
Received July 3, 2019, accepted July 22, 2019, date of publication July 31, 2019, date of current version August 14, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2932196

A Progressive Web Application Based on
Microservices Combining Geospatial
Data and the Internet of Things
MANEL MENA , ANTONIO CORRAL, LUIS IRIBARNE, AND JAVIER CRIADO
Applied Computing Group, University of Almería, 04120 Almería, Spain

Corresponding author: Manel Mena (manel.mena@ual.es)

This work was supported by the EU ERDF and the Spanish Ministry of Economy and Competitiveness (MINECO) under Project
TIN2017-83964-R. The work of M. Mena was supported by a Grant of the Spanish Government under Grant FPU17/02010.

ABSTRACT Modern Web applications combine information from different sources, such as Web services,
static resources, or real-time sensors data. The Internet of Things (IoT) is increasingly being used in these
applications to show useful, updated information. However, the information related to the IoT devices is
commonly displayed on dashboards formonitoring and control purposes and is not often combinedwith other
types of data. In addition, it is important to base information on the location displayed in the user context.
In this paper, we propose the use of a software architecture based on microservices and micro frontends for
assisting the user in the friendly, seamless acquisition of geospatial data and information concerning the IoT.
Our solution orchestrates those microservices and a component-based progressive Web application (PWA).
The main microservice handles the creation of component configurations using a selection graph consisting
of component tags and other descriptive properties and also contextual information about the application user.
To demonstrate how the proposed architecture works, we present a scenario in which the Web application is
dynamically built up by combining the geospatial information, the data acquired from the IoT sensors, and
other complementary data.

INDEX TERMS Geospatial data, IoT, microservices, Netflix OSS, micro frontend, progressive Web
application.

I. INTRODUCTION
The importance of geospatial data is growing enormously,
and government entities are offering more and more useful
related open data [1]. There are many solutions focusing
on the extraction, transformation and storage of this kind of
information, as well as visualization tools for it. Furthermore,
with the increased use of technologies related to the Internet
of Things (IoT), real time data can be acquired by measuring
and analyzing environmental indicators, e.g., from natural
resources, urban environments or wearable devices [2].

Today’s geospatial software visualization tools are nar-
rowly focused on a single topic, performing simple tasks,
and often just working with geospatial data alone. Such soft-
ware shows maps with layers upon layers of data, usually so
scientifically that it is problematic to understand for users

The associate editor coordinating the review of this manuscript and
approving it for publication was Tawfik Al-Hadhrami.

with little or no knowledge in the related field. However,
new approaches are emerging in IoT visualization tools for
monitoring and diagnostics operations [3], for example, rep-
resenting indoor devices [4].

From an architectural perspective, geospatial data
approaches are generally at a standstill. Software related to
such data tends to concentrate on merely trying to integrate
different data formats to suit the needs of a particular soft-
ware [5]. In our solution, we propose the use of microser-
vices [6] and their orchestration [7], which has a series
of advantages, such as the use of containers for seamless
service replication, correct versioning, and load balancing
between service instances, etc. In the IoT domain, some
authors have encouraged patterns and best practices used in
microservices [8]. We build upon that by making use of those
advances in the geospatial domain.

Some of the solutions related to geospatial information
also have a service-oriented approach [9]–[11], but only a

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 104577

https://orcid.org/0000-0003-1084-8489


M. Mena et al.: PWA Based on Microservices Combining Geospatial Data and the IoT

FIGURE 1. ENIA (Environmental Information Agent): An example of a component-based web application.

few apply the advances made in this field. Furthermore,
IoT information on geospatial data can mean added value for
an application like ours.

For an example of such possible benefits, think of a web
application made up of two web components [12]: The first
component is a microservice capable of providing a map via
Web Map Service (WMS), and the second is a microser-
vice that acquires data from an IoT sensor. We could set an
orchestration system that makes it possible to set a trigger that
launches a new instance of a service when requests surpass
one thousand per minute. The new instance is registered in
a discovery service making it part of a load balancer and
lessening the system load at run-time. This can help overcome
a sudden increase in traffic at a moment’s notice.

From the user’s perspective, it may be hard for them to
meet their needs for information. Acquisition of the data may
require a considerable effort by the user. To overcome that,
we propose a way to encompass heterogeneous data. Thus,
the user experience is the cornerstone of our application.

In this paper we propose a solution based on a multi-
platform web application1 for visualizing geospatial data and
related information, which considers the context of the user
in the application. The related information is focused on
real-time data from IoT devices, but can also include other
types of information, such as static resources or third-party
web services. Some features like the location, the platform
which the information is visualized on and the platform lan-
guage have contributed to our improving the user experience.

1https://app.acg.ual.es/

A Progressive Web Application (PWA) [13] was developed
as part of the proposal. For it we used a component-based
approach that we have had experience with, ENIA (ENvi-
ronmental Information Agent) [14], an intelligent Web agent
for environmental information which was developed with
funding from the Regional Government of Andalusia (Spain).

Figure 1 shows ENIA, a mashup interface in which every
component is coarse-grained and encapsulates a certain func-
tionality, and those components can communicate with each
other. In this use case example, every component of the
mashup is working together as a whole, finding a way to
show economic activity in the province of Almería based on
the environment. Threemap components, an external weather
component and a twitter component, are used for that. The
ENIA web application does not show any real time informa-
tion from IoT devices and the proposed approach is intended
to fill this gap by providing this information through its front
end.

The backend of our proposal has a microservice architec-
ture, which takes several system-oriented patterns, such as
gateway and circuit breaker into account [15]. This architec-
ture and the use of context data help decide what information
should be used to fill the components. A selection graph is
used for this as an underlying data model. This makes it
faster to narrow down the search of those components, thus
improving the user experience.

This article is structured as follows. Section II reviews
related work in the literature. Section III presents the back-
ground and fundamentals of microservices and PWAs on
which our solution is based. Section IV shows the architecture

104578 VOLUME 7, 2019



M. Mena et al.: PWA Based on Microservices Combining Geospatial Data and the IoT

of our proposed solution from both the back-end and front-
end perspectives. At the back-end, we propose division into
three layers, edge services, core services and internal-external
data. SectionV describes a detailed use case of the application
based on user context information. Finally, Section VI draws
conclusions and proposes some future work. Summarizing,
the main contributions are:
(1) Architecture based on microservices, integrating dif-

ferent technologies and an orchestration method for
combining IoT and georeferenced information.

(2) Integration of IoT devices in a component-based user
interface.

(3) Use of context information to improve the user expe-
rience in a multiplatform progressive web application
related to IoT and geospatial data.

(4) The use of a graph-based data model with a selection
algorithm able to gather components based on user
context information.

(5) A micro frontend component-based user interface cou-
pled with PWA.

(6) Setting the foundations (infrastructure, graph and
selection algorithm, component-based development,
etc.) to which components can be added, taking into
account context-related information.

II. RELATED WORK
Our proposal was developed based on three pillars. First,
the use of a microservice architecture, secondly the develop-
ment of a front-end following amicro front-end approach, and
finally the use of context data to improve the user experience.

Use of microservice architectures has been growing expo-
nentially in the last few years. The microservice concept was
first introduced in a case study by Lewis [16] and at about
the same time by George [17]. Since then, the concept has
evolved into what we now know [18]. For instance, com-
panies like Netflix [19] make impressive use of microser-
vice architectures to meet every single business objective
and be able to grow at an unprecedented rate, taking close
to forty percent of the bandwidth usage in North America
in 2015 [20]. This architecture has been used in many kinds
of applications, but not yet in research contexts which require
a combination of geospatial data processing and IoT informa-
tion management.

Recently, researchers in geospatial data have started to
realize their advantages. In [21], the authors proposed the
use of microservices to orchestrate existing geospatial pro-
cessing algorithms, and to compose and execute geospatial
workflows in a cloud environment. Another study related to
the use of spatial data in a microservice setting [22], uses the
spatial location to orchestrate the deployment of edge com-
puting distributed services in fog computing environments.
The approach presented in [23] processes and visualizes sen-
sor data acquired by devices in real time. In that proposal,
microservices were used tomanage individual services across
the complete visualization process workflow. Therefore, only
the benefits related to service choreography were applied.

We leveraged the potential of microservice architectures to
make the back-end of our application more resilient and pro-
vide our users with a faster, robust, secure and more reliable
experience.

Novel IoT domain approaches take advantage of the bene-
fits of microservices. For example, in [24] a Web of Objects
architecture is proposed for providing and reusing IoT ser-
vices. In contrast to our approach, that architecture represents
each object (or a composition of objects) with a microser-
vice, while we use microservices for managing and access-
ing our software components. Moreover, those microservices
are linked to location data, but that information does not
adjust the information to the user context, as proposed in our
architecture. The proposal in [25] supports the development
and evolution of context-based IoT applications. It is focused
on three main aspects of IoT devices: context triggering,
geospatial visualization and anomaly detection. The main
difference from our approach is front-end communication.
Those authors proposed iframe components communicating
by thewindow.postMessagemethod, while we do so using the
MQTT publish/subscribe policy (Message Queue Telemetry
Transport) [26] protocol which makes updating data easier,
more flexible and dynamic.

Front-end research is a continuously developing field, and
component-based interfaces are already being used as a pri-
mary source of user interaction. Some of the most important
web development frameworks (Angular, React, Vue, etc.) use
a component-based approach as a reliable method of develop-
ing a web-based application. We already had experience with
component-based mashup interfaces [14], [27], [28], but we
wanted to improve them with the use of a Progressive Web
Application (PWA) [29], [30].

PWA applications attempt to combine features offered by
most modern browsers with the benefits of mobile experi-
ences. At a first glance, they look like native platform appli-
cations, but they are developed as normal web pages. The
only trait that has to be changed to convert web applications
into a PWA is to provide them with unnetworked behavior.
Simultaneously, a new paradigm was born, the micro front-
end [31]. From a developer’s perspective, a micro front-end
adapts the microservice philosophy to front-end development
with concepts like technology agnostic design, team code
isolation, high reusability, etc. Our front end was developed
based on both concepts (multiplatform and micro front-end),
as PWA development leads to this philosophy.

Every major platform (Windows, Android, IOs, Linux,
etc.) already supports the use of PWA as a bridge for web
development in native platform applications without the
drawbacks this kind of application had just a few years ago.
With the advances in PWAs, the sensors fitted in devices to
help with context awareness can still be used, as this forms
part of one of our main objectives. Furthermore, major web
browsers are starting to support a variety of those sensors,
such as GPS, NFC, and others for PWA. To illustrate the
support of certain features available to PWAs using Chrome,
Table 1 shows the compatibility of each major platform with

VOLUME 7, 2019 104579



M. Mena et al.: PWA Based on Microservices Combining Geospatial Data and the IoT

TABLE 1. PWA features supported on Chrome.

key PWA features. For a more in-depth look at the features
supported on each browser for PWA see [32].

We developed our system with the user context in
mind [33], so context awareness is mandatory for our applica-
tion. Of the work related to this topic which has already been
published, the study most closely related to the contributions
examined here is presented in [34], where the system applies
context data to improve the user experience. Context aware-
ness is achieved in our application by harnessing sensor and
device properties to give the user a personalized experience.
Offering the users components personalized for them based
on their location can help give those users the information
they really need. For example, if they want to know the
weather, with the user geoposition we can show the results
from IoT devices or third-party Web Map Service (WMS)
providing the weather data for their positions and with a
granularity suited to their needs.

III. BACKGROUND AND FUNDAMENTALS
Some background knowledge on the main principles used is
required to understand our solution. First, it is important to
know the microservice architecture paradigm, as well as what
a microservice is.

There is no clear definition of a microservice, but it is gen-
erally accepted to be a self-contained set responding to small
problems, usually through services, which are built around
key pieces of the business logic [35]. These microservices are
independent processes able to communicate with each other
by lightweight mechanisms, such as API (Application Pro-
gramming Interface) HTTP resources. Most of the time they
are written in different programming languages and do not
have to be based on the same data persistence technologies.

A microservice architecture is based on appropriate
orchestration of those microservices. It has the advantage of
being able to independently raise replicas of the microser-
vices in high demand immediately, unlike monolithic archi-
tectures, in which all the business logic is implemented
in a single solution. A generic example of a microservice
architecture is presented in Figure 2, showing how the back
end is separated into small microservices, each with its own

FIGURE 2. General microservice architecture.

database. At the same time, different devices can use different
connection patterns, in which case, mobile platforms request
information through an API Gateway and the Web Applica-
tion is connected directly to each microservice. It is important
to realize that a microservice architecture is dynamic, and
there is no preestablished way of developing it, so we had to
decide on the best approach for separating our microservices
and how to handle communication between them.

Along with the use of a microservice architecture, the pro-
posed solution takes advantage of PWAs as a way to deploy
onmultiple platformswithminimum effort. PWAs are normal
web applications that provide an app-like user experience
using modern web browser capabilities like push notifica-
tions, user device information, GPS capabilities, etc. Even so,
PWAs are more than just a set of new features, they are a way
of building better websites, leading to a set of best practices
for site development, regardless of which device they use to
visit it.

PWAs use service workers to make it possible to tap into
network requests and help build better web experiences [13].
Service workers act as a middleware in each web request,
and let the request go through if the conditions are meet
(e.g., internet connection is up), or will respond with a
previous cached response if there are connection problems.
Figure 3 shows an example of another service worker action.
In this example, the service worker, acting as middleware,
intercepts each request, and then, if the request is cached,
it responds immediately, or otherwise, it retrieves it from the
network.

The service worker generates a thread at the same time as
the thread generated by our main Webapp, which provides
the distinct advantage of alleviating the workload of the main
thread. The service worker of our PWA is not tied to any
web page. It cannot modify any element in the web page as
it does not have DOM access and has its own global script
context. Service workers are event-driven. The number of
events that the service workers handle can be increased, so the
development of a PWA tends to be progressive. There is no
need to do it all at once, and so, converting a Web application
into a PWA is a painless process, which can be done by bits
and pieces, working on the things considered essential first,

104580 VOLUME 7, 2019



M. Mena et al.: PWA Based on Microservices Combining Geospatial Data and the IoT

FIGURE 3. Service worker example behavior.

and then selecting more events to improve the behavior of the
application step by step.

IV. MERGING MICROSERVICES AND IOT INTO A
GEOSPATIAL PWA
In this section our solution is described from two perspec-
tives, back-end and front-end, respectively, with special atten-
tion to how IoT devices and context information behave in our
system. Our own microservice architecture is presented as a
fundamental part of the proposed solution. Once the architec-
ture is understood, management of back-end microservices
and their behavior in use are explained.

After the description of how the back end works, front-end
development is explained as a component-based architecture
from a PWA approach.

A. BACKEND ARCHITECTURE
Due to the nature of microservice architectures, a set of small
services needs to be managed. At the same time, the use of
resources and the possibilities for micromanaging each are
evaluated until a start-up order is established based on depen-
dencies (i.e., initiate geoservice after PostGIS is up), using
Docker [36]. The Docker software platform makes use of
containers to help handle a series of virtualized resources that
are completely independent and have their own properties,
like name spaces, file systems, libraries, etc. Containers in
Docker share a common kernel, meaning that all containers
can work over a single Linux instance, which helps avoid
the need of running and maintaining several virtual machines
independently. A Docker system is based on a layer that
describes personalized configuration that has to be laid over
the basic images in the container (See Docker Hub [37] for
further information about Docker images).

One of the first questions to be answered is how to divide
up themicroservices, and howmany are to bemanaged. In our
case, we distributed all the microservices in the following
three layers:

a) Edge Services: These services handle communication
with the users. Included in this layer are Gateway Ser-
vices, Discovery Services, and a Load Balancer.

b) Core Services: This layer contains the business logic.
Included in this layer are Component Services, Trans-
lation Services, Geo Services and Auth Services.

c) Persistence: This layer is built up from the databases of
internal data, as well as external services not managed
locally. This data is used to acquire information to feed
the components.

Figure 4 presents the proposed back-end architecture. The
dark arrows show the flow of a request in our system. The
light arrows show the behavior of the individual microser-
vices. Each request sent to the Gateway Service is ana-
lyzed and then sent to the appropriate Core Service. The
figure shows how IoT devices are connected directly to the
MQTT broker (Mosquitto).

The Figure 5 represents a sequence diagram where
microservice startup and its behavior is observed. In it,
the Core Service routes are registered in the Discovery Ser-
vice when a call is sent to it with the address and port
of the single instance every time a microservice starts up.
At the same time, the gateway service generates a call every
60 seconds to check microservice status.

1) EDGE SERVICES
This layer is mainly focused on orchestration of communi-
cation between microservices. Some Netflix OSS compo-
nents [38] are used to achieve this orchestration. They are a
proven, easy way to implement certain mechanisms inherent
to a microservice architecture, and at the same time help
implement a series of system oriented patterns [39] like the
API gateway pattern, circuit breaker, client-side discovery
and server-side discovery patterns, among others.

In this service layer, requests are orchestrated on a
microservice level, managing external requests and redirect-
ing them to the core services that can provide the appropriate
response. This layer has two main services: (a) Discovery
Service and (b) Gateway Service.

The Discovery Service acts as a registry of other services
as well as a discovery server. Its main function is to manage
the status of each back-end service that is running. It is also
able to use Ribbon, a component that balances loads between
services of the same type. The Gateway Service is the only
one the user can communicate with, i.e., the access point
to the back end. It automatically generates a route for each
service registered in the Discovery Service. At the same time,
it handles requests between the front-end application and the
back end. This is therefore the only point where an SSL
certificate has to be used to make communications secure.

In addition to these two components, we use the Circuit
Breaker pattern with Netflix OSS (Hystrix). This system
pattern is implemented in the microservices to avoid error
chains. Hystrix is ready to step in if some method is repeat-
edly causing timeouts in our requests. At the moment it
detects an error, Hystrix opens the circuit handling all the
requests following that methodwith a default response. At the
same time, Hystrix sends successive messages to that method
until it is working again, then it closes the circuit and every-
thing works the way it is supposed to.

These services can be replicated at container level, so by
establishing a prefilter in each of the microservices, a script

VOLUME 7, 2019 104581



M. Mena et al.: PWA Based on Microservices Combining Geospatial Data and the IoT

FIGURE 4. Geospatial PWA back-end architecture.

can be directly configured that launches other mirror contain-
ers after a certain load threshold has been exceeded. From
that moment on, Ribbon will redirect requests to that mirror
container as need, depending on the policy stated in the
Discovery Service.

2) CORE SERVICES
The main services which implement the business logic, and
auxiliary services which handle personalization based on
the user context information are in this layer. The context
information has four properties: the name of the platform the
request comes from, the form factor of the device used to
run the application, the language of the platform where the
request is made, and the user position. The Core Services
layer has four services: (a) Auth Service, (b) Translation
Service, (c) Geo Service, and (d) Component Service.

The Auth Service manages authentication and authoriza-
tion of users and applications that make use of the back end,
using the OAUTH 2.0 protocol [40]. Each method of every
microservice has its own scope, with certain restrictions of
users who can access and/or applications that have permission
to use them. TheTranslation Service handles the translations
of words and units that depend on the user context. For
example, if an American user wants to know the state of
the beaches, he/she will receive the components translated
into English and in the appropriate units (miles, degrees
Fahrenheit, etc.). Geo Service is a middleware service that
can manage geospatial requests. Behind this service, there
is a Geoserver which serves maps in multiple formats and
withmultiple layers, as required by the component. It is worth
noticing that the geoservice is used to draw maps with layers

where the position of the IoT devices can be shown. Finally,
Component Service is the most important service in our
back-end architecture. This service manages user needs and
responds to them according to the context.

The Component Service states a set of components that fill
with information related to the user’s context. Figure 6 shows
the data model behind the selection of those components as a
tree or a directed graph:

G = {V ,E} (1)

where,

� V = {Category,Region,Component}
� E = {Belongs_to,Contains}

and,

� Belongs_to ⊆ {(a, b) ∈ Category× Region}
� Contains ⊆ {(c, d) ∈ Region× Component}

The acyclic directed graph representing the data model
behind our Component microservice is a set of vertex and
edges that we use to select the adequate components to send
as a response. The vertex represents the categories, regions
and components. While the edges represent the relations
between those vertex, like how the categories belongs to
a region and how the regions contain different kinds of
components.

First are the Categories, which are basically the subjects
the user can search for and receive an appropriate response.
Next, spatial Regions defined have a bounding box linked to
the categories by a Belongs_to relationship. This bounding
box shows whether the user is making the request from a
position inside the region. This way the components can be

104582 VOLUME 7, 2019



M. Mena et al.: PWA Based on Microservices Combining Geospatial Data and the IoT

FIGURE 5. Back-end microservice startup sequence.

personalized based on data from the region itself. Each region
has a series of Components compatible with the information
from that region, defined by subject (Contains relationship),
which can be filled with static information, such as a map
divided into regions, or more dynamic data sources, such as
a table with a data source suggesting a topic in the MQTT
broker which is updated in real time.

Within this relationship, a field is defined with the scores
of each compatible type of device that can be used to retrieve
those components. A triplet (smartphone, tablet, desktop)
where each field is a real value in the interval [0, 1], defines
the affinity of that component on each device. For example,
(0.1, 0.5, 0.9) means that the example has low affinity for
smartphones, medium for tablets, and high for desktops,
so the component is likely to be used when a user makes the
request from a desktop. That way, their selection priority can
be reorganized, taking into account possible incompatibilities
between them in a device (for example, by definition, our
application cannot show two maps on the same window
in smartphones, but does on a desktop). These scores are
assigned by expert knowledge when a new component is
generated in the system.

The number of components returned in response is lim-
ited by the device, e.g., mobile devices only receive a

maximum of the four scoring the highest. Furthermore,
the same component can be defined for different cate-
gories or regions, but with different scores and data ori-
gins. At the time of writing, our application only supports
eight different regions in Andalusia (Spain), but it can be
extended according to user needs. For external resources to
feed defined components we use WMS and the Web Fea-
ture Service (WFS) offered by the Rediam (Environmental
Information Network of Andalusia) [42] and data in XML
format fromAEMET (Spanish Agency ofMeteorology) [43].
Use of external data is flexible, so more sources may be
added.

To explain the concept of a bounding box and compo-
nents shared by different regions, Figure 7 shows a map
representing the graph above it. As an example, Region 3 is
composed of components #2, #3 and #4; whereas Region 4
is only composed of Component #4, so both regions share
component #4 between them.

The data model behind our Component Service is an
important piece that solves the underlying structure used to
store component data. As it is a graph, those components can
be selected much faster by exploring the graph and working
with the subgraph that the context information leads to. The
component selection process is shown in Algorithm 1.

VOLUME 7, 2019 104583



M. Mena et al.: PWA Based on Microservices Combining Geospatial Data and the IoT

FIGURE 6. Component service graph.

FIGURE 7. Component service region map.

The user context information (position, language, platform
and form factor) and the category are necessary to execute the
component selection algorithm. First, it translates the search

subject if necessary (line 1-5). Then it finds the subgraph
related to the category search (line 6). Immediately thereafter,
it picks the subgraphs in the regions the user is in related
to the category graph which was recovered in the previous
point (lines 7-11). It retrieves the components in the region
graph in descending order based on the score defined in the
data model that each component has in the particular platform
employed by the user, at the same time it chooses the number
of components necessary to fill the form factor of the main
view in the front-end application (line 12) (see Section IV-B
for more details). Then it translates those components if
necessary (lines 13-15) and the application sends a response
with the appropriate components (line 16).

Thus, the data model (selection graph shown in Figure 6)
behind the components and their retrieval (Algorithm 1) form
a system enabling new regions, components and/or categories
to be introduced very dynamically and flexibly. At the same
time, it enables them to be deleted or updated without impact-
ing on the overall system.

To help understand its execution, Section V shows how this
algorithm and component selection based on user context data
work in an example scenario.

104584 VOLUME 7, 2019



M. Mena et al.: PWA Based on Microservices Combining Geospatial Data and the IoT

Algorithm 1 Component Selection Algorithm
Require: c = contextInfo and cat = category
Ensure: ∃ c.position and ∃ c.language and ∃ c.formfactor

and ∃ c.platform
1: if c.language 6= eng then
2: category← TranslationServ.translate(cat)
3: else
4: category← cat
5: end if
6: catGraph← getCatGraph(category)
7: for each region in catGraph do
8: if region.contains(c.position) then
9: regGraph← regGraph ∪ region
10: end if
11: end for
12: components← getComp(regGraph, c.platform,

c.formfactor)
13: if c.language 6= eng then
14: components← TranslationServ.transComp

(component)
15: end if
16: return components

3) PERSISTENCE
The use of microservices makes it possible to select different
data sources for each microservice. This has the advantage
of using technologies that suits the need of each service. The
internal data sources chosen for our services are databases
which use polyglot persistence in the back-end to fit their
main use case [41] in our back-end. In this persistence layer,
we have deployed (a � b) databases for each of the microser-
vices as follows:

• AuthService � MySQL: The schemas used for
OAUTH2 follow a relational pattern, as it provides
excellent performance and database integrity [44].

• GeoService � PostGIS: This database was chosen
because it is the most widely used for handling spatial
petitions [45].

• TranslationService � MongoDB: We needed a flexible
schema, as each component is different. A document
database is a flexible approach to this problem, and
leaves open the possibility of adding more languages to
the document and handling different components with
different schemas in the same collection [46].

• ComponentService � Neo4jSpatial: Like PostGIS,
Neo4j Spatial [47] needs to know if a user is inside
the same region to handle the spatial queries. At the
same time, when a relationship becomes important in
a relational database, a graph is much more efficient,
as the graph can be crossed much faster than having to
look up all the rows in the relational database.

• Mosquitto: Apart from the databases used by the ser-
vices, each IoT device has to be able to communi-
cate with the rest of the system. We make use of an

MQTT broker for that. This broker enables topics to
be published and subscribed to help acquire real-time
information from every IoT device managed by the
system. Each device generates a topic that follows the
/kind/region/id pattern, at the same time those
IoT devices publish their values in at least another two
/kind/region and /kind topics, so if necessary,
those devices can be grouped by region and kind respec-
tively (e.g., /temp/almeria/001).

For external data sources we use REDIAM, AEMET and
the Twitter API and others as possible examples of informa-
tion resources.

B. FRONTEND ARCHITECTURE
One of the main objectives of the front end was to make it
available to as many people as possible, and at the same time
make the experience as easy as possible for them. For this
aim, a hybrid technology was the most appropriate solution,
not only to be able to have versions of the application for
mobile platforms, but also even in desktop environments if so
desired. In the search for a technological solution or frame-
work for developing our microservice application, we real-
ized that in most cases, existing frameworks (Ionic, Cor-
dova, Appcelerator, etc.) focus mainly on the development
of mobile platforms.

We wanted to develop a hybrid application using a
component-based user interface (UI), as we would need
to accommodate the new components added to the back
end without impacting negatively on the development time
of their front-end counterparts. Another advantage of this
approach is the possibility of using multiple component con-
figurations at runtime, thereby providing dynamic flexible
interfaces. With that in mind, we decided on development of
a PWA, since it is a hybrid solution that is not only prepared
to run on mobile platforms, but can also run on desktops.
It is relatively easy to adapt a normal Web Application to a
PWA just by adjusting the behavior of the web page when
the device is offline and adding a few files, avoiding the need
to learn new languages or technologies. Another advantage is
that there is a single code base for all the platforms, and this
is always more manageable than having completely separate
applications in different languages for each platform.

In addition to the decision to use a PWA to develop the front
end, we used a micro front-end approach, which attempts
to take parts of the microservice concept to the front end.
Especially important for our use is the isolated develop-
ment of each front-end component, making it easy for every
member of the development team to be working on different
components at the same time without code conflicts. In a
spatial context, different view components can be developed
based on how the spatial data are to be shown. For example,
the same spatial data can be shown in a table component, or as
a component with amapwithGoogle tiles as a base, or a list of
places in order by name, etc. The component used is defined
in the Component Service, so it is important to know that
the front-end application requires at least one micro front-end

VOLUME 7, 2019 104585



M. Mena et al.: PWA Based on Microservices Combining Geospatial Data and the IoT

FIGURE 8. Different front-end configurations for the proposed PWA.

component for each one defined in the Component Service.
The fact that each back-end component has its counterpart in
the front end makes this solution very dynamic, and provides
the possibility of having multiple data sources in each com-
ponent, e.g., a humidity and temperature sensor (DHT22) can
be connected to two topics at the same time in the MQTT
broker, enabling the component to use those two topics at
the same time, alone or in combination with other different
components that handle the data sources in totally different
ways.

Figure 8 shows different application configurations based
on the device that is running it. The configuration will be
based on the number of components chosen to be displayed
by our Component Service, e.g., a category could have five
components defined in a region, but in a mobile platform only
three of them will be shown. Moreover, a different category
may have just one component defined in a region. If this
happens the component will always try to fill all available
space in the display area of the platform. The number of
components and the size of each one is defined by the context
of the platform and the category of the search, but as a
reference, the maximum number of components each plat-
form can have is defined: a) Smartphones, a maximum of 4
components distributed in 2 columns and 2 rows, b) Tablets
and Desktops (portrait mode), a maximum of 8 compo-
nents, 2 columns and 4 rows, c) Tablets and Desktops (land-
scape mode), a maximum of 16 components, 4 columns and
4 rows.

It is important to notice that two different maximum lay-
outs have been defined for tablet and desktops. The device is
considered to be in portrait mode when the height is greater
than the width, and in landscape mode when the width is
greater than the height. This information forms part of the
context. Such component organization facilitates the user
view without overloading it with information.

Furthermore, the user can press a particular component for
a full screen view (which may have more information for the
user). In keeping with our goal making it more comfortable
and flexible for the user, in a small component it is better
to have a quick view, and then instinctively access more
information without too much effort if necessary.

V. AN EXAMPLE SCENARIO OF THE PROPOSED PWA
This section explains a use case of our Progressive Web
Application following the application flow from the moment
the user makes a request to the system. It takes the component
selection algorithm (Algorithm 1) and Figure 9 representing
the sequence diagram of an example request, into account.

In this example, a user wants to know the condition of the
beaches in his/her area (Almería, Spain), and he/she uses a
search bar to find the category (var cat) ‘‘Playas’’ (Beaches).
While the user is performing the search, the application gen-
erates the context information that is added to the header
of each request sent to the Gateway Service. The context
information (var c) that is added to the request is:
– Platform→ Android (var c.platform).
– Form factor→ Smartphone (var c.formfact).
– Language→ Spanish (var c.language).
– Position→ (36.8293, -2.4044) that corresponding to the
(lat, long) of the University of Almería (var c.position).

Once the Gateway Service (see Figure 4) receives the
request, it is redirected to the Component Service. This
Component Service checks whether the user has permission
for that resource by looking up the user’s role in the Auth
Service. Then it translates the search term into the Component
Database main language (line 2 of Algorithm 1), which in
this request is Spanish. As the database components are in
English, the Translation Service provides the translation of
‘‘Playas’’. When the translation has been received, the Com-
ponent Service retrieves the subgraph in the translated search
category (line 6). Using the user’s position, the subgraph
containing the region components finds the region the user
is in (line 7-8), as there may be several regions with different
granularity (e.g., Spain - Andalusia - Almería) and different
components and data sources.

In this example, only one region, Andalusia, is retrieved,
so now only the subgraph for that region in particular is
worked with (line 9). As the context information indicates
that the user device is an Android smartphone, the service
only has to retrieve the four components with the highest
score (line 12), as explained with regard to component size
constraints based on the front-end form factor platform. Once
the components have been received, the service fills them
from the appropriate data source. In this case, the map com-
ponent retrieves the data from the Geoservice as a WMS,
and the category image is shown simply as a static image,
a document populated by a static text about the 16 best
beaches of Andalusia, and a table with a network of devices
connected to their related topics that retrieves the weather
conditions interpreted by our front-end application. As a fail-
safe mechanism, the data from an external service, in this
case AEMET (Spanish Agency of Meteorology) is sent as
backup in case there is a problemwith the devices. Then, after
filling all the components, the service translates them back
into the context language, if possible (line 14), again using
the Translation Service. When the request process has been
completed, the Component Service issues a response to the
front-end application (line 16).

104586 VOLUME 7, 2019



M. Mena et al.: PWA Based on Microservices Combining Geospatial Data and the IoT

FIGURE 9. Sequence example for a Request in the geospatial PWA.

Once the application has received the response, it com-
poses the main view with the components up to the maximum
platform size, in this case size four. As one of the components
is size two, only three of the four components included in the
response can be used, as seen in Figure 10. The document
component is discarded as it has a lower score than the other
three. Notice that the component has a score defined for each
platform as shown in Figure 6. The front-end component can
be static, with the data embedded in the response given by
the back end, or dynamic, like the table in which topics are
connected to the one in the component response and the data
received (wind speed, humidity and temperature) to show
what the weather is like in real-time at those beaches.

Besides the main view, the user can access each component
by pressing it longer for the full screen view. Sometimes the
component contains more information in full screen mode
than in the default size, because there is much more space
available to work in, making it possible to increase the
information shown to the user. In our example, the table
component contains the current weather conditions in the
user region, and in full screen mode, predictions for the next
day (Figure 11a) acquired directly from AEMET are added.
Another interesting feature of the application is that in a
response from a category, a link to related categories is also
usually sent, in this example ‘‘tapas’’ (Figure 11b), which can
be accessed just by swiping to the left in the main view of
the search category. This action makes it easy to find new

FIGURE 10. Main User view of the PWA example.

categories that could be of interest to the user, for discovery
and easy access to new information.

Table 2 summarizes application behavior with different
categories searched or different context information, as well
as the instances where the components shown are based on
IoT devices. For example, whenUser 3 searches for the traffic

VOLUME 7, 2019 104587



M. Mena et al.: PWA Based on Microservices Combining Geospatial Data and the IoT

TABLE 2. Example scenarios with different users and contexts.

FIGURE 11. User interaction with the PWA example.

in his/her zone (Málaga) he/she receives a map component,
a list of the accidents near his/her location and a table with
pollution levels in the zone. ‘‘Pollution’’ is also sent as a
possible category related to traffic that could be relevant.

This use case shows the advantages of the main features
of our proposal, the use of microservices architectures and
the use of a directed graph to present component informa-
tion considering the context information of the user. Thanks
to these improvements we can, for example, scale services
to respond in times of higher demand (e.g., Geoservice in
summer, in behalf of ‘‘playas’’ category), while in the case
of those low-use services we have the possibility to reduce
their level of replication to a minimum. Another of the main
advantages is the possibility to include new categories or

FIGURE 12. PWA Desktop interface. University of Almería.

components on the fly without affecting the performance of
our application, making them available to the users as soon
as they are added to our system (e.g., adding new locations to
the ‘‘tapas’’ category).

To test some user experiences, a PWA demo called GeoNat
has been implemented (available at https://app.acg.ual.es).
This example has a static user context, so the reader can
experience how the application would behave if he were near
the University of Almería (Spain). The categories shown are
those related to that position, ‘‘weather’’, ‘‘air pollution’’
and the ‘‘smart campus’’ categories. Those categories were
chosen by our selection algorithm. Figure 12 shows the Smart
Campus layer for that particular context on a desktop com-
puter user interface. This view is built around three compo-
nents, a map with the university locations, a table with the
free parking spaces in each section, and a chart with the total
of free vs occupied spaces.

VI. CONCLUSION AND FUTURE WORK
In this article, we reported on how we were able
to overcome several problems, such as developing a

104588 VOLUME 7, 2019



M. Mena et al.: PWA Based on Microservices Combining Geospatial Data and the IoT

microservice-based architecture, choosing the optimal num-
ber of those microservices, integrating the different technolo-
gies we used to construct them, and orchestrating them in
such a way that our back end would be secure and reliable.
At the same time, we show real-time data based on IoT
devices in a component-based interface. Additionally, we had
to build the foundations upon which components could be
added and expanded based on new categories or regions to be
supported.

The use of context information in this setting helps provide
the user with the information that is really needed. At the
same time, the use of a data model based on graphs makes our
component selection algorithm quite fast, as in this setting,
the relationships between entities are more important than the
entities themselves. Pruning the graphs by picking subgraphs
is also faster than having to relay each record by querying in a
more traditional relational component database. With PWAs,
the technology barrier of front-end application compatibility
with mobile devices is easily overcome just by adjusting a
web application and making it hybrid, so our scope could
be broadened, thus reaching more users. The micro frontend
approach made it possible to build the user interface dynam-
ically and develop visual components independently, finding
different ways to show the user data.

As future work, the proposed solution could still be
improved upon. First, to improve the user experience, with
time, we will add more categories, components and data
sources. One of our next implementation targets is how to
score components automatically as soon as they are added
in the component service. Another field we would like to
explore is how to improve the performance and the reliability
of our microservice architecture even further. This can be
done, for example, by optimizing the microservice scale,
changing the policy that handles the traffic at the back end,
creating new middleware microservices, and other solutions.
One of the problems with our architecture is the fact that
our MQTT broker (Mosquitto) cannot be replicated. As a
possible solution we are trying to implement a middleware
microservice, which could handle subscriptions based on the
topic requested and redirect them to the appropriate MQTT
broker instance. Focusing on the last point, we could add
value to our solution by decoupling the real-time data from
theMQTT protocol, in an attempt to find a solution that could
handle different types of communication protocols. One last
interesting field that is worth considering is making use of
data analytics, as every request made in our system and the
data generated by our IoT devices is a source of knowledge
about both user behavior (how they use our application) and
the environment (the data recovered by our IoT sensors).

REFERENCES
[1] B. Ubaldi, ‘‘Open government data: Towards empirical analysis of open

government data initiatives,’’ Paris, France, OECD Working Papers 22,
2013.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet of Things
(IoT): A vision, architectural elements, and future directions,’’ Future
Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[3] E. Ahmed, I. Yaqoob, I. A. T. Hashem, I. Khan, A. I. A. Ahmed, M. Imran,
and A. V. Vasilakos, ‘‘The role of big data analytics in Internet of Things,’’
Comput. Netw., vol. 129, pp. 459–471, Dec. 2017.

[4] Y. Jeong, H. Joo, G. Hong, D. Shin, and S. Lee, ‘‘AVIoT: Web-based
interactive authoring and visualization of indoor Internet of Things,’’ IEEE
Trans. Consum. Electron., vol. 61, no. 3, pp. 295–301, Aug. 2015.

[5] A. Jolma, D. P. Ames, N. Horning, H. Mitasova, M. Neteler, A. Racicot,
and T. Sutton, ‘‘Chapter ten free and open source geospatial tools for
environmental modelling and management,’’ Develop. Integr. Environ.
Assessment, vol. 3, pp. 163–180, Sep. 2008.

[6] S. Newman, Building Microservices: Designing Fine-Grained Systems.
Newton, MA, USA: O’Reilly Media, 2015.

[7] A. Sill, ‘‘The design and architecture of microservices,’’ IEEE Cloud
Comput., vol. 3, no. 5, pp. 76–80, Sep./Oct. 2016.

[8] B. Butzin, F. Golatowski, and D. Timmermann, ‘‘Microservices approach
for the Internet of Things,’’ in Proc. IEEE 21st Int. Conf. Emerg. Technol.
Factory Autom. (ETFA), Sep. 2016, pp. 1–6.

[9] C. Granell, L. Díaz, and M. Gould, ‘‘Service-oriented applications for
environmental models: Reusable geospatial services,’’ Environ. Model.
Softw., vol. 25, no. 2, pp. 182–198, 2010.

[10] P. Zhao, L. Di, and G. Yu, ‘‘Building asynchronous geospatial processing
workflows with Web services,’’ Comput. Geosci., vol. 39, pp. 34–41,
Feb. 2012.

[11] P. Zhao, T. Foerster, and P. Yue, ‘‘The geoprocessing Web,’’ Comput.
Geosci., vol. 47, pp. 3–12, Oct. 2012.

[12] A. Khalili, A. Loizou, and F. van Harmelen, ‘‘Adaptive linked data-
driven Web components: Building flexible and reusable semantic Web
interfaces,’’ in Proc. 13th Int. Conf. (ESWC). Cham, Switzerland: Springer,
2016, pp. 677–692.

[13] D. A. Hume, Progressive Web Apps. Shelter Island, NY, USA: Manning
Publications, 2017.

[14] J. Vallecillos, J. Criado, N. Padilla, and L. Iribarne, ‘‘A cloud service
for COTS component-based architectures,’’Comput. Standards Interfaces,
vol. 48, pp. 198–216, Nov. 2016.

[15] F. Montesi and J. Weber, ‘‘Circuit breakers, discovery, and API gate-
ways in microservices,’’ 2016, arXiv:1609.05830. [Online]. Available:
https://arxiv.org/abs/1609.05830

[16] J. Lewis, ‘‘Micro services—Java, the unix way,’’ in Proc. 33rd Degree
Conf. Java Masters, Kraków, Poland, Mar. 2012, pp. 19–21.

[17] F. George, ‘‘Micro service architecture,’’Melbourne, VIC, Australia, 2012.
[Online]. Available: https://yowconference.com/melbourne/2012/

[18] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, ‘‘Microser-
vices: The journey so far and challenges ahead,’’ IEEE Softw., vol. 35, no. 3,
pp. 24–35, May/Jun. 2018.

[19] T. Mauro. (Feb. 2015). Adopting microservices at netflix: Lessons
for architectural design. NGINX Inc. Accessed: Apr. 23, 2019.
[Online]. Available: https://www.nginx.com/blog/microservices-at-
netflix-architectural-best-practices

[20] D. Pariag and T. Brecht, ‘‘Application bandwidth and flow rates from 3
trillion flows across 45 carrier networks,’’ in Proc. Int. Conf. Passive Active
Netw. Meas. Cham, Switzerland: Springer, 2017, pp. 129–141.

[21] M. Krämer, D. W. Fellner, and J. Boehm, ‘‘A microservice architecture for
the processing of large geospatial data in the cloud,’’ M.S. thesis, Dept.
Comput. Sci., Technische Universität, Darmstadt, Germany, 2018.

[22] M. Villari, A. Celesti, G. Tricomi, A. Galletta, and M. Fazio, ‘‘Deploy-
ment orchestration of microservices with geographical constraints for
edge computing,’’ in Proc. IEEE Symp. Comput. Commun., Jul. 2017,
pp. 633–638.

[23] P. Voland and H. Asche, ‘‘Geospatial visualization of automotive sensor
data: A conceptual and implementational framework for environment and
traffic-related applications,’’ in Proc. Int. Conf. Comput. Sci. Appl. Cham,
Switzerland: Springer, 2017, pp. 626–637.

[24] M. A. Jarwar, M. G. Kibria, S. Ali, and I. Chong, ‘‘Microservices in
Web objects enabled IoT environment for enhancing reusability,’’ Sensors,
vol. 18, no. 2, p. 352, 2018.

[25] P. Bak, R. Melamed, D. Moshkovich, Y. Nardi, H. Ship, and A. Yaeli,
‘‘Location and context-based microservices for mobile and Internet of
Things workloads,’’ in Proc. IEEE Int. Conf. Mobile Services (MS),
Jun./Jul. 2015, pp. 1–8.

[26] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, ‘‘MQTT-S—A pub-
lish/subscribe protocol for wireless sensor networks,’’ in Proc. 3rd
Int. Conf. Commun. Syst. Softw. Middleware Workshops (COMSWARE),
Jan. 2008, pp. 791–798.

VOLUME 7, 2019 104589



M. Mena et al.: PWA Based on Microservices Combining Geospatial Data and the IoT

[27] J. Vallecillos, J. Criado, L. Iribarne, and N. Padilla, ‘‘Dynamic mashup
interfaces for information systems using widgets-as-a-service,’’ in On The
Move To Meaningful Internet Systems OTM 2014 Workshops (Lecture
Notes in Computer Science), vol. 8842. Berlin, Germany: Springer, 2014,
pp. 438–447.

[28] J. Criado, D. Rodríguez-Gracia, L. Iribarne, and N. Padilla, ‘‘Toward the
adaptation of component-based architectures by model transformation:
Behind smart user interfaces,’’ Softw., Pract. Exper., vol. 45, no. 12,
pp. 1677–1718, 2015.

[29] B. Frankston, ‘‘Progressive Web apps [bits versus electrons],’’ IEEE Con-
sum. Electron. Mag., vol. 7, no. 2, pp. 106–117, Mar. 2018.

[30] R. Fransson and A. Driaguine, ‘‘Comparing progressive Web applications
with native Android applications: An evaluation of performance when it
comes to response time,’’ Ph.D. dissertation, Dept. Comput. Sci., Linnaeus
Univ. Växjö, Sweden, 2017. Accessed: Apr. 23, 2019. [Online]. Available:
http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-64764

[31] M. Geers.Micro Frontends. Accessed: Apr. 23, 2019. [Online]. Available:
https://micro-frontends.org

[32] M. Santoni. (2018). Progressive Web Apps: Feature Compatibility Based
on the Browser. [Online]. Available: https://bit.ly/2N1YIBL

[33] G. Chen and D. Kotz, ‘‘A survey of context-aware mobile computing
research,’’ Dept. Comput. Sci., Dartmouth College, Hanover, NH, USA,
Tech. Rep. TR2000-381, 2000.

[34] Q. Zhu, S. Wang, B. Cheng, Q. Sun, F. Yang, and R. N. Chang, ‘‘Context-
aware group recommendation for point-of-interests,’’ IEEE Access, vol. 6,
pp. 12129–12144, 2018.

[35] J. Lewis and M. Fowler. (2014). Microservices. [Online]. Available:
https://www.martin fowler.com/articles/microservices.html

[36] Docker. Official Docker Documentation. Accessed: Apr. 23, 2019.
[Online]. Available: https://docs.docker.com

[37] Docker Hub. Accessed: Apr. 23, 2019. [Online]. Available: https://hub.
docker.com

[38] NetFlix. Accessed: Apr. 23, 2019. [Online]. Available: https://netflix.
github.io

[39] C. Richardson. Microservice Architecture Patterns and Best Practices.
Accessed: Apr. 23, 2019. [Online]. Available: http://microservices.io

[40] D. Hardt, The Oauth 2.0 Authorization Framework, document RFC 6749,
2012.

[41] P. J. Sadalage and M. Fowler, NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence. London, U.K.: Pearson, 2013.

[42] REDIAM. Environmental Information Network of Andalusia
(Spain). Accessed: Apr. 23, 2019. [Online]. Available: http://www.
juntadeandalucia.es/medioambiente/rediam

[43] AEMET. Spanish Agency of Meteorology. Accessed: Apr. 23, 2019.
[Online]. Available: http://www.aemet.es

[44] MySQL. Accessed: Apr. 23, 2019. [Online]. Available: https://www
.mysql.com

[45] PostGIS. Spatial and Geographic Objects for PostgreSQL. Accessed:
Apr. 23, 2019. [Online]. Available: https://postgis.net

[46] MongoDB Atlas. Accessed: Apr. 23, 2019. [Online]. Available:
https://www.mongodb.com

[47] Neo4j Spatial. Accessed: Apr. 23, 2019. [Online]. Available: https://neo4j-
contrib.github.io/spatial

MANEL MENA received the master’s degree
in computer engineering from the University of
Almería. He is currently pursuing the Ph.D.
degree, with a focus on the Internet-of-Things
(IoT) systems, software architectures, and the
Web of Things. He has been a member of the
Applied Computing Group (TIC-211), University
of Almería, since 2016. He works alongside his
peers in the national research project CoSmart
(TIN2017-83964-R). Since 2018, he has been sup-

ported by an FPU Grant (FPU17/02010). His research interests include
data engineering, software engineering, big data, cloud computing, machine
learning, the IoT, and the Web of Things.

ANTONIO CORRAL received the Ph.D. degree in
computer science from the University of Almería,
Spain, in 2002, where he is currently an Asso-
ciate Professor with the Department of Informat-
ics. He has participated actively in several research
projects in Spain, such as CoSmart, INDALOG,
vManager, and ENIA, and in Greece, such as
CHOROCHRONOS and ARCHIMEDES. He has
published in referred scientific international jour-
nals, such as Data & Knowledge Engineering,

GeoInformatica, The Computer Journal, Information Sciences, the Journal
of Systems and Software, Computer Standards & Interfaces, Knowledge-
Based Systems, Computing, and UAIS, conferences, such as SIGMOD,
SSD, ADBIS, SOFSEM, PADL, DEXA, OTM, MEDI, and SAC, and book
chapters. His main research interests include access methods, algorithms,
query processing, spatial databases, and distributed query processing.

LUIS IRIBARNE received the B.S. and M.S.
degrees in computer science from the University
of Granada and the Ph.D. degree in computer
science from the University of Almería and con-
ducted from theUniversity ofMálaga, Spain. From
1991 to 1993, he was a Lecturer with the Univer-
sity of Granada and collaborated as an IT Service
Analyst at the University School of Almería. Since
1993, he has been a Lecturer with the Advanced
College of Engineering, University of Almería.

From 1993 to 1999, he has participated in several national and international
research projects on distributed simulation and geographic information sys-
tems. Since 2006, he has been serving as the Main Coordinator of five
Research and Development projects funded by the Spanish Ministry of
Science and Technology and the Andalusian Ministry ST. In 2007, he has
founded the Applied Computing Group (ACG). He has also acted as an Eval-
uator for funding agencies in Spain and Argentina. He is currently an Asso-
ciate Professor with the Department of Informatics, University of Almería.
He has published in referred JCR scientific international journals, such as The
Computer Journal,Computer Standards & Interfaces, the Journal of Logical
and Algebraic Methods in Programming, Software Practice and Experi-
ence, Simulation Modelling Practice and Theory, the IEEE TRANSACTIONS

ON GEOSCIENCE AND REMOTE SENSING, the Journal of Neuroscience Methods,
Information Systems Management, Behavioural Brain Research, Computers
in Industry, the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—
PART A: SYSTEMS AND HUMANS, and the Journal of Visual Languages and
Computing, among others. He has also published in referred scientific inter-
national conferences, such as ICMT, ICSOC, ICSOFT, SOFSEM, ICAART,
PAAMS, SEAA, and EUROMICRO, among others, and book chapters.
His main research interests include simulation and modeling, model-driven
engineering, machine learning, and software technologies and engineering.

JAVIER CRIADO received the degree in com-
puter science engineering and the master’s degree
in advanced computer techniques from the Uni-
versity of Almería, Spain, where he is currently
pursuing the Ph.D. degree in CS. In 2009, he
joined the Applied Computing Group (TIC-211),
a research group in computer science at the Uni-
versity of Almería. Since 2009, he has participated
in three national research projects (TIN2007-
61497, TIN2010-15588, TIN2013-41576-R, and

TIN2017-83964-R) and a regional research project (P10-TIC6114). From
2011 to 2015, he was supported by an FPU Grant (AP2010-3259). His
research interests include model-driven engineering, component-based soft-
ware engineering, model transformations, mashups, model-driven develop-
ment for advanced user interfaces, COTS components, trading, agents and
multi-agent systems, ontology-driven engineering, and UML design.

104590 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	BACKGROUND AND FUNDAMENTALS
	MERGING MICROSERVICES AND IOT INTO A GEOSPATIAL PWA
	BACKEND ARCHITECTURE
	EDGE SERVICES
	CORE SERVICES
	PERSISTENCE

	FRONTEND ARCHITECTURE

	AN EXAMPLE SCENARIO OF THE PROPOSED PWA
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	MANEL MENA
	ANTONIO CORRAL
	LUIS IRIBARNE
	JAVIER CRIADO


