the sequential connection of Morton code.

density calculation process and provide the error between the
approximate density and the actual density by error analysis.

1) SPATIAL SORTING BASED ON MORTON CODE
Morton code is a coding method that maps quantized multi-
dimensional vectors into one-dimensional (1D) vectors and
can maintain the local characteristics of data points. The
Z-shaped space-filling curve can be obtained by encoding
and sorting the spatial uniform grid by means of Morton
code. The Z-shaped curve has a certain spatial locality, that
is, the spatially adjacent grids are adjacent on the mapped
Z-curve. Compared with other space-filling curves with a bet-
ter spatial locality, such as the Hilbert curve, the calculation
method of Z-shaped curved is simpler and more efficient.
This paper used Morton code for the spatial sorting of the
primitives in the 3D scene. The Z-shaped curve in 2D spaces
is shown in Figure 6.

We calculated the Morton code corresponding to the mid-
point of all primitives on the GPU in a parallel manner.
Next, we used the RadixSort on the GPU to sort such data,
thus a spatially coherent collection of primitives as shown
in Figure 7 can be obtained.

2) LOCAL SEARCH
For each primitive, the local density is needed to approxi-
mately replace the density, so a local search radius r is defined
in this paper. We calculated the local density of the primitive
by local search radius r on the 1D Z-order. For example, for
the primitive Ci with an index of i, we searched the primitive
within the range (1 − r, i + r) along the sorted Z-order,
and calculated the density of the primitive Ci by the defined
density calculation formula. See Figure 8 for an example.

The density calculation formula is as follows:

ρi =
∑

j∈(i−r,i+r)/i

d(Cj,Ci) =
∑

j∈(i−r,i+r)/i

e−dist(Cj,Ci) (3)

FIGURE 7. Collection of sorted primitives.

FIGURE 8. Schematic diagram of local search. In this figure, all primitives
have been ordered in space by Morton code and connected by Z-order.
In this figure, the search radius r=2; the red primitives are those needing
density calculation; and the blue ones are those within the search radius.

where, ρi represents the local density of the primitive Ci.
It should be noted that this formula is different from the
formula mentioned in Section 3 in that the density value
calculated by the latter is a discrete value. We found in the
test that the probability of repetition is very high, thus we
converted it into a continuous value by a gaussian kernel
function to lower the continuous value. Besides, in terms
of the function of the distance between two primitives dist ,
we referred to the study of Meister and Bittner [3]. For the
axis-aligned bounding box (AABB), one bounding box is
represented by two poles bmin and bmax, which represents the
minimum and maximum coordinates among all coordinate
points of the bounding box. The bounding boxes b1 and b2
of two geometric primitives are given to define the distance
function:

d(b1, b2) =
∥∥∥bmin

1 − b
min
2

∥∥∥2 + ∥∥bmax
1 − bmax

2

∥∥2 (4)

105832 VOLUME 7, 2019

Y. Hu et al.: Parallel BVH Construction Using LDC

FIGURE 9. Approximate local density map with a search radius r=100 (Upper) and the density map (Lower). The brighter the color, the higher
the primitive density there. The left, middle and right are models Sponza (262K), Sibenik (752K) and FairyForest (174K), respectively.

The experiment of Meister and Bittner [3] showed that the
distance function corresponds to the most stable results of
the final BVH constructed. In the actual calculation process,
we assigned a thread for each Ci on the GPU and completed
the parallel computing process of the local density of all
primitives. See Algorithm 1 for the calculation pseudocode
of this process.

Suppose that n represents the number of scene primitives
entered, r is the search radius, and p is the number of thread
cores assigned upon parallel computing. Next, we will specif-
ically analyze the average time complexity of each method
of calculating local density under serial computation and
parallel computing.

In the steps of the calculating scene bounding box and
Morton code, the serial version needs to traverse all prim-
itives entered, with average time complexity of O(n). The
complexity can be lowered to O(n/p) by the parallel com-
puting on the GPU. In the step of sorting the Morton code,
the time complexity of the use of quick sorting by the serial
method is O(n log n). The complexity can be lowered to
O(log n) by the radix sorting of the GPU. The thought of
local density calculation is the core of our algorithm. This
step needs to perform a local search for each primitive, thus
the time complexity of this step under the serial version
is O(n) and the average time complexity under the GPU
O(n/p). In conclusion, the average time complexity under
the serial version is O(n log n) and that under the parallel
version O(n/p).

3) ERROR ANALYSIS
By the above-mentioned two steps, we can obtain the local
density of primitives. In fact, the Z-curves formed by Morton
code are not completely ordered and adjacent. The existing
singular points will cause errors. Therefore, the quality of the
approximate density was evaluated by calculating the relative
errors between the density and the local density in the test.

Algorithm 1 Pseudocode for Computing Locally-Density
Result: Locally Density Pi=[P1,P2, . . . ,Pn]
initialization;
Input: Ci=[C1,C2, . . . ,Cn]
∗compute scene box∗

BBOX sceneBox;
for i=0 to n

sceneBox = sceneBox.grow(Ci.getBBox());
end for
∗compute Morton-Code∗

Mi=[M1,M2, . . . ,Mn]
for i=0 to n in parallel do

Mi = compute30MortonCode(Ci.centroid);
end for
∗radix sort By Morion code∗

C=CUB::RadixSort(C,M);
∗compute locally density∗

for i=0 to n−1 in parallel do
for j=max(i−r,0) to min(i+r,n)
if i .= j then

Pi += CalculateDensity(Cj,Ci);
else

continue;
end for

end for
return P;

Figure 9 provides the density map G and the local density
map Gm of some scenes.
The calculation formula for the relative error RE of the

local density is defined as follows:

RE =

∑
i∈n
|ρr=n(i)− ρr=λ(i)|∑
i∈n
|ρr=n(i)|

(5)

VOLUME 7, 2019 105833

Y. Hu et al.: Parallel BVH Construction Using LDC

TABLE 2. The relative error between local density and density.

where, n is the total number of primitives, ρr = λ(i) is the
local density of the primitiveCi when the search radius r = λ.
When r = n, the value calculated is the density from the
traversal of all primitives. Table 2 provides the relative error
of local density of the nine experimental models when the
search radius r=25, 50 and 100. It can be seen from the rela-
tive error calculated by the experimental data that the relative
error decreases with the increase of the search radius r and
is already very small when r=100. The calculation amount
increases with the increase of the search radius, so does
the corresponding time consumption. Figure 10 provides the
time consumption by the calculation of the local density
under different search radii in the Conference model. With
a progressive increase of 10 in the search radius, the time
consumption is about 0.384 ms when r=10, about 1.825 ms
when r = 50 and about 3.681 ms when r = 100. In general,
the search radius is in a linear correlation with the time
consumption, thus it can be concluded from the combina-
tion of the relative error and the time consumption that: the
smaller the search radius, the greater the relative error, but
the relatively shorter the time consumption; on the contrary,
the greater the search radius, the more stable the relative error
and the longer the time consumption. Therefore, the selection
of an appropriate search radius, on the one hand, affects
the final clustering effect, and on the other hand, affects the
construction speed of BVH. In this paper, the search radius
r = 50 was confirmed to be the appropriate search radius by
experiments.

While calculating the local density property ρi of primi-
tive, the max-heap and min-heap of size k is maintained by
the shared memory within blocks; the k primitives with the
highest local density are obtained by the merging between
blocks; finally, the k primitives are entered into the next step
as clustering centers.

B. CONSTRUCTION OF BVH
The density map of the scene and k initial clustering centers
are obtained by approximate calculation and by the local
density calculation method based on Morton coding. In this
section, we will enter BVH construction phase which starts
from the horizontal and vertical dimensions to obtain a K-ary

FIGURE 10. The time consumption of calculating density under different
search radius in the conference model.

tree as an intermediate result by horizontal iterative cluster-
ing. Later, this K-ary tree is optimized to a binary BVH by
vertical optimization.

1) HORIZONTAL ITERATIVE CLUSTERING
This phase is divided into three subphases according to dif-
ferent iteration phases: (1) initial clustering; (2) intermediate
iterative clustering; (3) termination iteration.

a: INITIAL CLUSTERING
The k initial clustering centers calculated by local density are
characterized by high density. We can know, by analyzing the
correlation between primitive density and traversal efficiency,
that, compared with other primitives, these primitives have
high overlap with surrounding bounding boxes and that, in
the BVH constructed, such primitive will not only affect the
traversal results of the bounding boxes at the same level, but
also affect all nodes from the root node to that primitive node.
Therefore, it is better to separate these primitives from other
primitives at the higher level of the BVH tree. For this pur-
pose, the K primitives were selected as the clustering centers
upon initial clustering, in order to separate these primitives
at a higher level. The specific process is roughly as follows:
all other primitives are traversed; the method used here is the
same as that used to calculate the local density; on the GPU,
a thread is assigned to each primitive on warp; the distance
between the primitive and K clustering centers is calculated;
the Formula 1 proposed byMeister and Bittner [3] is also used
as the distance function. All primitive points are divided into
the nearest centers to complete a clustering process and obtain
the K clusters after clustering. The K clusters can obtain the
first level of K-ary tree, i.e. K intermediate nodes of the BVH,
while the parent node of these nodes is the bounding box
node in the scene. Figure 11 provides the effects of initial
clustering.

b: INTERMEDIATE ITERATIVE CLUSTERING
A level of the BVH can be constructed by dividing K clus-
ters into the K internal nodes in the BVH, thus completing
an iterative process. In this phase, K centers are randomly

105834 VOLUME 7, 2019

Y. Hu et al.: Parallel BVH Construction Using LDC

FIGURE 11. Schematic diagram of primary clustering segmentation.
Parameter K=8; and the primitives belongs to different clusters are
displayed in different colors.

FIGURE 12. Schematic diagram of K-BVH construction. Pass n represents
the nth horizontal clustering process. A level of the K-ary tree is
constructed by each horizontal clustering process.

selected as the initial clustering centers of the intermediate
iterative clustering process; the iteration parameter i is set;
new cluster centers will be recalculated upon each itera-
tion. The calculation formula for new cluster centers is as
follows:

ri = C t
i =

1
|C t

i |
(
∑
bj∈C ti

bmin
j ,

∑
bj∈C ti

bmax
j) (6)

where |Ct
i| is the number of primitives within the cluster; bj

is the bounding box of the primitive j; the value calculated
by the formula is the mean of the bounding boxes of the
original clusters. When the number of iterations is greater
than i, the iteration stops; when the number of iterations is set
to 0, i.e. no cluster centers are calculated, this process is the
same as the initial clustering. The clustering process at each
level can be completed on the GPU by parallel computing
by assigning thread. Two queues were used throughout the
process: one as input queue and the other as output queue.
The input queue is designed to process new unstarted tasks
and the output queue to calculate and assign new tasks. At the
beginning of the algorithm, the output queue has only one task
called the initial clustering aimed to construct the upper level
node of the BVH. When this task is fulfilled, it is dequeued
to the output queue. Another corresponding relation between
the index array storage primitive index and the queue was
additionally used. Each task is entered into the input queue by
calculating and assigning K new tasks. The complete process
is shown in Figure 12.

FIGURE 13. Schematic diagram of bottom-up AC. In this figure, the blue
nodes are the leaf nodes before the processing with the AC method; the
green ones are the intermediate nodes constructed by the AC method; the
red ones are the root nodes finally constructed to surround all leaf nodes.

c: TERMINATION ITERATION
Blank nodes may be obtained in the clustering process,
the reason for which is that the number of primitives in a
cluster may be 0 in the process of assigning to the corre-
sponding cluster. In order to avoid such condition, we set
iteration termination rules, that is, when the number of the
primitives in the cluster to be processed is smaller than m∗K,
the iteration process under this thread is terminated and the
node marked as a leaf node; m represents the maximum
number of primitives contained in the leaf node.

2) VERTICAL OPTIMIZATION
The K-ary tree after clustering has been obtained by the
above-mentioned method. Next, the bottom-up clustering
will be conducted on this K-ary tree by the simple parallel AC
algorithm to construct intermediate nodes. This part is called
post vertical optimization. Since the bottom-up construction
method starts with the leaf node, a discriminating method
must be introduced to judge whether the two given bounding
boxes are more suitable for constructing the new parent node
as shown in Figure 13. The method is the same as that of
Wald [9], Wald et al. [10], and Ize et al. [11]. We also
adopted the SAH cost function as the standard for merging
two enclosing boxes. The specific SAH cost function is as
follows:

C(i) = SL(i)nL(i)+ SR(i)nR(i) (7)

where, SL(i) and SR(i) represent the left and right sub bound-
ing boxes of the bounding box i. That is, the bounding
boxes of the cost need to be judged. nL(i) and nR(i) are
the number of primitives in the two bounding boxes. At the
beginning of the AC algorithm, the cost of any two clus-
ters is calculated successively with each bounding box as a
cluster. The pair of clusters with the lowest cost is selected
to generate their parent node and generate a new clus-
ter with the bounding box of the parent node. Afterwards,
the algorithm is restarted until there is only one cluster in
the collection. Since we have obtained all treelets and they
are not correlated, they can be conveniently processed in
parallel.

VOLUME 7, 2019 105835

Y. Hu et al.: Parallel BVH Construction Using LDC

V. RESULTS AND ANALYSIS
A. EXPERIMENTAL SCHEME
Three different methods and the method proposed in this
paper were adopted in the experiment to carry out the BVH
construction experiment on the 6 groups of 3D models with
different complexity. Since the SAH cost function can only
express the approximate expected cost of the whole accel-
eration structure of ray traversal and the ray may exit the
traversal process very early in the actual traversal process,
the SAH cost cannot be used as single evaluation criteria.
Therefore, the time of BVH construction, SAH cost, traversal
speed, overlap and other metrics in this test are recorded
in this section for detailed analysis. The BVH construction
methods in contrast to our method are as follows: (1) the
LBVH proposed by Bittner et al. [21]. This method is cur-
rently themethodwith the highest speed of BVH construction
on the GPU, but its disadvantage is that the quality of the
BVH constructed is too low. The quality here refers not
only to SAH, but also to traversal speed and EPO and other
EPO metrics. (2) The HLBVH method proposed by Panta-
leoni and Luebke [15]. In order to ensure the consistency
of the experiment, 60-bit coding is used in the calculation
method based on Morton coding of the HLBVH and the
method proposed by us, thus the probability of repetition
of Morton coding can be effectively lowered. (3) The BVH
construction method based on K-means proposed by Meister
and Bittner [3]. In the experiment, we adopted the optimal
parameter setting proposed by them in their paper. (4) Ours
provided appropriate parameters by the experimental con-
trastive analysis of the performance of different parameters
in a fixed scene and by measuring the construction time and
traversal efficiency: clustering center K = 8, search radius
r = 50 and the number of iterations i = 5. According to the
error analysis in Section 4.4, the greater the search radius,
the longer the time for calculating the local density. Since the
error is very small when the search radius r = 50, we hold
that r = 50 is appropriate. Besides, the maximum number
of primitives contained in the lead node m is set to 4. That
is, when the number of the primitives in the cluster to be
processed is smaller than m∗K, the termination iteration pro-
cess is initiated. All experiments are completed on computers,
the CPU of which is Ryzen 1700 3.7Ghz and the computing
power of GTX1060 GPU is 6.1.

B. EXPERIMENTAL SCENE MODEL
In order to ensure the accuracy and versatility of the final
conclusion, we used 6 groups of scenes with different com-
plexity in this experiment. Such scenes are widely applied
to computer graphics, such as ray tracing. They are Sponza,
Sibenik, Crytek Sponza, Conference, Soda Hall and San
Miguel, respectively. Their number of primitives increases
in sequence. The Sponza with the smallest number of prim-
itives contains 66K primitives, while the San Miguel with
the greatest number of primitives has 7880K primitives.
Meanwhile, their structures are complex; the primitive size
changes greatly; they are building scenes with untessellated

FIGURE 14. Broken line graph of SAH.

objects. See Table 3 for experimental results. Next, we will
carry out contrastive analysis of the experimental results from
construction speed, traversal speed, EPO and other metrics.

C. EXPERIMENTAL ANALYSIS
This paper compared the advantages and disadvantages of our
method and the other three methods from the perspective of
the four metrics: SAH cost, construction time, traversal time
and EPO.

1) SAH COST
Our calculation formula for the SAH in the experiment is as
follows:

c(N) =
1

S(N)

cT ∑
Ni

S(Ni)+ cI
∑
Nl

S(Nl)

 (8)

where, Nl and Ni represents the leaf node and the internal
node, respectively; S represents the surface area; cT and cI
represent the average time cost of the traversal of BVH by
the ray and the average time cost of the intersection test
between the ray and the primitive, respectively. In the test,
we set cT and cI to 3 and 2 to ensure the consistency of
experimental results. The experimental comparison diagram
is shown in Figure 14.

According to the diagram, our method has the lowest SAH
cost in the six experimental scenes. The SAH cost of the
LBVH is the highest in all test scenes. Our method has the
best performance in scenes Sibenik and Conference. Its SAH
cost is nearly 12% lower than that of K-means method, with
an average cost reduction of 8%.

2) TRAVERSAL SPEED
The traversal speed reflects the rendering speed from the side
and the traversal throughput of the ray in the whole scene.
In the experiment, each pixel is sampled by emitting 16 rays
in the same ray and from the same perspective; the total
number of rays and the total time t from the emission of
rays to the traversal of the nearest primitive by each ray are
recorded to obtain the following traversal speed formula:

Traversal_speed =
number_of _rays

t
(9)

105836 VOLUME 7, 2019

Y. Hu et al.: Parallel BVH Construction Using LDC

TABLE 3. Performance comparison of the tested methods.

VOLUME 7, 2019 105837

Y. Hu et al.: Parallel BVH Construction Using LDC

FIGURE 15. Broken line graph of trace speed.

FIGURE 16. Broken line graph of EPO.

Figure 15 provides the comparison data of the traversal
speed among all methods. It can be concluded from the
experimental data that our method has the highest traver-
sal speed in most scenes. Traversal speed is 13% higher
than that of K-means method, with an average increase of
about 4.5%.

3) EPO
EPO is the overlap metric of the BVH; it was first proposed
by Alia et al. [4]. EPO is more descriptive than the metric
proposed by Stich et al. [28] and Popov [29]. The calculation
formula for EPO is as follows:

EPO =
∑
n∈N

A((n\Q(n)) ∩ n)
A(n)

(10)

where, n is a certain node in the BVH, Q(n) is a brother
node of this node, n\Q(n) ∩ n represents the collection that
does not belong to the treelet n but overlaps with it; A()
is the corresponding volume. When bounding boxes of the
branch nodes of the tree, the degree of overlap is zero.
The smaller the EPO, the lower the overlap of the nodes
in the BVH. Figure 16 is the broken line graph for the
comparison between our method and other methods on the
EPO.

Our method shows an average reduction of about 34%
than the K-means method on the EPO and has the best
performance in the EPO in the scene Sponza. This indi-
cates that the overlap in the BVH constructed by our
method is significantly lower and that the BVH is more
compact.

FIGURE 17. Broken line graph of build time.

4) CONSTRUCTION TIME
Construction time is an important standard for measuring
a BVH. Figure 17 provides the comparison data of the
construction time among all methods. This figure strongly
shows that the speed of the LBVH is the highest among all
methods; our method is slightly slower than the K-means
method; the construction speed of our method in the scene
Conference is slightly higher than that of the HLBVH. The
main reason for this is that the computation overhead of the
local density increases with the increase of scene complexity.
Our method takes 192ms to construct the BVH in the scene
San Miguel with the greatest number of primitives, and only
12 ms in the scene Sponza with the smallest number of
primitives.

According to experimental results and compared with the
other three advanced methods, the BVH constructed by our
method is characterized with low SAH cost, low EPO and
high quality in scenes with different complexity, can effec-
tively reduce the traversal and intersection times of the ray
and improve the traversal speed and the construction time,
and is competitive with other methods.

VI. CONCLUSION
A novel GPU-oriented method to construct a BVH was pro-
posed in this paper. The primitive density was first defined
by this method. It used this property to optimize the qual-
ity of the BVH. This method is divided into three phases:
calculation of primitive density, iterative top-down clustering
and bottom-up AC. In the phase of calculation of primitive
density, we used the sorted Morton coding for local search
to effectively calculate the approximate density and the ini-
tial clustering center. Later, the top-down clustering and the
bottom-up AC were combined to complete the BVH con-
struction process on the GPU. Our algorithm was compared
with LBVH, HLBVH, K-means and other methods in scenes
with different complexity. It can be seen from experimental
analysis that our method has the lowest SAH cost and EPO.
The traversal speed is 13% higher than that of the K-means
method at most. Meanwhile, it is competitive with other
methods in the construction method. In the future, we will
construct the multi-frame optimized BVH in dynamic scenes
in virtue of the advantage of the primitive density in BVH

105838 VOLUME 7, 2019

Y. Hu et al.: Parallel BVH Construction Using LDC

construction and the combination with the object motion
information in such scenes.

REFERENCES
[1] J. D. MacDonald and K. S. Booth, ‘‘Heuristics for ray tracing using space

subdivision,’’ Vis. Comput., vol. 6, no. 3, pp. 153–166, May 1990.
[2] R. Weller, D. Mainzer, A. Srinivas, M. Teschner, and G. Zachmann,

‘‘Massively parallel batch neural gas for bounding volume hierarchy con-
struction,’’ in Proc. Workshop Virtual Reality Interact. Phys. Simulation,
2014, pp. 1–9.

[3] D. Meister and J. Bittner, ‘‘Parallel BVH construction using k-means
clustering,’’ Vis. Comput., vols. 6–8, no. 32, pp. 977–987, Jun. 2016.

[4] T. Aila, T. Karras, and S. Laine, ‘‘On quality metrics of bounding volume
hierarchies,’’ in Proc. 5th High-Perform. Graph. Conf., Anaheim, CA,
USA, 2013, pp. 101–108.

[5] S. M. Rubin and T. Whitted, ‘‘A 3-dimensional representation for
fast rendering of complex scenes,’’ Comput. Graph., vol. 14, no. 3,
pp. 110–116, Jul. 1980.

[6] H. Weghorst, G. Hooper, and D. P. Greenberg, ‘‘Improved computational
methods for ray tracing,’’ ACM Trans. Graph., vol. 3, no. 1, pp. 52–69,
Jan. 1984.

[7] T. L. Kay and J. T. Kajiya, ‘‘Ray tracing complex scenes,’’ SIGGRAPH
Comput. Graph, vol. 20, no. 4, pp. 269–278, Aug. 1986.

[8] J. Goldsmith and J. Salmon, ‘‘Automatic creation of object hierarchies for
ray tracing,’’ IEEE Comput. Graph, vol. 7, no. 5, pp. 14–20, May 1987.

[9] I. Wald, ‘‘On fast construction of SAH-based bounding volume hierar-
chies,’’ in Proc. IEEE Symp. Interact. Ray Tracing, 2007, pp. 33–40.

[10] I. Wald, S. Boulos, and P. Shirley, ‘‘Ray tracing deformable scenes using
dynamic bounding volume hierarchies,’’ACMTrans. Graph., vol. 26, no. 1,
Jan. 2007, Art. no. 6.

[11] T. Ize, I. Wald, and S. G. Parker, ‘‘Asynchronous BVH construction for ray
tracing dynamic scenes on parallel multi-core architectures,’’ in Proc. 7th
Eurograph. Conf. Parallel Graph. Vis., 2007, pp. 101–108.

[12] W. Hunt, W. R. Mark, and D. Fussell, ‘‘Fast and lazy build of acceleration
structures from scene hierarchies,’’ in Proc. Symp. Interact. Ray Tracing,
Sep. 2007, pp. 47–54.

[13] H. Dammertz, J. Hanika, and A. Keller, ‘‘Shallow bounding volume hier-
archies for fast SIMD ray tracing of incoherent rays,’’ Comput. Graph.
Forum, vol. 4, no. 17, pp. 1225–1233, Jun. 2010.

[14] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha,
‘‘Fast BVH construction on GPUs,’’Comput. Graph. Forum, vol. 28, no. 2,
pp. 375–384, Apr. 2009.

[15] J. Pantaleoni and D. Luebke, ‘‘HLBVH: Hierarchical LBVH construction
for real-time ray tracing of dynamic geometry,’’ in Proc. Conf. High-
Perform. Graph., Saarbrücken, Germany, 2010, pp. 87–95.

[16] C. Apetrei, ‘‘Fast and simple agglomerative LBVH construction,’’ in Proc.
Comput. Graph. Vis. Comput. (CGVC), 2014, pp. 41–44.

[17] M. Vinkler, J. Bittner, and V. Havran, ‘‘Extended Morton codes for high
performance bounding volume hierarchy construction,’’ in Proc. Conf.
High-Perform. Graph., Los Angeles, CA, USA, 2017, Art. no. 9.

[18] B. Walter, K. Bala, M. Kulkarni, and K. Pingali, ‘‘Fast agglomerative
clustering for rendering,’’ in Proc. IEEE Symp. Interact. Ray Tracing,
Los Angeles, CA, USA, Aug. 2008, pp. 81–86.

[19] Y. Gu, Y. He, K. Fatahalian, and G. Blelloch, ‘‘Efficient BVH construction
via approximate agglomerative clustering,’’ in Proc. 5th High-Perform.
Graph. Conf., Anaheim, CA, USA, 2013, pp. 81–88.

[20] D. Meister and J. Bittner, ‘‘Parallel locally-ordered clustering for bounding
volume hierarchy construction,’’ IEEE Trans. Vis. Comput. Graph., vol. 24,
no. 3, pp. 1345–1353, Mar. 2018.

[21] J. Bittner, M. Hapala, and V. Havran, ‘‘Fast insertion-based optimization
of bounding volume hierarchies,’’ Comput. Graph. Forum, vol. 32, no. 1,
pp. 85–100, Jan. 2013.

[22] T. Karras and T. Aila, ‘‘Fast parallel construction of high-quality bounding
volume hierarchies,’’ in Proc. 5th High-Perform. Graph. Conf., Anaheim,
CA, USA, 2013, pp. 89–100.

[23] D. Meister and J. Bittner, ‘‘Parallel reinsertion for bounding volume hier-
archy optimization,’’ Comput. Graph. Forum, vol. 37, no. 2, pp. 463–473,
May 2018.

[24] J. Hendrich, D. Meister, and J. Bittner, ‘‘Parallel BVH construction using
progressive hierarchical refinement,’’ Comput. Graph. Forum, vol. 36,
no. 2, pp. 487–494, May 2017.

[25] V. Havran, R. Herzog, and H.-P. Seidel, ‘‘On the fast construction of spatial
hierarchies for ray tracing,’’ in Proc. IEEE Symp. Interact. Ray Tracing,
Salt Lake City, UT, USA, Sep. 2006, pp. 71–80.

[26] M. Ernst and G. Greiner, ‘‘Early split clipping for bounding volume
hierarchies,’’ in Proc. IEEE Symp. Interact. Ray Tracing, Ulm, Germany,
Sep. 2007, pp. 73–78.

[27] H. Dammertz and A. Keller, ‘‘The edge volume heuristic—Robust triangle
subdivision for improved BVH performance,’’ in Proc. IEEE Symp. Inter-
act. Ray Tracing, Los Angeles, CA, USA, Aug. 2008, pp. 155–158.

[28] M. Stich, H. Friedrich, and A. Dietrich, ‘‘Spatial splits in bounding volume
hierarchies,’’ in Proc. Conf. High-Perform. Graph., New Orleans, LA,
USA, 2009, pp. 7–13.

[29] S. G. Popov, ‘‘Object partitioning considered harmful: Space subdivision
for BVHs,’’ in Proc. Conf. High Perform. Graph., New Orleans, LA, USA,
2009, pp. 15–22.

YINGSONG HU received the Ph.D. degree in
computer science and technology from the School
of Computer Science and technology, Huazhong
University of Science and Technology (HUST),
Wuhan, China, in 2011, where he is currently an
Associate Professor with the School of Computer
Science and Technology. His research interests
include image processing and computer vision.

WEIJIAN WANG received the bachelor’s degree
from Anhui University, in 2017, and the master’s
degree in computer science and technology from
the School of Computer Science and Technology,
Huazhong University of Science and Technology
(HUST), Wuhan, China, in 2019. His research
interests include image processing and computer
vision.

DAN LI received the B.E. and M.S. degrees in
mechanical design, manufacturing and automation
and the Ph.D. degree in computer science from the
Huazhong University of Science and Technology
(HUST), Wuhan, China, in 1998, 2002, and 2008,
respectively, where she is currently an Associate
Professor with the School of Computer Science
and Technology. Her research interests include
computer graphics, multimedia, and intelligence.

QINGZHI ZENG received the bachelor’s degree
from Chongqing University, in 2018. He is cur-
rently pursuing the master’s degree in computer
science and technology with the School of Com-
puter Science and Technology, Huazhong Univer-
sity of Science and Technology (HUST), Wuhan,
China. His research interests include computer
vision and image processing.

YUNFEI HU received the bachelor’s degree from
the Huazhong University of Science and Tech-
nology (HUST), Wuhan, China, in 2018, where
he is currently pursuing the master’s degree
in computer science and technology with the
School of Computer Science and Technology. His
research interests include computer vision and
image processing.

VOLUME 7, 2019 105839

	INTRODUCTION
	RELATED WORK
	TOP-DOWN CONSTRUCTION ALGORITHM
	BOTTOM-UP CONSTRUCTION ALGORITHM
	INCREMENTAL CONSTRUCTION ALGORITHM

	PRIMITIVE DENSITY
	DEFINITION OF PRIMITIVE DENSITY
	RELATION BETWEEN PRIMITIVE DENSITY AND TRAVERSAL EFFICIENCY

	BVH CONSTRUCTION VIA LDC
	CALCULATION OF LOCAL PRIMITIVE DENSITY
	SPATIAL SORTING BASED ON MORTON CODE
	LOCAL SEARCH
	ERROR ANALYSIS

	CONSTRUCTION OF BVH
	HORIZONTAL ITERATIVE CLUSTERING
	VERTICAL OPTIMIZATION

	RESULTS AND ANALYSIS
	EXPERIMENTAL SCHEME
	EXPERIMENTAL SCENE MODEL
	EXPERIMENTAL ANALYSIS
	SAH COST
	TRAVERSAL SPEED
	EPO
	CONSTRUCTION TIME

	CONCLUSION
	REFERENCES
	Biographies
	YINGSONG HU
	WEIJIAN WANG
	DAN LI
	QINGZHI ZENG
	YUNFEI HU

