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ABSTRACT Several non-linear fluid mechanical processes, such as wave propagation in shallow water, are
known to generate solitons: localized waves of translation. Solitons are often hidden in a wave packet at the
beginning and only reveal themselves in the far-field.With a special signal processing technique known as the
non-linear Fourier transform (NFT), solitons can be detected and characterized before they emerge. In this
paper, we present a new algorithm aimed at computing the phase shift of solitons in processes governed
by the Korteweg–de Vries (KdV) equation. In numerical examples, the new algorithm is found to perform
reliably even in cases where existing algorithms break down.

INDEX TERMS Korteweg–deVries (KdV) equation, non-linear Fourier transform (NFT), norming constant,
soliton, water wave.

I. INTRODUCTION
Solitons are wave packets that retain their shape while prop-
agating at a constant celerity. They appear in diverse fields
of modern physics, see e.g. [1]–[9]. In physical processes
governed by partial differential equations, solitons typically
form when a dispersive effect, which broadens the wave
packet, is compensated by a suitable non-linear steepening
effect. The prototypical example is the Korteweg–de Vries
(KdV) equation, which has been used to model a plethora of
physical processes such as internal waves in the ocean, Rosby
waves in the atmosphere, plasma waves, acoustic waves in
bubbly liquids [10]; blood pressure waves in arteries [11],
[12]; acoustic waves in metal [13]; and traffic flow [14].

As an illustrative example we consider the application of
the KdV equation to long unidirectional surface waves in
shallow1 water [16]. A dimensional form of the KdV is

ηt̃ + cηx̃ + αηηx̃ + βηx̃x̃x̃ = 0 , (1)

where η = η(x̃, t̃) [m] is the free surface elevation as a
function of the time t̃ [s] and the position in x̃ [m] in lab
coordinates and where subscripts denote partial derivatives.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jing Liang.

1Shallow: The depth is less than 0.22 times the wavelength [15].

In the case of free surface waves, the coefficients of (1) are

c =
√
gh , α =

3c
2h

, β =
ch2

6
,

where g [m/s2] is the gravitational acceleration, h [m] the still
water depth, and c [m/s] the phase celerity of the wave [15],
[17]. By the changes of variables [18]

t =
c
6h
t̃ , x =

x̃ − ct̃
h

, q(x, t) =
3
2h
η(x̃(x, t), t̃(t)) ,

we obtain a standard form of the KdV equation, to wit

qt + 6qqx + qxxx = 0 . (2)

All variables in this standard form are unit-less and real.
The position x in (2) is expressed with respect to a frame
that moves with the phase celerity c, which cancels one term
compared to (1).

As said, the KdV equation allows soliton solutions, which
are waves of translation. In the case of the KdV equation they
take the shape of a squared hyperbolic secant,

sech2(θ ) =
(
1
2
e−θ +

1
2
eθ
)−2

. (3)

A noteworthy fact is that the KdV equation evolves any wave
packet into a parade of N ≥ 0 solitons. (If there are no
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solitons, N = 0, the wave is fully dispersive and will vanish
over time [19, §1.7.c].) That is, after a sufficiently long time t ,

q(x, t) ≈
N∑
n=1

qn sech2(knx − ωnt − ϕn) , (4)

where qn = 2k2n and ωn = 4k3n [20, Eq. 17], [21, p. 83,
Eq. 3.3], [22, Eq. 2.20a]. The amplitude, wavelength and
celerity of a soliton are thus coupled. We call the regime
where (4) holds the far field. Otherwise we are speaking of
the near field. The near field can in general not be described
as a linear superposition of wave components, due to the
non-linear interaction between them.

Nevertheless, from near field data we can obtain the free
parameters that describe the far field – the generalized wave
numbers kn and the phase shifts ϕn – long before individual
solitons start to separate from a wave packet. We do that
with the so-called scattering transform. It is a generaliza-
tion of the common Fourier transform and therefore nowa-
days often called Non-linear Fourier Transform (NFT) in
the literature [23]. The generalized wave numbers and phase
shifts of the solitons are represented in the NFT spectrum by
the so-called eigenvalues ζ0n and norming constants b(ζ0n),
as will be explained later, and the NFT enables us to calculate
them from the normalized free surface at any fixed time. For
brevity and to conform to the parlance of the NFT, we will
hereafter call the normalized free surface at a fixed time,
q(x, t0), the potential. It has been shown that the NFT can
extract features of water waves that remain hidden with linear
methods of signal analysis. We remark that most of the recent
research assumes periodic waves [15], [23]–[26], whereas in
this paper we consider wave packets [17], [18], [27]–[29].

The main motivation of this paper is that whereas the
numerical computation of the soliton amplitude, wavelength
and celerity from near field data is a solved problem,
the numerical computation of the phase shifts ϕn that appear
in (4) is surprisingly hard. The difficulty lies in the numerical
computation of the aforementioned norming constants b(ζ0n).
This is the problem we deal with in this paper. Recently two
closely related algorithms have been proposed independently
to address a similar problem, namely for the NFT that solves
the Non-linear Schrödinger Equation (NSE) [30], [31]. In this
paper we derive a new algorithm to compute the norming
constants of the KdV-NFT that builds on these ideas. The
key contribution we make is that we utilize not one but
two different estimators of the norming constant. Our new
approach is considerably more reliable than the existing
approaches. Furthermore, to the best of our knowledge this
is the first paper to address the numerical calculation of the
norming constants for the KdV equation.2

The paper is organized as follows. In Section II we reca-
pitulate the relevant parts of the NFT for the KdV equation.
In Section III we present and motivate our new algorithm to

2The paper [28] reports numerical results, but does not disclose how
the phase shifts were calculated numerically. Neither does its companion
paper [17].

calculate the norming constants; we validate it with numerical
examples in Section IV and show that it is significantly more
reliable than a reapplication of the ideas of [30], [31] for
the KdV equation. The main part of this paper ends with
a conclusion in Section V. We have furthermore included
several appendices with supporting information.

II. PRELIMINARIES
A. NOTATION
In this paper we typeset variables in italic and constants
upright. The constants include j as the imaginary unit, e as
Euler’s number and π as the ratio of a circle’s circumference
to its diameter. For vectors we use lower case bold (v);
for matrices upper case bold (A) and I denotes the 2 × 2
identity matrix. Scalars are typeset in lower or upper case
regular (q, X0), where for elements of a matrix two subscripts
denote the row and column in that order (Aij). For operators
we use a sans-serif upright font (V). A hat on top of a
variable (q̂) means an estimation or approximation of that
variable. The set R is the set of real numbers; I is the set of
imaginary numbers; C is the set of complex numbers; other
sets are denoted with a capital in calligraphic font (X ). The
symbol := means that the left-hand side is defined by the
right-hand side; the symbol∼means ‘is proportional to’. We
use O as the ‘big-O’ Landau order symbol. We reserve log
for the base 10 logarithm and use ln for the natural logarithm,
with base e. The function exp denotes the exponential with
base e, so exp(θ ) := eθ .

B. NON-LINEAR FOURIER TRANSFORM FOR
WAVE PACKETS
In this subsection, we survey the mathematical background
of the NFT for wave packets. By wave packets we mean
a localized real potential q(x, t0) with so-called vanishing
boundary conditions. Formally,3lim|x|→∞ q(x, t0) = 0 ;∫

∞

−∞

(1+ |x|) |q(x, t0)| dx <∞ ,
(5)

for some fixed time t0. In this paper we deal with the
case that the function q(x, t) furthermore satisfies the KdV
equation (2). As a magic step (refer to [32], [33] for the
explanation) we use q(x, t) as a time-varying potential in the
Schrödinger eigenvalue problem:(

∂2

∂x2
+ q(x, t)

)
f (x, ζ, t) = (jζ )2 · f (x, ζ, t) . (6)

Then (6) has two important types of solutions. Firstly, for all
ζ ∈ R\{0} there exist solutions for which the eigenfunc-
tions f are power signals,4 and they comprise the so-called

3If the KdV equation is normalized otherwise, such that q(x, t0) → h̆ as
|x| → ∞ for some finite constant h̆, then (2) is equivalent to q′t + 6q′q′x′ +
q′x′x′x′ = 0, where x′ := x − 6h̆t and q′ := q− h̆→ 0 as |x′| → ∞. If the
transformed potential q′ satisfies (5), we can proceed with this scaled KdV
equation.

4f (x) is a power signal⇔ limX→∞
1
2X
∫ X
−X |f (x)|

2 dx <∞.
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continuous spectrum. This part of the NFT spectrum decays
over time; the corresponding wave components dwindle as a
dispersive wave train [22]. The continuous spectrum is thus
of interest for the near-field of a wave, but not in the scope of
this paper. Secondly, there is a finite numberN ≥ 0 of distinct
solutions for which the eigenfunctions f are energy signals.5

These solutions comprise the so-called discrete spectrum.
The values of ζ that are part of the discrete spectrum are called
eigenvalues and we will denote them as ζ0, or when we refer
to a specific eigenvalue as ζ01, ζ02, etcetera. It can be shown
that all eigenvalues of (6) are non-zero imaginary numbers
in the upper half plane [33, p. 251], [28, Eq. 3.21], [34, §3].
When we write hereafter ζ , we mean a non-zero number
that is either real or imaginary unless explicitly indicated
otherwise.

It is the discrete spectrum that has our focus in this paper,
for the reason that every eigenvalue corresponds to one sep-
arated soliton in the far field. The discrete spectrum can
be subdivided into two parts. The first part consists of the
eigenvalues, which can be shown to remain constant while
the wave evolves [35]. That is, from the near field up to and
including the far field. Specifically, in (4), jkn = ζ0n, so an
eigenvalue tells us the amplitude, wavelength and celerity of
the corresponding soliton in the far field and as the solitons
evolve further into the far field we can observe that those
indeed remain constant. However, we can calculate the eigen-
values with the NFT at any fixed t = t0.
The second part of the discrete spectrum contains infor-

mation about the eigenfunctions. This part of the spectrum
does evolve over time – in an easy to compute way – and
contains the additional information we need, to calculate the
phase shifts ϕn in (4). By the virtue of (5), as |x| → ∞ the
Schrödinger eigenvalue problem (6) reduces to

∂2

∂x2
f (x, ζ, t) = (jζ )2 · f (x, ζ, t) , (7)

and hence every eigenfunction of (6) reduces in this limit to
a linear combination of the functions exp(±jζx) [36, §2.8].
In particular, we can look for one set of eigenfunctions that
satisfies{

φ(x, ζ, t) → exp(−jζx) ,
φ̄(x, ζ, t) → exp(jζx)

as x →−∞ (8)

and another set of eigenfunctions that satisfies{
ψ̄(x, ζ, t) → exp(−jζx) ,
ψ(x, ζ, t) → exp(jζx)

as x →∞ . (9)

These sets of eigenfunctions are known as the Jost solutions
and it should be noted that they are also uniquely defined for
all other x by (6). Each of the two sets of Jost solutions forms
a linearly independent basis for the eigenfunctions of (6) and
they are related as[

φ φ̄
]
(x, ζ, t) =

[
ψ̄ ψ

]
(x, ζ, t)S(ζ, t) , (10)

5f (x) is an energy signal⇔
∫
∞

−∞
|f (x)|2 dx <∞.

where

S(ζ, t) :=
[
a(ζ ) b̄(ζ, t)
b(ζ, t) ā(ζ )

]
∈ C2×2 , (11)

where the scattering parameters b(ζ, t) ≡ b̄(−ζ, t) and
a(ζ ) ≡ ā(−ζ ) are implicitly defined by (10); their explicit
definitions can be found in Appendix A. The parameter a(ζ )
depends neither on x nor on t; the parameter b(ζ, t) does not
depend on x, but evolves over time as [33, Eq. 3.2]

b(ζ, t) = b(ζ, 0) exp(8jζ 3t) . (12)

Although the scattering matrix S(ζ, t) is in general complex-
valued, it is real-valuedwhen ζ is an imaginary number, so for
the discrete spectrum in particular S(ζ0, t) ∈ R2×2. Another
important property of the scattering matrix is [33, Eq. A3.4]
[36, Eqs. 2.8.10–2.8.11]

det(S(ζ, t)) = a(ζ )ā(ζ )− b(ζ, t)b̄(ζ, t) ≡ 1 . (13)

It can be shown that the set of eigenvalues of (6) can be
determined from the scattering matrix as [33, Eq. 1.7b],
[36, §2.8]

{ζ0 | Im(ζ0) > 0 ∧ a(ζ0) = 0} ⊂ I . (14)

Associated to each eigenvalue ζ0n is a norming constant
that is given by b(ζ0n, t), which is in fact not a constant, but
a quantity that evolves over time according to (12). With this
norming constant we can finally calculate the phase shifts ϕn
in (4) as [20, Eq. 25a], [21, p. 84, Eq. (4.2a)], [22, Eq. 2.20b]

ϕn =
1
2
ln
(
b(ζ0n, t)
ja′(ζ0n)

)
− 4jζ 30nt −

1
2
ln(−2jζ0n)

+

N∑
p=n+1

ln
(
ζ0p − ζ0n

ζ0p + ζ0n

)
, (15)

where |ζ01| < |ζ02| < . . . < |ζ0N | is required as the order of
the eigenvalues and where

a′(ζ0n) :=
da(ζ )
dζ

∣∣∣∣
ζ=ζ0n

∈ I . (16)

Among the quantities required in (15), the norming constants
are especially hard to calculate numerically.6 We will sub-
stantiate this claim in Section III. The main goal of this paper
is to still calculate these norming constants accurately, to be
able to calculate the phase shifts.

Not only do the norming constants contain information
about the position of the solitons in the far field, but also of
the evolution of the wave in the near field. The calculation
of the latter is however more involved due to the non-linear
interaction of the wave components. In the general case one
needs to compute the inverse NFT, e.g. [34]; for a pure soliton
potential (i.e. if b(ζ, t0) = 0 ∀ζ ∈ R\{0}) that may contain
significant non-linear interactions between the solitons, sim-
pler methods exist, such as the one described in Appendix F
and the reference therein.

6One can for example calculate ζ0n and a′(ζ0n) as in [37].
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In the remainder of this paper we drop the dependence on
t = t0 from our notation.
Remark 1 (Sign Inconsistency in [33]): The definitions

used in this paper for both φ̄(x, ζ ) and b̄(ζ ) differ from
[33, §III] by a minus sign, in order to be consistent with
[33, Appendix 3]. Appendix E, where we talk about the Non-
linear Schrödinger Equation (NSE), is an exception.

C. CALCULATION OF THE SCATTERING MATRIX
The mathematical definition of the NFT is not convenient for
numerical calculations. Therefore the Schrödinger eigenvalue
problem, (6), is typically rewritten as a system of first order
differential equations,

∂

∂x
v(x, ζ ) = A(x, ζ )︸ ︷︷ ︸

∈C2×2

v(x, ζ ) , (17)

where

v(x, ζ ) := V(ζ ) f(x, ζ ) ∈ C2×1 , (18)

and V(ζ ) is a column vector of length two of operators.
In literature different choices are made for V(ζ ). We say
that each suitable choice results in an analytically equiv-
alent calculation, expressed in a different basis for the
state vector v(x, ζ ). In this paper we make the special
choice

V(ζ ) = VS(ζ ) :=
1
2jζ

jζ − ∂

∂x

jζ +
∂

∂x

 , for which (19)

A(x, ζ )=AS(x, ζ ) =

−jζ +
q(x)
2jζ

q(x)
2jζ

−
q(x)
2jζ

jζ −
q(x)
2jζ

 , (20)

that simplifies the exposition. We will refer to this choice as
the S basis. In Appendix C we show how our results extend to
alternative choices found in literature. For the Jost solutions
with respect to the S basis we let

8S(x, ζ ) := VS(ζ )
[
φ(x, ζ ) φ̄(x, ζ )

]
(21)

= VS(ζ )
[
ψ̄(x, ζ ) ψ(x, ζ )

]
S(ζ ) (22)

by (10). Then we left-multiply (21) and (22) by

E(ζx) :=
[
exp(jζx) 0

0 exp(−jζx)

]
(23)

and take the limits for x →∓∞ respectively to obtain

lim
x→−∞

E(ζx)8S(x, ζ ) = I , (24)

lim
x→∞

E(ζx)8S(x, ζ ) = S(ζ ) , (25)

where we used (8) and (9). It is useful to note that 8S(x, ζ )
is invertible for all x, because det(8S(x, ζ )) = Wx[φ; φ̄] =
2jζ 6= 0 by (53) in Appendix A.

If we are dealing with a potential that satisfies (5) and is
furthermore zero outside some window (X−,X+), the bound-
ary conditions defining the Jost solutions [(8) and (9)] hold
for all x ≥ X+ or all x ≤ X− respectively. This allows us to
replace x → −∞ in all the previous equations by x = X−
and x → ∞ by x = X+. If we then multiply (25) from the
left by E(−ζX−) and from the right by (24) we find

8S(X+, ζ ) = HS(X−,X+, ζ )8S(X−, ζ ), (26)

where

HS(X−,X+, ζ ) := E(−ζX+)S(ζ )E(ζX−) . (27)

That is, HS(X−,X+, ζ ) is a state transition matrix of (17),
a matrix that defines a bijective linear mapping from every
initial state vector vS(X−, ζ ) to its corresponding final state
vector vS(X+, ζ ). The calculation of the scattering matrix
S(ζ ) can then be done by numerically evaluating (17) to find
HS(X−,X+, ζ ), after which the scattering matrix is found
according to (27).
Remark 2 (Why Not the Ubiquitous AKNS Basis?): An

alternative choice of basis results in the so-called Ablowitz–
Kaup–Newell–Segur (AKNS) system [33]. The AKNS sys-
tem is popular for two reasons. Firstly it is a framework that
covers multiple evolution equations, among which the KdV
equation and the NSE. Secondly, for most of these evolution
equations, the AKNS system is the special choice of basis that
simplifies the exposition, because (24) and (25) hold for these
evolution equations in that basis, cf. [33, Eqs. 3.1 and 3.3]
respectively. However, for the KdV the special choice appears
to be the S basis instead. Indeed, [33, Eqs. A3.2 and A3.3] for
the KdV equation in the AKNS basis differ from (24) and (25)
respectively, in the sense that they implicitly use the change
of basis matrix from the S basis to the AKNS basis, see (77)
in Appendix C. It is hence by the virtue of the S basis that the
exposition in this paper parallels the one for e.g. the NSE in
the AKNS basis.

III. BIDIRECTIONAL ALGORITHM
Recall from the introduction that the eigenvalues ζ0 of a
potential – a normalized free surface at any fixed time –
signify the amplitude, wavelength and celerity of solitons,
but contain no information about their phase shifts in the far
field or their location in general. Therefore we need for each
eigenvalue a second parameter that encodes this information:
the norming constant b(ζ0).
It is notoriously hard to calculate norming constants

numerically, but the topic appears to be unmentioned in lit-
erature for the KdV equation. Let us thus shortly outline the
reason for this issue. The eigenfunction f (x, ζ0) should by
definition be an energy signal. Therefore f (x, ζ0) must be
bounded7 as x → ±∞. For the KdV equation jζ0 < 0,
so the Jost solutions φ̄(x, ζ0) and ψ̄(x, ζ0) are by definition

7Definition: A function f (x) is bounded on a set X if and only if there
exists a number B such that |f (x)| ≤ B <∞ for all x ∈ X .
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unbounded, see (8) and (9). Hence we can express the eigen-
function as a scalar multiple of the remaining, bounded Jost
solutions:

f (x, ζ0) ∼ φ(x, ζ0) = b(ζ0)ψ(x, ζ0) (28)

by (10) and (14). However, (28) will in general not hold
exactly in a numerical calculation. Instead, an eigenfunction
is typically represented like

φ̂(x, ζ0) = â(ζ0)︸︷︷︸
≈0

ψ̄(x, ζ0)︸ ︷︷ ︸
unbounded

+b̂(ζ0)ψ(x, ζ0) . (29)

The Jost solution ψ̄(x, ζ0) grows exponentially as x → ∞,
so when â(ζ0) is small but not exactly zero, φ̂(x, ζ0) grows
exponentially as x → ∞. Although this is in principle an
error in â(ζ0), it will make the calculation of the norming
constant b(ζ0) ill-conditioned, as illustrated in more detail in
Appendix D.

The bidirectional algorithm is a numerical method to cal-
culate the norming constants that lessens the influence of the
aforementioned numerical errors. It was published in [30] and
simultaneously discovered as the forward-backward method
in [31]. The key idea is to evaluate the norming constant
b(ζ0) not at a boundary of the window (X−,X+), but at a
point x = X0 in between, and enforce â(ζ0) = 0 in the
numerical calculation. The algorithm was originally devel-
oped and presented for use with the Zakharov–Shabat (ZS)
system (albeit with a change of variables), which is equivalent
to the AKNS system for the NSE. In Section III-A we extend
this method to make it usable for the KdV equation and we
formulate an overdetermined equation for the calculation of
norming constants b(ζ0). We show in Appendix E that the
equations found in [30], [31] respectively for the calculation
of norming constants for the NSE are actually the two differ-
ent halves of this overdetermined equation. In Section III-C
we propose a new criterion for the selection of the cutting
point X0 that is observed to minimize the estimation error of
the norming constant b̂(ζ0) by utilizing the overdetermined
equation as a whole. By minimizing the estimation error of
the norming constant, we also minimize the estimation error
of the phase shift that is calculated from the norming constant.
We summarize the criteria found in literature in Section III-C
as well, but (as we will show in Section IV) our criterion
leads to considerably more reliable estimates of the norming
constants than the existing criteria.

A. BIDIRECTIONAL ALGORITHM FOR THE KDV EQUATION
We assume again that the potential resembles a wave packet
of finite length: The potential satisfies (5) and we can choose
a window (X−,X+) ⊂ R such that the potential q(x) is zero
outside this window. Let us cut the potential in a point X0 ∈
(X−,X+) in a left and a right part:

qL(x) :=

{
q(x) x ∈ (X−,X0) ,
0 otherwise ;

(30)

qR(x) :=

{
q(x) x ∈ (X0,X+) ,
0 otherwise .

(31)

For the state transition matrices from X− to X0 and from X0
to X+ it holds by (26) that

HS(X−,X+, ζ ) = RS(ζ )LS(ζ ) , where (32)

LS(ζ ) := HS(X−,X0, ζ ) and (33)

RS(ζ ) := HS(X0,X+, ζ ) (34)

can be calculated from the potentials qL(x) and qR(x) respec-
tively. Then by (27),

S(ζ ) = E(ζX+) HS(X−,X+, ζ ) E(−ζX−)

= E(ζX+) RS(ζ ) E(−ζX0) E(ζX0)︸ ︷︷ ︸
=I

LS(ζ ) E(−ζX−)

= SR(ζ ) SL(ζ ) , (35)

where SR(ζ ) and SL(ζ ) are the scattering matrices for the
respective potentials qR(x) and qL(x). By (13) and Cramer’s
rule,

S−1R (ζ ) =
[
āR(ζ ) − b̄R(ζ )
−bR(ζ ) aR(ζ )

]
. (36)

Wemultiply (35) for ζ = ζ0 from the left by S−1R (ζ0) and from
the right by

[
1 0
]T to find after substitution of a(ζ0) = 0 that[
−b̄R(ζ0)
aR(ζ0)

]
b(ζ0) =

[
aL(ζ0)
bL(ζ0)

]
, (37)

which is an overdetermined equation from which b(ζ0) is to
be solved. If SR(ζ0) and SL(ζ0) are the exact scattering matri-
ces of any potential q̂(x) at an exact eigenvalue thereof, (37)
will be consistent. Hence, an inconsistency in (37) indicates
a numerical error that is not due to e.g. discretisation of
the potential. The extent to which (37) is consistent appears
to depend heavily on the choice of the cutting point X0,
an observation we exploit in Section III-C to formulate a new
criterion for this choice. To facilitate the discussion thereof,
we use the two rows of (37) to define two separate estimators
for the norming constant:

b̂1(ζ0) := −aL(ζ0)
/
b̄R(ζ0) , (38)

b̂2(ζ0) := bL(ζ0)
/
aR(ζ0) , (39)

which depend implicitly on X0 via (30) and (31).
In the derivation above we have not posed any restriction

on the way ζ0, (the first row of) SR(ζ0), and (the first col-
umn of) SL(ζ0) are calculated numerically. The bidirectional
algorithm is hence independent on the numerical method by
which (17) is solved. This may for example be an exponen-
tial integrator method (e.g. [17], [38]–[40]) or a collocation
method (e.g. [41, §2.4.3], [42]). Furthermore we are free
to choose the basis for this calculation. In the S basis (37)
becomes, after left-multiplication by ejζX−E(−ζX0),[

−RS12(ζ0)
RS11(ζ0)

]
b(ζ0)ejζ (X−+X+) =

[
LS11(ζ0)
LS21(ζ0)

]
. (40)
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With the aid of Appendix C we could readily express (37)
in any other basis we may wish to use. For example in the
ubiquitous AKNS basis we obtain after left-multiplying (37)
by ejζX−E(−ζX0) the equivalent expression −

RA12(ζ0)
2jζ0

RA11(ζ0)+
RA12(ζ0)
2jζ0

 b(ζ0)ejζ (X−+X+)

=

 LA11(ζ0)+
LA12(ζ0)
2jζ0

−LA11(ζ0)−
LA12(ζ0)
2jζ0

+ 2jζ0LA21(ζ0)+ LA22(ζ0)

 ,

(41)

which demonstrates that the use of the AKNS basis for the
KdV equation is possible at the cost of more complicated
equations compared to the S basis.

In Appendix E we link the formulation of (37) to the pre-
vious work on the bidirectional algorithm, which was solely
aimed at calculations for the NSE in the AKNS basis. In short,
both [30] and [31] develop the bidirectional algorithm as
described in this paper, but [30] finds only (38), whereas [31]
finds only (39) as the estimator for the norming constant.
They furthermore use different criteria to select the cutting
point, as we will discuss in Section III-C. However, since we
are proposing a criterion that aims to minimize the error in the
phase shift, we need to discuss first – in the next subsection –
how this error is affected by an error in the norming constant.

B. PHASE SHIFT ERROR
We have seen that we can calculate the phase shifts ϕn appear-
ing in (4) from the norming constants b(ζ0n) with (15). From a
numerical estimation of the norming constant, b̂(ζ0n), we can
thus calculate an estimation of the phase shift, ϕ̂n. It is readily
verified that the estimation error in the phase shift satisfies

ϕ̂n − ϕn =
1
2
ln
(
b̂
(
ζ0n
) /

b
(
ζ0n
))

, (42)

when all other variables that appear in (15) remain the same.
Hence an additive error in the phase shift is directly related
to a multiplicative error in the norming constant.

We must further consider what happens when this multi-
plicative error is negative. (We will see in Section IV that this
occurs commonly for calculations of the norming constant
according to the benchmark algorithms.) In that case (42)
evaluates to a complex number, which is a meaningless result.
Empirically, when we reconstruct a potential from an NFT
spectrum that is modified by flipping the sign of one or
more norming constants, we obtain a completely different
potential. Hence, a proper measure for the phase shift error
is

E(b̂, b; ζ0) :=


1
2
ln
(
b̂
(
ζ0
)/
b
(
ζ0
)) b̂(ζ0)

b(ζ0)
> 0 ,

∞
b̂(ζ0)
b(ζ0)

≤ 0 .

(43)

FIGURE 1. Potential q(x) of ‘Example 1: Two separated solitons’ and the
piecewise constant approximation q̂(x) thereof with D = 100 samples
(top), the phase shift error between norming constant estimates b̂1(ζ0)
and b̂2(ζ0) as a function of the cutting point X0 (middle), and the phase
shift error of these two estimates compared to the true norming constant
b(ζ0) (bottom). All three plots have the same scale on the horizontal
axis.

Errors in numerical algorithms for the calculation of the
NFT emerge for example due to discretisation of the poten-
tial, where there is a trade-off between the error and the
required number of computations. For an exponential integra-
tor method the required number of computations depends on
the number of samples D and the relative error in the result is
typically of the order O(D−p) for some positive integer p. We
remark that then the error measure defined in (43) converges
at the same rate, i.e.∣∣∣∣∣ b̂(ζ0)− b(ζ0)b(ζ0)

∣∣∣∣∣ = O(D−p)

m (44)∣∣∣E(b̂, b; ζ0)∣∣∣ = O(D−p) ,

which can be shown by Taylor expansion.

C. CHOICE OF CUTTING POINT
We have shown in Section III-A how the bidirectional algo-
rithm can be used for the calculation of the norming constants
for the KdV equation. Two questions are left to answer in this
subsection: How should we choose the cutting point X0 and
how do we find the optimal estimate of a norming constant
from the overdetermined equation (37)? In this subsection we
summarize the existing criteria for choosing the cutting point
that are known in literature for the NSE and we propose a new
criterion. In Section IV we will demonstrate with numerical
examples that the existing criteria are not suitable for arbi-
trary vanishing potentials, whereas the criterion we propose
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FIGURE 2. Cutting point for the bidirectional algorithm and resulting phase shift errors for different numbers of samples for ‘Example 1: Two separated
solitons’, following the proposed criterion (top row) and three benchmark criteria (second to fourth row); phase shift error with the naive computation
(bottom right).
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provides the most accurate estimate of the norming constant
in every case. By following the proposed criterion the error
between the two estimates – (38) and (39) respectively – will
generally become negligible compared to the discretisation
error, in which case we can simply select any of the two as
the numerical norming constant.

Suppose that the potential q(x) is known on a grid x ∈
{X−+mε− 1

2ε | m ∈ {1, 2, . . . ,D}}, where the step size ε :=
(X+−X−)/D. The natural candidates for the cutting point are
the points exactly in between: X0 ∈ X0 := {X− + mε | m ∈
{1, 2, . . . ,D−1}}. We propose to select the cutting point that
both minimizes the relative error between the two estimates
of the norming constant (b̂1(ζ0) and b̂2(ζ0) as defined in (38)
and (39) respectively) and minimizes the additive error of the
phase shifts that can be calculated from these. That is,

X0 proposed = arg min
X0∈X0

∣∣∣E(b̂1, b̂2; ζ̂0)∣∣∣ , (45)

with E as defined in (43). The intuition behind this choice is
that when the numerical error is small, the two estimates are
close to each other. Conversely, when either of the two suffers
from a large numerical error, the two estimates are probably
far apart.

In the literature three other criteria are known to select the
cutting point. These were all proposed for the calculation of
norming constants with respect to the NSE, but we will use
them as benchmarks for the calculation with respect to the
KdV equation anyway, as there are to our best knowledge no
such criteria for the KdV equation.
• TheHari criterion [30, Algorithm 1] can be summarized
as follows: Evaluate for each eigenvalue ζ0 the scattering
parameter aL(ζ0) as a function of the cutting point X0.
Then select the cutting point as

X0Hari = arg min
X0∈X0

|aL(ζ0)− 0.5| . (46)

• The Aref criterion [31, §III.B] for X− = −X+ is

X0Aref = arg min
x∈X0
|q(x)| exp(−2jζ0|x|) . (47)

In case X− 6= −X+, two options are given in [31,
§III.A]: Shift the potential such that (X−,X+) shifts to
(X+−X−
−2 ,

X+−X−
2 ) and correct for this space translation

afterwards, or pad the potential with zero on one side
to enlarge the window until X− = −X+. The choice
between these two affects the outcome of (47). We will
refer to these criteria as the Aref criterion with potential
shift or support extension respectively.

• The 1-norm criterion, used by the Fast Non-linear
Fourier Transform (FNFT) software library [43], is

X0 1-norm = argmin
X0∈X0

∣∣ ‖qL(x)‖1 − ‖qR(x)‖1 ∣∣ . (48)

Apart from the bidirectional algorithm one could also esti-
mate the norming constant with a naive calculation, directly
from the scattering matrix:

b̂naive(ζ0) =
[
0 1

]
S(ζ0)

[
1 0

]T . (49)

FIGURE 3. Potential q(x) of ‘Example 2: Six partially overlapping solitons’
and the piecewise constant approximation q̂(x) thereof with D = 316
samples (first plot), the phase shift error between norming constant
estimates b̂1(ζ0) and b̂2(ζ0) as a function of the cutting point X0 (second
plot), and the phase shift error of these two estimates compared to the
true norming constant b(ζ0) (last two plots). All four plots have the same
scale on the horizontal axis.

We treat the naive calculation hereafter in the framework of
the bidirectional algorithm by choosing

X0 naive = X+ ⇒ b̂naive(ζ0) ≡ b̂2(ζ0) , (50)

where we have used that the scattering matrix SR(ζ0) of
qR(x) ≡ 0 is the identity matrix. Note that b̂1(ζ0) is unde-
termined for X0 naive.

IV. NUMERICAL EXAMPLES
In this section we compare the numerical calculation of
the norming constants according to the bidirectional algo-
rithm with the proposed criterion to the benchmark criteria
listed in Section III-C. We demonstrate that the bidirectional
algorithm with the proposed criterion computes the correct
norming constants even in difficult examples where all other
criteria fail. In each example we start with a potential q(x) of
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FIGURE 4. Cutting point for the bidirectional algorithm and resulting phase shift errors for different numbers of samples for ‘Example 2: Six partially
overlapping solitons’, following the proposed criterion (top row) and three benchmark criteria (second to fourth row); phase shift error with the naive
computation (bottom right).
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which the norming constants are analytically known. Thenwe
calculate the norming constants numerically according to our
proposed criterion as well as each of the benchmark criteria
and compare the results.

A. EXAMPLE SETUP
For each example we approximate the potential q(x) as a
piecewise constant function q̂(x) that is 0 outside a window
x ∈ (X−,X+). The step size is a constant ε := (X+ −
X−)/D, where D is the number of samples. Each step has
the same value as the potential at the midpoint of the step,
so q̂(xm) = q(xm) for all xm = X− + mε − 1

2ε, where
m ∈ {1, 2, . . . ,D}. This approximation of the potential
introduces a relative error in the spectrum proportional
to D−2 [37], [39], thus by (44) we expect the error accord-
ing to the error measure defined in (43) to be of the order
O(D−2).8

For the approximated potential q̂(x) we find the eigenval-
ues numerically according the algorithm described in [37, §4]
where we take U(q, ε) = exp(εAS(x, ζ )) [see (20)] to do the
calculation in the S basis for the KdV equation. Then for each
eigenvalue we calculate the two norming constant estimates
b̂1(ζ0) and b̂2(ζ0) according to (38) and (39) respectively
at every cutting point candidate X0 ∈ X0. Finally we find
the cutting point according to the proposed criterion, (45),
as well as to the benchmark criteria, (46) to (48) and (50)
respectively.9 We will report both estimates of the norming
constant for each of the cutting point criteria (except for
the naive computation), even though their respective sources
make use of only one (see Appendix E).

We display the results for each example in two differ-
ent ways. Firstly, we choose a low number of samples D
for which still the analytically known number of eigenval-
ues can be found. We vary the cutting point X0 and plot
for every eigenvalue against that the error between the two
norming constants estimates b̂1(ζ0) and b̂2(ζ0) as well as the
error between both of these estimates and the analytically
known norming constant. Secondly, we vary the number of
samples D and plot for every eigenvalue against that the error
between both of these estimates and the analytically known
norming constant, where the cutting point is chosen according
to the proposed criterion and each of the benchmark criteria
respectively. We plot these cutting points as well against the
number of samples.

B. EXAMPLE 1: TWO SEPARATED SOLITONS
For this example we choose a pure soliton potential with two
eigenvalues: ζ01 = 0.5j with norming constant b(ζ01) =
−1010 and ζ02 = 0.6j with b(ζ02) = 10−12. The resulting
potential consists of two well separated solitons as shown
in Fig. 1 (top), with the soliton corresponding to ζ01 at x ≈ 25

8Since a piecewise constant interpolation leads (with a suitable x-grid) to
an exact representation of a rectangular potential, i.e. q̂(x) ≡ q(x), such an
example shows atypical results for all criteria and is therefore not included.

9In case any of the criteria does not have a unique global minimum,
we choose the leftmost (lowest) cutting point among the global minima.

FIGURE 5. Potential q(x) of ‘Example 3: Potential with non-zero
continuous spectrum’ and the piecewise constant approximation q̂(x)
thereof with D = 32 samples (top), the phase shift error between norming
constant estimates b̂1(ζ0) and b̂2(ζ0) as a function of the cutting point X0
(middle), and the phase shift error of these two estimates compared to
the true norming constant b(ζ0) (bottom). The plots have the same scale
on the horizontal axis.

and the one corresponding to ζ02 at x ≈ −25. We calculated
this potential with the algorithm from [44], with an essential
numerical improvement described in Appendix F.

For the numerical calculation of the NFT we approximate
this potential (initially) with a coarse grid of D = 100 sam-
ples in the interval x ∈ (X−,X+) = (−50, 50) as shown
in Fig. 1 (top). Fig. 1 (middle) shows the error between the
two estimates b̂1(ζ0) and b̂2(ζ0) for all cutting point can-
didates X0 ∈ X0. (Here and later, errors above a certain
threshold are not shown as they can become very large.)
These errors attain a minimum when X0 is at the location of
the corresponding soliton. Hence, at this location (37) is most
consistent. Away from the soliton this error becomes several
orders of magnitude larger. Motivated by this observation we
want to know if the numerical error is minimized by choosing
the cutting point for each norming constant according the
proposed criterion. In Fig. 1 (bottom) we plot therefore the
error between both respective estimates and the ground truth
and indeed we see that the numerical error of both estimates
for both solitons is minimal when we choose the cutting point
X0 according to the proposed criterion.10 Themain difference
compared to Fig. 1 middle is that the error reaches an error

10Sharp dips below the error floor, such as in Fig. 1 (bottom) for∣∣∣E(b̂2, b; ζ02)∣∣∣ at X0 = −40 are cases where the error in the estimate of the
norming constant coincidentally cancels the error due to the approximation
of the potential. Since the norming constant is a real number this is not
unlikely to happen at some cutting point candidate, but there is no way to
find that point without knowledge of the true norming constant and exploit
this effect.
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FIGURE 6. Cutting point for the bidirectional algorithm and resulting phase shift errors for different numbers of samples for ‘Example 3: Potential with
non-zero continuous spectrum’, following the proposed criterion (top row) and three benchmark criteria (second to fourth row); phase shift error with the
naive computation (bottom right).
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floor in the vicinity of the soliton, thereby forming bathtub
shaped curves rather than V-shaped curves. This error floor is
caused by the approximation of the potential by a piecewise
constant function and can be lowered by reducing the step
size. This is shown in Fig. 2, where we plot (as a function
of the number of samples D) X0 according to each of the
criteria as well as the error of the resulting norming constant
estimates b̂1(ζ0) and b̂2(ζ0) compared to the true norming
constant b(ζ0) for both of the eigenvalues ζ0. It can be seen
that the bidirectional algorithm with the proposed criterion is
the only one for which the error decay is consistently for all
estimates O(D−2) – a factor 100 per decade – as expected. The
other criteria find norming constants with an error that shows
no convergence and that is several orders of magnitude larger
for one of the eigenvalues or for one of the estimators, b̂1(ζ0)
or b̂2(ζ0). We remark that curves that leave the graphing area
vertically indicate that the neighboring data point corresponds
to an estimate of the norming constant with the opposite sign,
yielding infinite error by (43). The reason why the benchmark
criteria perform like this, is that the solitons in the potential
are separated from each other. The benchmark criteria select
the cutting point for all eigenvalues either near one of the two
solitons or right in the middle, which are clearly no suitable
cutting points in every case if we look at Fig. 1 (bottom).
Hence, even for this simple potential the proposed criterion
is the only one that results in only reliable estimates for the
norming constants.

C. EXAMPLE 2: SIX PARTIALLY OVERLAPPING SOLITONS
In this example we construct a pure soliton potential with six
eigenvalues, ζ0n = 0.1nj for n ∈ {1, 2, . . . , 6}, and norming
constants b(ζ0n) = (−1)n exp(8n(−1.01)n). The resulting
potential is calculated as in Example 1 and consists of two
clusters of three overlapping solitons each: The solitons for
odd n cluster at x ≈ −45, those for even n cluster at x ≈ +45.
For the numerical calculation of the NFT we approximate

this potential with a coarse grid of D = 316 steps in the
interval x ∈ (−160, 160). The potential and its approximation
are shown in Fig. 3 (first plot). The error between the two
estimates b̂1(ζ0) and b̂2,(ζ0) are shown in Fig. 3 (second
plot). Again we see that for all norming constants the global
minimum of this error is for X0 in the vicinity of the cor-
responding soliton. In Fig. 3 (last two plots) we show for
each eigenvalue the error between both respective estimates
and the ground truth. Similar to Example 1 we see that the
numerical error of both estimates for all solitons is at a
minimum when we follow the proposed criterion. Due to the
larger window (X−,X+) we can recognize the bathtub shapes
of the curves better than in Example 1, and see that the ones
for b̂1(ζ0) are shifted to the left compared to the correspond-
ing soliton, whereas the ones for b̂2(ζ0) are shifted to the
right. Furthermore we see that the bottoms of the bathtubs
become narrower as the corresponding eigenvalue increases
in magnitude, implying that choosing a good cutting point
becomes more important as the energy of the corresponding
soliton increases.

We can lower the bottoms of the bathtubs, and thereby
the achievable error of the estimate of the norming constant,
by increasing the number of samples, as shown in Fig. 4.
Again we observe that all of the benchmark criteria return
several estimates of the norming constant with an error that
does not decay consistently with an increase of the number of
samples, or is even high throughout. The proposed algorithm
in contrast returns estimates of the norming constant of which
the error decays neatly at the expected rate of O(D−2) for
every eigenvalue and for both estimates thereof.

D. EXAMPLE 3: POTENTIAL WITH NON-ZERO
CONTINUOUS SPECTRUM
For the last example we start from the potential q′(x) =
(35/64)sech2(x/4). It has a non-zero continuous spectrum,
meaning that it is not a pure soliton potential. This potential
has three eigenvalues, ζ0n = (2n − 1)j/8 for n ∈ {1, 2, 3},
with norming constants b′(ζ0n) = (−1)n+1 [36, §5.2]. For
this example we translate this potential to the right by 12π
to obtain q(x) := q′(x − 12π) = (35/64)sech2(x/4− 3π).
We approximate this potential with a piecewise constant
function with (initially) only D = 32 steps in the interval
x ∈ (0, 80). This approximation q̂(x) and the potential q(x)
itself are shown in Fig. 5 (top). The resulting truncation is
deliberately asymmetric with respect to the axis of symmetry
of the potential.11 By Lemma 1 in Appendix B we can
calculate that the norming constants of q(x) are b(ζ0n) =
(−1)n+1 exp(−24πjζ0n).

In Fig. 5 (middle) we show the error between the two
estimates of each norming constant. We see that all three
curves show a global minimum near the axis of symmetry
of the potential and in Fig. 5 (bottom) we show the errors
between these two estimates and the true norming constants,
which have awide global minimumnear the axis of symmetry
of the potential. This minimum is quite high because of the
limited number of samples.

When we increase the number of samples, we obtain the
results shown in Fig. 6. The Hari criterion, the 1-norm crite-
rion, and the proposed criterion select a cutting point near
the axis of symmetry of the potential and the errors of all
their estimates of the norming constant decay at the expected
rate of a factor 100 per decade, O(D−2). The flooring that
is seen in all these cases from around D = 105 samples
is because the error due to the truncation to x ∈ (0, 80)
becomes dominant compared to the error due to the piecewise
constant approximation itself and could hence be removed
by enlarging the window (X−,X+). For this example even
the naive computation shows the expected error decay for
two of the three norming constants, the third one floors at

11We do this because otherwise the staircase approximation q̂(x) would
be even symmetric around x = 12π as well. Since for every even symmetric
potential all norming constants are ±1 by Corollary 1 in Appendix B,
we would obtain no error in the norming constant due to the staircase
approximation at any number of samples, except for due to the error in ζ̂0.
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a higher level. The Aref criterion12 selects cutting points for
two of the eigenvalues at the far-right end of the potential,
which results in two estimates of the norming constants with
a non-decaying error. From this example we see that in
the case of a potential where the solitons are all clustered
together, the proposed criterion performs equally well as the
best among the benchmark criteria.

V. CONCLUSION
In this paper we investigated how to calculate the phase shifts
of solitons in the far field of any wave packet that evolves
according to the Korteweg–de Vries (KdV) equation. For that
we in particular need to compute the so-called norming con-
stant of each soliton. The naive method to compute norming
constants is however known to be unreliable. We adapted
the bidirectional algorithm, which was originally designed
for the computation of norming constants for the Non-linear
Schrödinger Equation (NSE), to the KdV equation. Further-
more we proposed a new criterion to select the cutting point
required for this algorithm. The criterion is based on the
observation that the bidirectional algorithm actually provides
two estimates of each norming constant. The proposed cri-
terion is to select the cutting point that minimizes the dif-
ference between these two estimates, which is observed to
minimize also their distance to the true norming constant. We
demonstrated with three examples that the proposed method
performs at least as good as existing algorithms, and often
several orders of magnitude better.

With the reliability of our method established, we plan to
implement it in the FNFT software library [43] and to apply
it to real-world data in the future.

APPENDIX A
DEFINITION OF THE SCATTERING PARAMETERS OF THE
KDV EQUATION
By Abel’s identity [45, p. 22], the Wronskian of any two
solutions f1 and f2 of (6) for equal ζ is independent of x:

Wx[y1; y2] := y1y2x − y1xy2 ; (51)
∂

∂x
Wx[f1; f2] ≡ 0 . (52)

Consequently, we may evaluate Wronskians of the Jost solu-
tions, (8) and (9), at any convenient value x:

Wx[φ; φ̄] = lim
x→−∞

Wx[φ; φ̄] = 2jζ ; (53)

Wx[ψ̄;ψ] = lim
x→∞

Wx[ψ̄;ψ] = 2jζ . (54)

Because these Wronskians are non-zero for ζ 6= 0, both sets
of Jost solutions are linearly independent for ζ 6= 0. To relate
these two sets, define the scattering parameters as

a(ζ ) :=
Wx[φ(x, ζ, t);ψ(x, ζ, t)]

2jζ
, (55)

12If there is a cutting pointX0 for which q(X0) = 0, then it minimizes (47).
Consequently theAref criterionwith support extension returns a cutting point
in the zero padding of the potential, which does not give up to par results.
Therefore we use the Aref criterion with potential shift in this example.

b(ζ, t) :=
Wx[ψ̄(x, ζ, t);φ(x, ζ, t)]

2jζ
, (56)

ā(ζ ) :=
Wx[ψ̄(x, ζ, t); φ̄(x, ζ, t)]

2jζ
≡ a(−ζ ) , (57)

b̄(ζ, t) :=
Wx[φ̄(x, ζ, t);ψ(x, ζ, t)]

2jζ
≡ b(−ζ, t) . (58)

such that (10) holds. The scattering parameters a(ζ ) and ā(ζ )
do not depend on t [33, Eq. 3.8].

APPENDIX B
PROPERTIES OF THE SCATTERING PARAMETERS OF THE
KDV EQUATION
Lemma 1 (Space translation): If the scattering matrix of a

potential q(x) is S(ζ ) as in (11), then the scattering matrix of
the potential q′(x) ≡ q(x − x0) is

S′(ζ ) = E(ζx0)S(ζ )E(−ζx0)

=

[
a(ζ ) b̄(ζ ) exp(2jζx0)

b(ζ ) exp(−2jζx0) ā(ζ )

]
, (59)

where E(ζx) is defined in (23).
Proof: The scattering problem for q′(x) is equivalent to

the scattering problem for q(x ′) with x ′ := x − x0. The Jost
solutions in the translated coordinate are

φ(x, ζ ) ≡ φ(x ′ + x0, ζ ) ≡ φ(x ′, ζ ) exp(−jζx0) , (60)

φ̄(x, ζ ) ≡ φ̄(x ′ + x0, ζ ) ≡ φ̄(x ′, ζ ) exp(jζx0) , (61)

ψ̄(x, ζ ) ≡ ψ̄(x ′+ x0, ζ ) ≡ ψ̄(x ′, ζ ) exp(−jζx0) , (62)

ψ(x, ζ ) ≡ ψ(x ′+ x0, ζ ) ≡ ψ(x ′, ζ ) exp(jζx0) . (63)

Equation (59) follows from filling these out in the definitions
of the scattering parameters, (55) to (58).
Remark 3 (Change of x-coordinate frame):
Although b(ζ ) and b̄(ζ ) do not depend on x (see

Appendix A), b(ζ ) and b̄(ζ ) do change when we change from
x to a translated coordinate x ′ := x − x0, as we see in
Lemma 1. For the continuous spectrum ζ is real and then
this change affects 6 b(ζ ) and 6 b̄(ζ ), which is analogous
to a phase shift of the ordinary Fourier transform under a
translation of the space coordinate. For the discrete spectrum
ζ0 is imaginary, and then this change affects |b(ζ0)| and |b̄(ζ0)|
instead.
Lemma 2 (Space reversal): If the scattering matrix of a

potential q(x) is S(ζ ) as in (11), then the scattering matrix
of the potential q′(x) ≡ q(−x) is

S′(ζ ) =
[
0 1
1 0

]
S−1(ζ )

[
0 1
1 0

]
=

[
a(ζ ) −b(ζ )
−b̄(ζ ) ā(ζ )

]
.

(64)

Proof: The scattering problem for q′(x) is equivalent to the
scattering problem for q(x ′) with x ′ := −x. The Jost solutions
in the mirrored coordinate are

φ(x, ζ ) ≡ ψ(x ′, ζ ) , (65)

φ̄(x, ζ ) ≡ ψ̄(x ′, ζ ) , (66)

ψ̄(x, ζ ) ≡ φ̄(x ′, ζ ) , (67)
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ψ(x, ζ ) ≡ φ(x ′, ζ ) . (68)

Equation (64) follows from filling these out in the definitions
of the scattering parameters, (55) to (58).
Corollary 1 (Even symmetric potential): For a potential

that is even symmetric, i.e. q(x) ≡ q(−x), by Lemma 2

b(ζ ) ≡ −b̄(ζ ) . (69)

Furthermore, since a(ζ0) = 0 for every eigenvalue ζ0,
from (13) and (69) norming constants of even symmetric
potentials satisfy b(ζ0) = ±1. �

APPENDIX C
OTHER BASES FOR SOLVING THE SCHRÖDINGER
EIGENVALUE PROBLEM
The derivations in this paper for the S basis can be translated
into other bases by means of similarity transformations. Let
b indicate any such basis, then the basis dependent variables
are related to the S basis as

Vb(x, ζ ) = Tb
S(ζ )VS(x, ζ ) , (70)

vb(x, ζ ) = Tb
S(ζ )vS(x, ζ ) , (71)

8b(x, ζ ) = Tb
S(ζ )8S(x, ζ ) , (72)

Ab(x, ζ ) = Tb
S(ζ )AS(x, ζ )TS

b(ζ ) , (73)

Hb(x1, x2, ζ ) = Tb
S(ζ )HS(x1, x2, ζ )TS

b(ζ ) , (74)

where TS
b(ζ ) =

(
Tb
S(ζ )

)−1
. (75)

Hereafter we discuss some bases found in literature.

A. AKNS BASIS
The AKNS system for the KdV equation [33] is found with
the choice

VA(ζ ) :=
[
jζ − ∂

∂x
1

]
⇒ AA(x, ζ ) =

[
−jζ q(x)
r(x) jζ

]
, (76)

where r(x) ≡ −1. The transformation matrices that relate the
AKNS basis for the KdV equation to the S basis are

TA
S (ζ ) =

[
2jζ 0
1 1

]
, TS

A(ζ ) =
1
2jζ

[
1 0
−1 2jζ

]
. (77)

We remark that (24) and (25) expressed in the AKNS basis
are equivalent to [33, Eqs. A3.1 and A3.2] respectively.
That shows that our definitions are consistent with [33,
Appendix 3], in accordance with the claim in Remark 1.

By setting r(x) differently, the AKNS system can be used
for other non-linear differential equations [33]. In particular,
the choice r(x) = ±q∗(x) results in a system for the NSE,
which is also known as the ZS system. In this paper we mean
by AKNS the AKNS system with r(x) ≡ −1 and refer to the
NSE version as ZS.

A variant of the AKNS system is

VĀ(ζ ) := VA(−ζ )⇒ AĀ(x, ζ ) = AA(x,−ζ ) , (78)

and is for the KdV equation related the S basis by the trans-
formation matrices

T Ā
S (ζ ) =

[
0 −2jζ
1 1

]
, TS

Ā
(ζ ) =

1
2jζ

[
1 2jζ
−1 0

]
. (79)

This basis leads for the KdV equation to a numerically more
accurate calculation of the continuous spectrum [29, Foot-
note 3].

B. COMPANION BASIS
Another choice results in a companion system:

VC(ζ ) :=
[
1
∂
∂x

]
⇒ AC(x, ζ ) =

[
0 1

(jζ )2 − q(x) 0

]
. (80)

The transformation matrices that relate this basis to the
S basis are

TC
S (ζ ) =

[
1 1
−jζ jζ

]
, TS

C(ζ ) =
1
2jζ

[
jζ −1
jζ 1

]
. (81)

The advantage of this basis is that it only requires computa-
tions on real numbers for both the discrete spectrum (ζ ∈ I)
and the continuous spectrum (ζ ∈ R), whereas the other bases
in this paper need complex arithmetic for the continuous
spectrum. This advantage is employed by e.g. [24, §17.5.1]
[37, Eq. 5.3].

C. OSBORNE BASIS
The following choice leads to a close relative of the S basis:

VO(ζ ) :=
1
2jζ

 ∂

∂x
− jζ

∂

∂x
+ jζ

 (82)

⇒ AO(x, ζ ) =

−jζ +
q(x)
2jζ

−
q(x)
2jζ

q(x)
2jζ

jζ −
q(x)
2jζ

 . (83)

The transformation matrices are given by

TO
S (ζ ) = TS

O(ζ ) =
[
−1 0
0 1

]
. (84)

This basis is implicitly used in [17], [28], although with all
matrix equations transposed compared to this paper.

APPENDIX D
NAIVE CALCULATION OF THE NORMING CONSTANT
A naive numerical calculation of the norming constant of a
certain eigenvalue ζ0 would use (10) to calculate the scatter-
ing matrix S(ζ0) which contains the norming constant b(ζ0).
However, this calculation is ill-conditioned. As an illustration
thereof we will add here a particular small perturbation to this
calculation and show that this has a large effect on the result.

Let us consider a potential q(x) that is zero for all x outside
a window (X−,X+) and with at least one eigenvalue ζ0 for
which we have numerically calculated the scattering matrix
Ŝ(ζ̂0), in which â(ζ̂0) 6= 0. Now we perturb the potential near
x = X+ as

qµ(x) =

{
q(X+)+ µ X+ − ε < x < X+ ,
q(x) otherwise ,

(85)
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where we assume the potential to be approximately constant
for x ∈ (X+ − ε,X+). Then the scattering matrix of the
perturbed potential becomes

Ŝµ(ζ̂0) = E(ζ̂0X+)GSµ(ζ̂0)E(ζ̂0X+)Ŝ(ζ̂0) , (86)

where

GSµ(ζ̂0) := HSµ(X+ − ε,X+, ζ̂0)H−1S (X+ − ε,X+, ζ̂0)

(87)

first steps back, thereby cancelling the unperturbed potential
q(x), then steps forward with the perturbed potential qµ(x).
Using that for a locally constant potential

HS(X+ − ε,X+, ζ̂0) = exp(εAS(X+, ζ̂0)) (88)

and likewise for the perturbed potential, it can be shown that

GSµ(ζ̂0) =
[
1− δ −δ

δ 1+ δ

]
+ O(ε2) , (89)

where

δ := µε
/
(−2jζ̂0) . (90)

Finally after filling out the first order approximation of (89)
in (86), we find

b̂µ(ζ̂0)

b̂(ζ̂0)
≈ 1+ δ ·

(
â(ζ̂0)

b̂(ζ̂0)
exp(−2jζ̂0X+)+ 1

)
. (91)

The numerical error in the calculated norming constant is
typically large because of the exponential factor in (91). As an
example suppose that we have an even symmetric potential,
then b(ζ0) = ±1 for all eigenvalues (see Corollary 1 in
Appendix B). Then if |δâ(ζ̂0)| ≈ 10−15 with δ � 0.1,
the estimation error according to (91) is already 10% for
−jζ0X+ ≈ 16.
It may seem as if we could apply a change of variables

x → x + x0 to make â(ζ̂0)b̂−1(ζ̂0) exp(−2jζ̂0X+) arbitrarily
small by lowering X+. However, application of Lemma 1 in
Appendix B shows that such a change of variables leaves this
quantity unchanged.

APPENDIX E
LINK WITH PREVIOUS WORK ON THE NON-LINEAR
SCHRÖDINGER EQUATION
Reference [30] uses for the NSE a variant of the ZS basis in
which any state transition matrix on an interval that covers all
non-zero parts of the potential equals the scatteringmatrix. To
see this let us write [33, Eqs. 3.1 & 3.3] as [cf. (24) and (25)]

lim
x→−∞

[
1 0
0 −1

]
E(ζx)

[
φ(x, ζ ) φ̄(x, ζ )

]
= I , (92)

lim
x→∞

E(ζx)
[
φ(x, ζ ) φ̄(x, ζ )

]
=

[
a(ζ ) b̄(ζ )
b(ζ ) −ā(ζ )

]
. (93)

The variables are changed in [30, §IIIA] such that

8H(x, ζ ) := E(ζx)
[
φ(x, ζ ) φ̄(x, ζ )

]
. (94)

Then for a potential that is zero for all x outside an interval
(X−,X+) it follows that [cf. (26)]

8H(X+, ζ ) = HH(X−,X+, ζ )8H(X−, ζ ) , (95)

where

HH(X−,X+, ζ ) =
[
a(ζ ) −b̄(ζ )
b(ζ ) ā(ζ )

]
. (96)

Hence propagating
[
1 0
]T forward up till the cutting point

results in
[
aL(ζ0) bL(ζ0)

]T , whereas propagating [0 1
]Tback-

ward up till the cutting point results in
[
b̄R(ζ0) aR(ζ0)

]T .
Finally b(ζ0) is calculated using only the first element of both
results:

b̂(ζ0) = aL(ζ0)
/
b̄R(ζ0) , (97)

which is b̂1(ζ0), the estimator according to the first row
of (37), with the sign difference explained in Remark 1.
Reference [31] uses the same basis as [30], but calculates

the norming constant as

b(ζ0) =
SL 21(ζ0)
SR11(ζ0)

=
bL(ζ0)
aR(ζ0)

. (98)

This is b̂2(ζ0), the estimate that only makes use of is the sec-
ond row of (37).

APPENDIX F
GENERATION OF A MULTISOLITON POTENTIAL FOR THE
KDV EQUATION
For the generation of the multisoliton potential in
Section IV-B, we made use of an algorithm from [44].
However, we observed that the calculation was only
well-conditioned near the centre of the solitons. In order to
use it for the ‘tails’ of the solitons, we adapted the algorithm
as described below.

A. SIMPLIFICATION OF THE DETERMINANT EQUATION
Consider from [44] the unnumbered equation between (22)
and (23). For this equation to be valid, the denominator matrix
must be invertible. Hence, dividing the two determinants is
equivalent to taking the determinant of the product between
the inverse of the denominator matrix (hereafter D) and the
numerator matrix (hereafter N). Since these two matrices are
equal except for the last column, the aforementioned prod-
uct (hereafter Q) has a particular structure that considerably
simplifies taking its determinant:

Q := D−1N =



1 0 · · · 0 ∗

0 1
. . .

...
...

...
. . .

. . . 0 ∗

0 · · · 0 1 ∗

0 · · · 0 0 c

, (99)

where ∗ denotes a number that is not of interest. Hence,
|N |/|D| = c and this quantity c can be found by solving
Dy = n for y with a suitable linear solver, where n is the
last column of N and c is the last element of y.
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B. SCALING OF THE MATRIX EQUATION
Consider again from [44] the unnumbered equation between
(22) and (23) and the alternative calculation thereof described
above.We observed that these equations become badly scaled
in the ‘tails’ of the potential of the KdV equation, because
half of the βn parameters tend to ∞. This can be solved
by reformulation of the equation in terms of the αn param-
eters, i.e. by left-multiplying both N and D by a diagonal
matrix diag(α1, α2, . . . , α2N ) = diag(β−11 , β−12 , . . . , β−12N ).
This results in a condition number of the denominator matrix
D that tends to a constant as |x| → ∞. We remark that in
some cases this scaling results in a worse condition number
near the solitons centers. For such cases we compare the
condition numbers between the original scaling and the one
described here for each potential sample and choose the best
conditioned one for the calculation of that potential sample.
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