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ABSTRACT Advancements in image-processing and medical imaging technologies and other research
areas have resulted in the growing importance of surgical navigation systems in the field of minimally
invasive surgery. However, sophisticated auxiliary equipment is a prerequisite for full heart-rate monitoring
in operative systems. A system puts forward to address this issue with a wireless sensor network architecture
comprising acquisition modules, router gateways, remote servers, and a medical monitoring center. Factors
such as variations in ambient light and face shaking can also easily affect heart rate detection based on face
videos, thus resulting in inaccurate estimations of heart rate from the blood volume pulse (BVP) signals. This
study proposes to address this concern by employing a novel method for non-contact heart rate estimation
to overcome noise interference. First, chrominance features are selected to extract BVP signals, and the
low-rank and sparse matrix decomposition methods are applied to overcome the detrimental effects of noise
and interference while ensuring that valuable data are preserved.Next, the data are relayed to the server via
the gateway. Finally, users can log on to the health-related cloud platform and gain information regarding
their health status in real time. Experimental results reveal the advantages of the proposed technique over
conventional face-based heart-rate estimation methods, including the capability to decrease dependence on
sophisticated auxiliary equipment, avoid direct skin contact that can cause discomfort to patients undergoing
surgery, and improve the comfort of surgical operations. Moreover, the proposed heart-rate measurement
technique can contribute to improve the construction of smart cities.

INDEX TERMS Smart city, photoplethysmography, chrominance features, heart-rate detection, low-rank
and sparse matrices.

I. INTRODUCTION
Smart cities are a regional development concept that orig-
inated from the application of innovative technologies,

The associate editor coordinating the review of this article and approving
it for publication was Chang Choi.

including Internet of Things (IoT), electronic communica-
tions, and cloud computing. The use of IoT and big data
in smart city construction can aid in enhancing services for
urban dwellers and realizing the sustainable development of
the cities for a long time. Numerous researchers have recently
studied the public services offered smart cities, and some are
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suggesting the use of smart cities in public domains such
as smart healthcare, public administration, and intelligent
transportation, among many others[1].

Smart healthcare is an integral component of smart cities
and has emerged as a research hotspot in recent years. This
health service system can be an effective support in the con-
struction of smart cities through leveraging IoT technology to
develop wireless and miniature medical apparatus.

In addition, surgical systems enhance the safety and
accuracy during surgical operations by using local anatomy
visualization to direct surgical instruments toward the lesion
sites [2]. During surgery, the patient’s heart rate, breathing,
and blood pressure, among other vital signs, should be mon-
itored. As a key indicator of human physiological condition,
heart rate has significant applications in clinical research on
cardiovascular diseases [3], physical exercise [4], and other
fields. However, the requirement of direct skin contact for
most heart-rate measurement apparatuses can be a source
of distress for surgical patients and may adversely affect
the operation. In photoplethysmography (PPG), variations
in transmitted and reflected light are used to acquire the
cardiovascular pulse wave [5]. PPG can greatly improve the
ease of heart-rate measurement, but it requires a specific
light source, such as infrared light. Moreover, a fingertip
spring clip is attached to the patient being monitored in
PPG. To date, even though contact-assisted devices used in
clinical practice can be monitored in real time, the auxiliary
equipments still occupy large amounts of space, which can
adversely influence the surgery. Consequently, the develop-
ment of comprehensive noncontact heart-rate detection and
estimation approaches has emerged as research hotspot in the
field of physiological information monitoring to minimize
the drawbacks of current heart-rate measurement techniques.
Many new technologies for noncontact heart-rate detection
and estimation have been suggested, such as ultrasonic test-
ing [6], thermodynamic imaging [7], and video image-based
imaging PPG (iPPG) [8]. Among these techniques, remote
heart rate detection and estimation based on video images can
enhance patient comfort and convenience as well as lower
medical expenses because it can automatically monitor the
heart rate just by processing the body skin color from the
collected video.

Surgical systems have likewise been applied in abdominal
surgery, spinal surgery, and neurosurgery [9], [10]. They
can be classified as mechanical, electromagnetic, optical,
or ultrasonic systems according to their spatial positioning
technologies [11]. However, these systems are incapable
of gathering and reading various clinical data and image
records of patients and achieving communication between
operating rooms and the outside. Medical informatization is
crucial element of smart cities, the development of which
is bound to impact the medical industry. The IoT network
links the physical domain by integrating intelligent process-
ing and computing technologies with sensing technologies,
such as sensor network, communication network, and the
Internet. The advent of IoT technology has realized the

interconnectedness of medical data and stimulated the growth
of the healthcare information industry, resulting in the cre-
ation of intelligential services and breaking out from the
numerous bottlenecks plaguing the industry.

When IoT technology and non-contact physiological sig-
nal measurement are combined, medical quality and quantity
can be elevated because surgeons will be able to maintain
their focus on the operations and improve their surgical
precision.

The rest of this paper is divided into the following sections.
Second II presents the related works. Section III discusses the
theoretical background and describes the main principles of
robust principal component analysis (RPCA) and the chromi-
nance feature model. Furthermore, it provides a discussion
of blood volume pulse (BVP) denoising and reconstruction.
Section IV elaborates on the experimental results. Section V
concludes the paper.

II. RELATED WORKS
The importance of IoT technology in medical informatiza-
tion is primarily represented in the following aspects [12].
First, the application of IoT technology for online monitoring
in precision medicine can help manage the medical process,
which can lower incidence of medical accidents in unpre-
dictable scenarios because of human factors. Second, the use
of IoT technology in the medical process can promote the
digital progress of this field, realize the dynamic observation
of diseases, and perform follow-up analysis. Fig. 1 illustrates
an IoT-based medical care system. In the figure, the sensors
gather crucial human physiological parameters, which are
processed by the processor and then transmitted to the ZigBee
network.

In this work, iPPG is primarily studied to address the
difficulty connected with the use of sophisticated auxiliary
instruments for monitoring heart rate.

IPPG is a new photoelectric detection technology that
measures the reflected light intensity after living tissue is irra-
diated with a photoelectric device to detect variations in blood
volume in capillaries and microarteries [13]. BVP signals
that contain key physiological information are obtained and
widely used in the clinical measurement of human physiolog-
ical parameters [14]. The skin’s optical properties are gen-
erally credited to light absorption by hemoglobin, melanin,
subcutaneous moisture, and other factors. Of these factors,
the highest light absorption is by blood [5]. The intermitted
perfusion of blood influences the intensity of reflected light
when light enters subcutaneous tissue, where blood perfu-
sion produces the AC component of the light signal and the
reflected light from surrounding tissues and blood vessels cre-
ates the DC component of the light signal [15]. Specifically,
subtle variations in human skin color are tightly linked to
variations in blood volume in capillaries and microarteries.
Therefore, disparities in light signal reflected by the vascular
network can be perceived using imaging devices to capture
the light. Additionally, key physiological data from variations
in blood volume can be measured on the basis of human
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FIGURE 1. Medical care system based on IoT.

skin color. Given that the iPPG signal originates from the
reflection of skin capillaries to light, the pseudo difference
caused by movement will inevitably influence the signal, and
the unstable light sourcewill generate an extracted signal with
a low signal-to-noise ratio.

Existing studies on iPPG have mainly focused on image
quality [16], frame rate [17], region of interest (ROI) selec-
tion [18], motion pseudo difference [19], and clinical tri-
als and applications [20]–[22]. Studies on video-based
noncontact heart-rate estimation aim to obtain physiologi-
cal parameters with increased accuracy. Recently, numerous
video-based noncontact heart-rate measurement approaches
have been proposed and innovative ideas and approaches for
eliminating the interference component of the iPPG signal
have been put forward. In 2011, Sun et al. [23] utilized
the single-channel independent component analysis (ICA)
method for the movement attenuation of iPPG based on a
black-and-white camera. Subsequently, in 2014, an adap-
tive filter and the constraint ICA method were applied
for iPPG signal extraction [24]. Poh et al. [25], [26] and
Pursche et al. [27] adopted the ICA algorithm for denoising
and blind source separation. However, interference is brought
about by large non-skin areas of the face, and interference
with a frequency close to that of the heart rate, such as blink-
ing, cannot be easily eliminated by this technique. In 2016,
Chwyl et al. [28] proposed a heart-rate detection approach
based on Bayes estimation.

Other aspects of pulse-signal extraction have been
improved to further improve its precision. In 2015, Lam
and Kuno [29] extracted pulse signals from multipoint
local regions of the face to exclude movement artifacts
and then used the signals as linear blind-source signals
for the source decomposition of independent information.
They next acquired pulse signals with practical physiological
value through a voting method. However, their method was
time-consuming and had difficulties when the face moved or
was obstructed because of the random selection of multipoint
local regions of the face.

The development of skin models to diminish the impact
of light variations is currently a research hotspot. The video-
data-use mode has been extensively examined as well. For
instance, a chrominance model algorithm, such as CHROM
method [20], has been suggested by Haan. The author

considered BVP signals as the linear combination of chromi-
nance signals and established a standard skin color for the
white-balance camera. The author then further optimized the
chrominancemodel [30] to enhance the removal ofmovement
interference. In 2016, Wang proposed the plane-orthogonal-
to-skin (POS) algorithm [31], which can define a plane that is
orthogonal to the skin-tone in a temporally normalized RGB
space for pulse extraction. This algorithm exhibits improved
anti-interference capability.

Noncontact video-based heart-rate estimation practically
evolved from the principle of PPG [32]. Skin tissue and the
ambient temperature of the patient affect blood perfusion in
the skin, a condition that raises interference in the iPPG signal
and, consequently, decreases estimation precision for heart
rate and blood oxygen saturation. This effect likewise shows
that disparities in facial movement, ambient temperature, and
light around the face diminish the stability and precision of
face-based heart-rate measurement based on the principle of
PPG. The superposition of these interferences emphasizes the
urgent need for stringent requirements for filtering non-BVP
signals.

RPCA is a promising signal processing method in signal
denoising technology and feature extraction. Its development
was grounded on the theories of matrix completion and com-
pressive perception [33]. RPCA can recreate low-rank and
sparse representation components from gathered data, from
which implicit target information can then be obtained.While
video backgrounds with robust data redundancy can match
low-rank components after decomposition, changing targets
with rapid amplitude variations canmatch sparse components
after decomposition. Therefore, RPCA possesses good sig-
nal separation properties and can be utilized to distinguish
between foreground targets and video backgrounds. Wright
effectively applied RPCA in a video target detection sys-
tem by forming an observation matrix with image frames
as column vectors and then decomposing the matrix via
RPCA [34].

In this paper, variations in skin color are considered as
superimpositions on repeated variations in blood volume by
changing noises (e.g., noises caused by light, shaking, and
temperature) and can be presumed as estimations by a low-
rank matrix. By contrast, variations in skin color caused
by noise can be presumed as sparse, with a sparse matrix
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employed to estimate the noise. RPCA can decompose such
information into a low-rank matrix and a sparse matrix that
correspond to blood volume and noise variations, respec-
tively. Then, the effective BVP signal can be extracted and
noise interference filtered out.

Working from the above research, we propose an IoT-based
heart-rate detection technique that blends low-rank and sparse
decomposition to denoise BVP signals while simultaneously
enhancing the ability of such signals to preserve valuable
data. This method denoises and recreates chrominance fea-
tures by applying the RPCA algorithm after the face image is
derived via face-tracking technology and corrected. Numer-
ous experiments show that the proposed method can be
amended for analyzing and processing BVP signals and pro-
viding precise heart-rate estimations.

With the proposed noncontact heart-rate detection method,
the need for complicated hardware equipment is eliminated,
and the working space of surgical systems is optimized.

III. THEORETICAL BACKGROUND OF
HEART-RATE ESTIMATION
Precise estimation of BVP signals is the main problem in
heart-rate estimation based on face videos. The proposed
method obtains heart-rate estimation results by (1) creating
a BVP signal acquisition model, (2) considering the influ-
ence of incident illumination and subcutaneous and epider-
mal reflection, and (3) involving chrominance features and
low-rank and sparse decomposition to remove interference
from movement and light.

A. FACE DETECTION AND SKIN REGION SELECTION
The PPG principle asserts that blood volume varies with
the periodic diastolic and systolic function of the human
heart [35]. Such variations can also alter the intensity of
reflected and absorbed lights, resulting in the periodic vari-
ations in skin color. A face-detection method must be used to
extract data related to the periodic variations in human skin
color, remove the background region of the face, and locate
the ROI.

Despite the numerous face-recognition technologies
[36]–[39], face detection in unconfined environments is chal-
lenging because of the different illuminations, movements,
and occlusions. To achieve accurate face location, initially,
the Viola–Jones face detector is adopted to identify the
rectangular face region of the first frame of the image and set
the coordinates of the rectangular box. Then, a total of 49 face
feature points are marked for subsequent tilt correction and
tracking,, as shown in Fig. 2(a).

Skin pixels can be estimated to consist of diffuse and
specular reflections. Variations in diffuse reflection caused
by facial movement are smaller than those in specular reflec-
tion. Thus, in existing literature, spatial averaging of the
illumination intensity of the entire facial area can remove
the discontinuous variation in epidermal reflection. How-
ever, the BVP signal quality of different face regions in
real environments is changes due to the influence of several

FIGURE 2. Selected region of face: (a) initial face region; (b) ROI.

FIGURE 3. Time sequence signals of the RGB channels: (a) time sequence
signals of the entire face region; (b) time sequence signals of the ROI.

factors, including facial movement, hair occlusion, and cor-
rective glasses. Fig. 3 displays the time series of three chan-
nels obtained from the different face regions of the subject.
Figs. 3(a) and 3(b) present the component obtained via spatial
averaging of the entire face region and the region selected
in this work(Fig. 2(b)), respectively. Interference compo-
nents with complexity and strong randomness comprise the
signals acquired via spatial averaging because the interfer-
ences formed through variations in illumination, uncontrolled
movement of facial organs, and overall facial movement
superimpose one another. In this study, the region chosen
has more blood vessels and a steadier signal than the entire
face area. Fig. 3 reveals that the BVP signal in the nose
area undergoes considerable numerical variation. Therefore,
instead of just averaging the pixels of the whole face area,
the region with high signal-to-noise ratio must be chosen
instead for heart-rate estimation and BVP signal extraction.

B. EXTRACTION OF CHROMINANCE FEATURES
The iPPG system gathers original video images that have
pulse-wave data. Acquiring a pulse-wave signal with high
signal-to-noise ratio requires an algorithm with strong anti-
interference ability to achieve extraction of the original pulse
signal. When the sensitive area is identified, the current
acquisition technique for the 1-D iPPG signal (R,G,B) is
used to compute for the mean value of this area. However,
the technique cannot enhance the separation of the pulse and
specular reflection components. Hence, the POS model is
used to extract the chrominance features [31]. These fea-
tures are robust against facial movement, which results in
variations in facial brightness and color because of changes
in the angle between the face and the incident light source.
Chrominance features can minimize this phenomenon.
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FIGURE 4. Comparison of frequency spectra: (a) spectrum of original
pulse signal extracted by the G channel; (b) spectrum of original pulse
signal extracted by the POS algorithm.

In the POS model, CHROM principle and BVP knowl-
edge are used for chrominance feature extraction, which
approximates a projection region on the plane orthogonal to
the temporally normalized skin-tone direction and real-time
tuning to refine an exact projection direction on the plane.
The chrominance feature when the R, G, and B channels are
merged is computed as

h(t) = S1(t)+ α · S2(t) (1)

where α = σ (S1)
/
σ (S2), σ (·) denotes the standard deviation

operator,and S1(t) = G(t)−B(t), S2(t) = G(t)+B(t)−2R(t).
The POS model defines skin color as a linear combination

of pulse and specular reflection components. S1(t) and S2(t)
appear in the same phase when the pulse wave is dominant.
The appearance of h(t) can intensify the obtained signal. S1(t)
and S2(t) are inverted when the specular variation is domi-
nant. α can pull/push the intensity of the specular variation
of one signal to the same level as the other signal, that is,
σ (S1) = σ (α · S2). Two inverted signals then offset specular
distortion.

The heart-rate estimation and iPPG signal extraction
results rely on the features extracted from the face ROI.
Here, the chrominance features robust to facial motion and
discriminate against skin color variations are chosen. Next,
the POS model and G channel data are utilized to obtain orig-
inal pulse signals from the video samples of facial shaking
(Fig. 4). As presented in the figure, the POS model improves
the suppression of noise caused by head movement.

C. DENOISING OF BLOOD VOLUME PULSE SIGNAL
RPCA is also referred to as sparsematrix and low-rankmatrix
decomposition because it primarily aims to decompose the
video matrix into sparse and low-rank matrices. The RPCA
model can simultaneously estimate the background, sepa-
rate moving targets, and conduct background estimation for
videos containing moving targets without needing to input
a video with a clean background as the background training
sample. The low-rank matrix remains strong against degen-
erative factors, including data loss, noise, and slow light
variations. It does not have special requirements to determine
the motion mode of the foreground target. Moreover, the
low-rank matrix can handle non-rigid objects and requires
modification of few parameters. These characteristics help in

the promotion and application of thematrix in the engineering
field [40], [41].
M ∈ Ri×j×p denotes the video sequence, where i and j refer

to the size of the video, and p is the number of video frames.
A novel matrixM ∈ R(i×j)×p can be created by converting
each video frame into a column vector.

M = [vec(M1), . . . , vec(Mp)] ∈ R(i×j)×p (2)

Each frame of video sequence images is taken as the sum
of the background and target prospects, that is,

M1 = S1 + e1, . . . ,Mp = Sp + ep (3)

Therefore, the image background of low rank component
is A = [vec(S1), . . . , vec(Sp)], and the image foreground of
sparse component is E = [vec(e1), . . . , vec(ep)].
Each frame image is transformed to Si ◦ τ

−1
i so that the

video sequence data matrix approximation meets the sparse
and low rank. The video sequence after transformation is
expressed as

M1 = (S1 + e1) ◦ τ
−1
1 , . . . ,Mp = (Sp + ep) ◦ τ−1p (4)

Low-rank decomposition of the video sequences with D ◦
τ−1 can be expressed as

min
A,E

rank(A) s.t. D ◦ τ = A+ E, ‖E‖0 ≤ k (5)

Formula (5) is converted to a Lagrangian type:

min
A,E

rank(A)+ λ ‖E‖0 s.t. D ◦ τ = A+ E (6)

The model must be modified because the matrix decom-
position in Equation (6) is an NP problem. A feasible method
involves the application of the kernel norm to estimate the
matrix rank and of the L1 norm of the matrix to estimate
the L0 norm of the matrix. A solution model for the convex
optimization problem then can be obtained:

min
A,E
‖A‖∗ + λ ‖E‖1 s.t. D ◦ τ = A+ E (7)

‖A‖∗ =
m∑
i=1

µi(A) (8)

‖E‖1 =
∑
ij

∣∣Eij∣∣ (9)

wherein λ is a positive weight parameter to weigh the rank
of matrix A and the sparsity of matrix E ; ‖·‖∗ represents the
kernel norm of matrix A, which is used to replace the rank of
matrix A;and ‖·‖1 represents the sum of the absolute values
of the matrix elements. Minimizing the following augmented
Lagrangian function with the alternating direction method of
multipliers can resolve this optimization problem.

L(A,E,Y , µ) = ‖A‖∗ + λ ‖E‖1 + 〈Y ,X − A− E〉

+µ
/
2 ‖X − A− E‖

2
F (10)

In the equation, Y is a Lagrangian multiplier, and µ > 0 is
a penalty parameter. When this model is solved, the low-rank
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FIGURE 5. Denoising of BVP signal: (a) gridded ROI; (b) chrominance features of each grid block;
(c) spectrogram of the low-rank component obtained by RPCA decomposition; (d) spectrogram of the sparse
component obtained by RPCA decomposition; (e) time domain waveform of the sparse component; (f) time
domain waveform of the low-rank component.

background matrix A and the sparse foreground matrix E can
be decomposed.

The heart-rate signal is connected to the primary signal of
the low-rank background matrix. Singular value decomposi-
tion is conducted for feature vector extraction. Here, matrix
A is denoted as A = U0V T, where V1 is the approximate
heart-rate signal, and V1 is the first column vector of V .
In a video signal, impact source (interference) and har-

monic source (heartbeat) are characterized by anisotropy in
the spectrum, that is, harmonic source is irregular in the
frequency-axis direction and smooth and continuous in the
time-axis direction. By contrast, the impact source is mostly
concentrated in a short period andwill form a series of vertical
broadband spectra. Hence, the impact source is irregular in
the time-axis direction and smooth and continuous in the
frequency-axis direction. Fig. 5 presents the schematic of
low-rank and sparse decomposition. First, the ROI is divided
into m × n grid blocks, as shown in Fig. 5(a).Afterward,
the chrominance features of each image block are calcu-
lated.If the video has p frames in total, then the RPCA can
be used to conduct low-rank and sparse decomposition for
the matrix mn × p in size, as shown in Fig. 5(c) and 5(d).
Fig. 5 illustrates that under strong low-rank and sparse
assumption, heartbeat components with repetitive rhythms
are often assigned to the low-rank portion rather than to
the sparse portion. The interference component features a
short duration and a sparse characteristic and is thus assigned
to the sparse component. Therefore, RPCA can separate
the background and the foreground. In accordance with the
aforementioned noise suppression method, high-frequency
noise components in the original BVP wave can be removed,
and the reconstructed BVP wave can be obtained. The AC
components of the pulse wave can be observed well from the
reconstructed BVP wave, as shown in Fig. 5(e).

IV. EXPERIMENT RESULTS AND ANALYSIS
The medical industry is a core element of urban construction.
IoT technology and cloud computing improve the intelligence
of medical care when building smart cities. Fig. 6 shows
the operating room where the IoT-based optical navigation
system in this work is located. In this navigation system, heart
rate and other physiological parameters analyzed through
cloud computing are relayed to the surgeon via IoT.

A. SOFTWARE ARCHITECTURE AND INTELLIGENT NODE
The application software of smart medical systems is a func-
tion of the entire system. This study designs the interaction
diagram between modules of the server (Fig. 7). The gateway
transmits data to the server through Socket communication.
After receiving the data, the server determines the data type
and format, parses and stores the information in the database,
and displays the data through various charts on a web page.

As a key component of the information-gathering system,
the intelligent node transmits various information gathered
by the surgical site to the center server after preliminary
processing. The node also receives commands from the con-
trol center and carries out suitable operations according to
these commands. Furthermore, it is primarily responsible for
running the operating system, web server, and application,
as shown in Fig. 8.

B. SELECTION OF SLIDING WINDOW LENGTH
Videos of the subjects are recorded using a network cam-
era. The subjects are positioned at a distance of 0.8-1 m
from the camera, and the videos are recorded at the rate
of 30 frames/s and with an image resolution of 1, 920×1, 080
pixels. The subject’s whole facemust be positionedwithin the
video screen. Eighty-five subjects are grouped into three. For
Group 1, data are collected as the subjects hold their breath
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FIGURE 6. IoT operating room.

FIGURE 7. Interaction diagram between modules of the server.

FIGURE 8. Frame structure of the intelligent node.

and their heads immobile. The subjects can release their
breath and breathe deeply when they can no longer hold their
breath. For Group 2, data are collected as the subjects hold
their heads immobile. For Group 3, data are collected as the
subjects shake their heads intermittently. The real heart rate
signals of the human body are collected via pulse oximeter
as the reference value during video recording. The heart rate
value is collected once per second by the pulse oximeter.

A comparison of the algorithms’ robustness for the ROI in
this study is conducted, in which the effect of video-recording

FIGURE 9. Comparison of estimated heart-rate values acquired with
sliding windows of varying lengths.

duration on heart-rate detection in real scenes is considered.
We detect heart rates for different video-recording durations
and assess the real-time performances of the algorithms for
each duration. The samples in Group 1 are used for testing.
The video samples in Group 1 last for 60 s, and the sliding
windows of 5s, 10s, 15s, and 20s with 1s increment are used.
Different algorithms are used for extracting BVP signals
from the samples in Group 1, and the corresponding power
spectrum is obtained. Thus, the heart-rate measurement is
completed. The skin region is considered as input samples
for the CHROM [20], ICA [24], and POS methods to validate
the performance of the proposed method. The measurement
results from the finger clip-type pulse oximeter are compared
with those from the iPPG acquisition system. Fig. 9 illustrates
the generated heart-rate measurement curve.
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FIGURE 10. Normalized spectrograms of different ROI regions:
(a) obtained from the whole face region; (b) obtained from
the proposed ROI; (c) obtained after using RPCA.

None of the four methods can overcome the interference
in the signal when the 5s sliding window is used (Fig. 9(a)).
Significant differences are introduced by interference
between the real and approximated heart rates. Fig. 9(d)
shows that when the 20s sliding window is used, heart-rate
values measured by the four methods follow the same down-
ward trend as that by the values measured via pulse oximeter.
These values also have larger errors than those obtained via
pulse oximeter. An obvious delay is observed for the results
acquired using the four methods when heart rates declined.
The measurement accuracy of the iPPG system does not
meet the requirements of clinical application when the sliding
window is set to 20s.

Figs. 9(b) and (c) reveal that the heart-rate value mea-
sured via the contact system has a good linear relationship
with the actual heart-rate value when the heart rate changed
(before 25s). The measurement results obtained via the finger
clip-type system are marginally lower than the noncontact
measurement results obtained after 25s mainly because, after
holding their breath, subjects begin to breathe freely and
deeply after 25s of measurement. This action influences the
blood perfusion of the skin. The estimated value recovers
quickly because the human face is close to the heart than to the
hand and is rich in capillaries and arterioles. Therefore, the
noncontact measurement results are marginally higher than
the measurements obtained via the finger clip-type system
during the later stages of video recording.Fig. 9(b) shows that
the proposed method has better real-time performance and
interference suppression as well as less hysteresis curves than
the method used to obtain the results in Fig. 9(c). In addition,
the sliding window is set to 10s for performance analysis.

C. COMPARISON OF DIFFERENT METHODS
Fig. 10 presents the normalized spectrogram of sample 1 for
Group 2. Fig. 10(a) presents the results after processing when
the entire face was taken as the ROI, and Figs. 10(b) and 10(c)
present the spectrograms with proposed ROI. The signal-
to-noise ratio in Fig. 10(a) is lower than those acquired in
Figs. 10(b) and 10(c), signifying that the different face
regions influence the signal-to-noise ratio of the BVP signal.

For an intuitive comparison, the four methods are
employed to extract BVP signals and analyze the time
frequency for the videos of subjects in Groups 2 and 3.
Figs. 11 and 12 show the time-frequency images of some
samples.

FIGURE 11. Time-frequency analysis of several subjects in Group 2.

FIGURE 12. Time-frequency analysis of several subjects in Group 3.

Unpredictable interference may occur because of the
uncontrolled movements of subjects and random variations
in the test environment during long-term dynamic heart-rate
monitoring based on face videos. Figs. 11 and 12 reveal the
following: 1) ICA cannot effectively eliminate interference
and obtain more accurate BVP signals. The poor precision of
ICA is illustrated in the time-frequency images of samples
3 and 5 in Fig. 12. 2) CHROM, POS, and the proposed
method obtained similar time-frequency images, as shown in
the time-frequency images of Group 2. Meanwhile, the time-
frequency images of Group 3 reveal that POS and the pro-
posed method have advantages in eliminating interference
when the sampled data have large interference and that the
latter can obtain a clean time-frequency spectrum. As illus-
trated in the time-frequency images of sample 1 in Fig. 12,
the signal extracted by the POS model has more noise than
that extracted by the proposed method.

Fig. 13 illustrates the spectrogram (sparse part) obtained
by the proposed approach. The spectrogram matches the
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FIGURE 13. Spectrogram of the sparse component obtained by RPCA.

TABLE 1. Performance of heart rate detection.

spectrogram (low-rank part) obtained by the proposed
method in Fig. 12 to exhibit the denoising performance of
RPCA and shows that the interference noise components of
samples 1 and 4 are weakened. However, the samples present
heart-rate signal is also weakened at the same time, as can
be seen from samples 3 and 5. Future research will aim to
provide a solution for this problem.

D. OBJECTIVE EVALUATION INDEX
A statistical method is adopted to evaluate the statistical
characteristics of heart-rate values obtained by the aforemen-
tioned methods. Objective indices are utilized to evaluate our
proposed heart-rate detection method quantitatively and sys-
tematically. Indices are computed to statistically analyze the
difference between the reference heart-rate value obtained via
pulse oximeter and the measured heart-rate values. The com-
putation formulas used to assess the quality of the extracted
pulse signal are as follows:

Me =
1
N

N∑
i=1

di (11)

RMSE =

√√√√ 1
N

N∑
i=1

d2i (12)

STD =

√√√√ 1
N

N∑
i=1

(di −Me)2 (13)

where di is the absolute value of the difference between
reference value and measurement value of the heart rate; N
is the number of heart-rate values; and STD, Me, and RMSE
are the standard deviation, mean error, and root-mean-square
error of the di set, respectively. Table 1 lists the statistical
results for the four methods.

Table 1 presents the comparison of the performance of the
discussed heart-rate detection techniques for all 85 subjects.
The performance of the proposed method substantially is
improved after sparse reduced-rank regression, and the sta-
tistical values of RMSE, average error, and standard variance
are decreased.

V. CONCLUSION AND FUTURE DIRECTIONS
Operating rooms based on IoT technology utilize numerous
sensors to gather physiological information from patients.
These data can provide a medical reference for medical staff
to improve medical services and promote the construction of
smart cities. In the present study, noncontact heart-rate detec-
tion in an operating room scenario is achieved. The proposed
method meets the requirements of the medical personnel and
improves the comfort of the patients during operation.

Pixel variations in skin images can directly manifest varia-
tions in iPPG signals. Thus, this paper focuses on improving
the signal-to-noise ratio of the iPPG signal, an approach that
is beneficial for the noncontact measurement of physiological
signals during surgery in surgical navigation. Blood pressure
is another standard parameter that indicates vital signs, and it
is monitored during the administration of surgical anesthesia.
Therefore, future research should focus on the application of
collected iPPG signals for monitoring blood pressure. Over-
all, the current research hotspot that is IoT technology is a
vital aid to smart city construction. It will strengthen the inter-
connectedness of all facets of smart cities and continuously
enhance the intelligence of urbanization.
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