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ABSTRACT Objective of multiple object tracking (MOT) is to assign a unique track identity for all the
objects of interest in a video, across thewhole sequence. Tracking-by-detection is themost common approach
used in addressing MOT problem. In this work, we propose a method to address MOT by defining a
dissimilarity measure based on object motion, appearance, structure, and size. We calculate the appearance
and structure-based dissimilarity measure by matching histograms following a grid architecture. Motion and
size for each track are predicted using the information from track’s history. These dissimilarity values are
then used in the Hungarian algorithm, in the data association step for track identity assignment. In addition,
we introduce a method to address any false detection in stable tracks. The proposed method runs in real time
following an online approach. We evaluate our method in both MOT17 benchmark data-set for pedestrian
tracking and KITTI benchmark data-set for vehicle tracking using the same system parameters to verify the
robustness of the proposed method. The method can achieve state-of-the-art results in both benchmarks.

INDEX TERMS Multiple object tracking, grid-based histograms, tracking by detection, online tracking,
multiple car tracking, multiple human tracking.

I. INTRODUCTION
Tracking is a challenging problem in many video analysis
tasks where an object (defined by a bounding box), is to be
identified and assigned a unique identity over all the frames it
appears in an image sequence. Tracking is an important task
in many applications such as surveillance, autonomous driv-
ing & advance driver assistance systems, behavior analysis,
motion prediction and particle transformation analysis.

Tracking research can broadly be divided in to multiple
Object Tracking (MOT) and single object tracking. While
MOT assumes object detection as prior knowledge, the latter
tries to localize and track an unknown object that has only
been described by the localization information at the first
frame. In the recent years, the most prominent technique in
single object tracking follow discriminative method, opposed
to generative methods. Instead of building an object appear-
ance model based on generative process and without con-
sidering the background [1], discriminative trackers are able
to distinguish the target from negative samples by learning
a classifier, which is more accurate [2]. TLD tracker [3]
divides tracking process into three stages (tracking,
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learning and detecting); Correlation filter (CF) based
tracking [4] and kernelized correlation filter (KCF) based
tracking [5] (by extending the linear filter into non-linear
space) can be presented as significant achievements. With the
recent break through in deep learning domain, deeply learned
single object trackers [6], [7] are developed.

On the other hand MOT tries to track multiple objects
present in all the frames over a given image sequence. MOT
generally has an object detector to detect the objects in each
frame and then utilizes a detection association method to
track them over time. Almost all the MOT methods fol-
lows such tracking-by-detection framework. Methods used in
MOT can be separated toOnlinemethods andOfflinemethods
according to how they use object detection information in
the image sequence. Offline methods make use of all detec-
tions available from the whole image sequence and handle
tracking as a global optimization problem when associating
unique track identities to these detections. Therefore, offline
methods [8], [9] can only be applied to situations where the
whole image sequence is present. In contrast, online methods
only rely on the information from object detection up to the
current frame, which makes it suitable for real time appli-
cations. Offline methods have additional information on the
objects in the whole sequence and hence generally show a
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higher accuracy compared to online methods. However, only
online methods can be used in real time applications and
have shown competitive tracking accuracy in both [10] and
KITTI [11] benchmarks.

In this paper we propose an online tracker which can
be used for multiple class object tracking. In the proposed
method we use a detector to detect the object bounding boxes
in an image frame and associate these detections to tracks
using Hungarian Algorithm [12] based on pair-wise dissim-
ilarity scores calculated between detections in the current
frame against the tracks in the memory. The dissimilarity
cost is calculated using four distance measures, considering
appearance, structure, motion and size for each track. Cor-
relation between two color histograms of the track and the
detection is used as the appearance based similarity mea-
sure. Dissimilarity measure on structure is calculated from
Linear Binary Pattern Histogram (LBPH) matching between
the track and the current detection. Motion dissimilarity is
based on the distance between predicted object location and
observed detection location. The last dissimilarity component
is calculated based on the Intersection over Union (IoU)
between the predicted bounding box size and the current
detection bounding box size. Additionally, we introduce a
method to address false negatives in any stable tracks due
to failures in detection. This overall tracking process is pre-
sented as a flow chart in Fig. 1.
In the next section we present the literature review specif-

ically on online MOT domain, followed by the details on the
proposed tracking methodology. Then in the fourth section
we evaluate our method in terms of multiple pedestrian and
car tracking in public benchmarks and discuss the results,
followed by concluding remarks.

II. RELATED WORK
MOT is a widely studied area in the recent past. While
some MOT methods are designed for specific object
classes, such asmultiple human tracking [9], [13], [14], some
methods [8], [15]–[17] are class agnostic. Most MOT meth-
ods follows tracking-by-detection framework where they rely
on an object detector to provide object candidates. Some
methods that follow tracking-by-detection framework make
use of all the object candidates in the sequence while the
others use candidates up to that frame. Former methods
are classified as global while the later are online methods.
Network flow optimization [9], graph based clustering [13],
multiple hypotheses tracking (MHT) [18] and Bayesian fil-
tering based tracking [8] are amongst the popular approaches
in global MOT methods in the recent past. In addition to
the direct association of detections to tracks, some global
MOT methods [8] first assign detections to tracklets (which
are a combination of matching detections in few consecu-
tive frames) and then assign tracklets to tracks to address
long term variations in track objects. When calculating
the matching cost or dissimilarity between detections in
different frames, object’s appearance and motion are the
most common information sources. In appearance based

FIGURE 1. Flow chart of the proposed tracking framework, where bbi,det
is the bounding box of the i th detection, LBPH stands for Linear Binary
Pattern Histogram and dis(i, j ) is the dissimilarity cost between i th object
detected in the current frame with the j th object in the track list as
defined in (1).

distance calculations, traditional methods such as distance
between RGB color histograms [8], distance between deeply
learned features [9], [13], [18] and deeply learned person re-
identification [9] are used. Point motion matching [8], dis-
tance between expected and detected positions [13], [18] and
spatio-temporal distance between object bounding boxes [9]
are used to define motion based matching costs. In addition,
as a post processing step change point detection framework
is used [8] rectify errors in tracklets to track assignment.
Some methods use [13] multiple detectors to improve the
tracking results, at the expense of increased computational
time.

While offline MOT methods mostly use some form of
global optimization to associate objects or tracklets to tracks
using matching costs from all the frames, online MOT meth-
ods operate on information up to current frame. Therefore,
online methods are more suitable for real time applications.
Online MOT methods mostly use pair-wise cost to match
the detections to tracks. Similar to global methods, matching
cost calculation is based on appearance and motion infor-
mation from the detections. Since the proposed framework
is an online pair-wise cost calculation based method, few
of such methods are discussed in detail. Sarthak Sharma
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et al. in [16] use object shape, pose, 2D and 3D localization
information and deeply learned keypoints matching followed
by Hungarian assignment [12] in its tracking framework.
Two object detectors [19], [20] are used to improve detec-
tion accuracy. In [21] dissimilarity measure is calculated
using cosine distance of the spatio-temporal location and
Chi-Square similarity of the RGB histogram of the object.
Motion cues in matching cost calculations, can give rise
to false matching when the camera is subjected to a sud-
den motion. This global motion can be compensated by
using relative structural motion cues between object bound-
ing boxes [17]. As a post processing step, [17] introduces an
event aggregation to cater for false positives and false nega-
tives. Reinforcement learning based pair wise similarity cal-
culation is used in [22]. Amir et al. [14] presented an online
method that uses three recurrent neural networks (RNNs) to
calculate appearance, motion and social interaction model
based similarity scores. In [23] authors use deeply learned
person re-identification scores and object localization infor-
mation in a Recurrent Autoregressive Network to calculate
pair-wise costs. Chen et al. [24] propose to use the bounding
boxes from both object detector and predicted bounding box
(from each track’s history) to reduce false negatives and
define the pair-wise cost based on deeply learned person
re-identification score. Detections are filtered using nonmax-
imum suppression using a cost define based on detection
confidence and track confidence. In addition to motion and
size based matching, authors in [25] use a trained siamese
network for historical appearance based matching which
specifically help in reducing identity switches when tracking.
Pair-wise cost calculation in [26] is done using two deep net-
works where information from spatial attention network (that
follows siamese architecture comparing detection bounding
boxes and track history) is used in temporal attention network
(following Long short-term memory: LSTM architecture) to
calculate final pair-wise cost between each detection and
track. This dual network is used for tracks and detections
that are not matched by the single object tracker (ECO-HC
- a hand crafted variant of [27] using Histogram Of gradi-
ents (HoG) and Color Names) defined for each track. In [28],
authors dynamically initiate sub network for each instance of
a person, to predict the next location and use the intersec-
tion over union and detection confidence in association cost
computation. Authors in [29] uses discriminative appearance
learning method for each track using the detection as the
positive sample and regions around it as negative samples.
They further make use of object size and position based
spatio-temporal matching and combine these three measures
in a multiplicative manner.

In addition to pair-wise cost based online methods, filter
update based tracking is also used in online MOT problem.
In [30], object position is predicted in a Gaussian Mixture
Probability Hypothesis Density (GM-PHD) filter which is
used with a size based location measure in discriminative
correlation based appearance cost calculation. In a similar
manner Zeyu et al. [31] use Monte Carlo PHD filter, where

the appearance feature is in the form of dictionary matching
defined using RGB color histogram and HoG clustering.
Poisson multi-Bernoulli mixture filter is used in [32], where
authors use predictions of object 3D co-ordinates that are
learned from a deeply trained network. Extended Kalman
Filter variant is used by [33] to track object 2D image coordi-
nates, 3D world (using stereo matching and ego-motion cal-
culation) co-ordinates and object size. In certain work [22],
Markov Decision Process is used in online tracking frame-
work to update the state (active, track, lost and inactive) of
the track at each frame using an appearance based template
matching, based on dense optical flow matching. Wongun
Choi in [15] proposes an energy minimization framework
for tracking, where the energy terms are calculated using an
appearance model and motion model (using FAST features
trajectories measured using optical flow).

Most of the pair-wise methods [14], [16], [21], [22], [29]
useHungarian assignment [12], while somemethods [23] use
greedy assignment when finding the best match for detections
and tracks. In [24] hierarchical association is used based on
two different pair-wise matching costs.

Even though deep learning based MOT methods [25], [26]
can yield accurate tracking results, thesemethods in generally
are time consuming and require a sizable amount of training
data in comparison to traditional hand crafted feature based
methods. Some deep learning methods [24] achieve accuracy
as well as real time performance, but still require specialized
hardware and consumemuch power to achieve higher running
speed. Suchmethods cannot be used in processing power lim-
ited, battery powered embedded systems used in most robotic
applications. Some filter update based methods [30], [31]
achieve state-of-the-art accuracy without requiring special-
ized hardware, but their computational time is not high
enough for real time applications. Appearance learning based
methods [29] can achieve competitive performance in terms
of accuracy at a higher computational cost. Thus, simpler
methods are required for real time robotic applications that
can achieve a good trade off between accuracy and real time
performance. In this work, we try to address this challenge.
Therefore, we propose to combine multiple matching cost
calculation methods that are hand crafted and computation-
ally less expensive to calculate. Specifically, these methods
are defined based on object appearance, size and motion. Car
tracking methods proposed in [16], [21] use multiple hand
crafted features in their framework. However, our method out
perform them in terms of accuracy and run time. Authors
in [16] use deeply learned feature based matching while [21]
uses Chi-Square similarity of the RGB histograms when
computing appearance similarity. In the proposed method,
color histogram basedmatching and structure basedmatching
measures are defined when computing appearance similarity.
In our method we show that following a grid based histogram
matching, can yield a higher accuracy rather than using a
single histogram. Hungarian algorithm [12] is used in assign-
ing objects to tracks. Furthermore, we introduce a method to
compensate the false negatives arising due to detector failures
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for stable tracks. We show that the proposed method can
achieve state of the art performance in both human and car
tracking with real time running speeds.

III. METHODOLOGY
The proposed tracking method mainly consists of three major
components, (a) Dissimilarity Cost Computation, (b) Track
Match and Update and (c) Tracking False Negatives for Sta-
ble Tracks, which are discussed in detail in this section. Since
we are following the tracking by detection framework, for
the proposed tracking method we assume that at every frame
a set of object bounding boxes along with object class and
detection confidence is available.

A. DISSIMILARITY COST COMPUTATION
Dissimilarity cost dis(i, j) between ith detection in the current
frame with the jth object in the track list is defined as a
weighted sum of four distance measures based on appearance
distance app(i, j), structural distance str(i, j), location differ-
ence loc(i, j) and size difference iou(i, j) as defined in (1).

dis(i, j) = wapp · app(i, j)+ wstr · str(i, j)

+wloc · loc(i, j)+ wiou · iou(i, j) (1)

wapp,wstr ,wloc and wiou are the weights for the contri-
butions from each of the four distance measures. All four
distance measures are defined such that they vary between
0 and 1.

1) APPEARANCE BASED DISTANCE
Appearance of an object is an important clue when track-
ing, as it can be used to recognize the object in different
frames as well as to differentiate with other objects. However,
the object appearance may be subjected to changes with
time due to illumination changes, view-point changes and
deformations. Therefore, it is important to define a method
to capture or compensate these changes in an appearance
feature. To address this problem, in this work we propose
a grid based multiple histogram matching method as an
appearance feature. Appearance based distance is measured
using the correlation between the color histograms of the ith

detection and jth track. Histogram matching is done against
a maximum of three color histograms extracted from the
history of the track. In this work we consider the HSV (hue,
saturation, value) color space because it is more robust for
illumination changes compared to the RGB (red, green, blue)
color space. Hence we use H and S variants for histogram
matching. Furthermore, a grid based structure is used when
calculating the histogram for each object bounding box.
This results in n (number of grid cells per bounding box)
number of histograms, which is then concatenated to create
a single histogram. Grid based structures have been used
to define gradient based keypoint features (known as scale
invariant feature transformations: SIFT) from images [34] as
well as in generating histogram of oriented gradients (HoG)
for human detection [35]. In this work, grid needs to be

FIGURE 2. Grid structure and appearance based history of a track.
(a) current frame matched detection and (b), (c) and (d) are the
visualizations of the three appearance history of the matched track kept
in memory. Green boxes indicate the grid structure and shaded area by
red lines indicate the occlusion. Yellow color indicates the bounding box
of the object in front of the track. Grid is 3× 4. 1st , 4th, 7th and 10th grid
cells are occluded due to object in front (yellow bounding box) for (a) and
(d). 2nd , 5th, 8th and 11th grid cells are considered non-occluded as
yellow bounding box does not cover at least 50% of the grid cell area.
No grid cell is occluded for (b) and (c). When appearance matching, 2nd

grid cell of (a) is compared with 2nd grid cells of (b), (c) and (d) and
average is taken. 1st , 4th, 7th and 10th grid cells are not considered
because it is occluded for (a) and all the remaining grid cells are
considered in matching.

designed appropriately such that it is not too big nor too small.
Implementation parameters are discussed in section IV-B.
Since an object can be partially occluded in a given instance,
we define an occlusion map for this grid structure to be used
when matching histograms to avoid any bias from inaccurate
information. Fig. 2 visualize an example on the grid structure
and the appearance history of a track.

Since each object is defined in terms of a bounding box,
a grid based histogram matching helps to minimize the errors
that may otherwise arise due to background. Such situation
is presented in Fig. 3. When using single histogram to repre-
sent an object, background pixels can sometimes change the
histogram giving rise to inaccurate matching, especially if the
object is re-appearing after occlusion.

Appearance based distance between ith detection and jth

track is defined as in (2).

app(i, j)=1.0−

∑
k
∑

n occl(n, i)·occl(n, j)
k
·corr(Hn,i,H k

n,j)

n·k
(2)

where k is the number of concatenated histograms kept in
the memory for each track from its history which can be up
to a maximum of three. n is the number of cells in the grid.
The procedure followed in updating histograms for a track is
discussed in section III-B. occl(n, i) and occl(n, j)k are the
occlusion indicators for the nth grid cell of the ith detection
and nth grid cell of the jth track of the k th history map,
respectively. corr(Hn,i,H k

n,j) is the correlation between the
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FIGURE 3. Grid based histogram matching against single histogram
matching. (a) grid-based concatenated histogram based matching and
(b) single histogram based matching. In (a) identity of the track ID 3 is
occluded by the person walking in front (track ID 105) is kept successfully
when matching with grid-based concatenated histogram. In (b) track ID
3 is falsely matched with tack ID 72 after occlusion. Track ID is magnified
for better visualization.

histogram of the nth grid cell of the ith detection Hn,i and nth

grid cell of the jth track of the k th historymapH k
n,j. Correlation

indicates the similarity between two histograms and output a
value between 0 and 1. Hence, we divide the sum of histogram
correlations by total number of histograms (n∗k) and take one
minus that as the appearance distance. Correlation between
any two histograms corr(Ha,Hb) is calculated based on (3).

corr(Ha,Hb)=

∑
I (Ha(I )− H̄a)(Hb(I )− H̄b)√∑

I (Ha(I )− H̄a)2
∑

I (Hb(I )− H̄b)2
(3)

where,

H̄c =
1
N

∑
J

Hc(J ) (4)

in which N is the total number of bins in the histogram.
Occlusion parameter occl for each grid cell is either 1 or 0

depending on the level of occlusion for that particular grid
cell. Level of occlusion is defined based on the bounding
box overlap. If any two or more bounding boxes overlap
with each other, the bounding box belonging to the object
that has the highest detection confidence is considered to
be in front and the overlapping areas with other bounding
boxes are considered to be occluded areas for those bounding
boxes. Then in a given grid cell, if more than 50% of the
pixels are occluded in such a way, the occlusion parameter
for that grid cell is set to 0, otherwise set to 1 as presented
in Fig. 2.

The appearance cost is defined as an average based on k
concatenated histograms in track’s history rather than con-
sidering the maximum response from one. Reason for such
measure is to avoid track drifting based on the most recent
tracked detection (mostly when the track is partially occluded

FIGURE 4. Linear Binary Pattern (LBP). (a) Gray scale image. (b) Zoom-in
view of the area of the red box of (a). (c) LBP of (b). (d) LBP of full
image (a).

by another object and to avoid identity switch) as one of
the concatenated histograms in track memory is always the
concatenated histogram of the immediate history of the track
as explained in section III-B. Also refer to Fig. 2 for an
example on an object in front of the track. This is expressed
in (5) below, where Mn,i is the total number of pixels in the
nth grid cell and moccl,n,i is the number of pixels occluded in
that cell.

occl(n, i) =

{
1; if moccl,n,i > 0.5×Mn,i

0; otherwise
(5)

2) STRUCTURE BASED DISTANCE
Structure is another clue that can be used in recognition
task. Linear Binary Pattern (LBP) [36] is a good feature
that can capture structural information from an image and
is a robust feature for illumination variances. LBP outputs a
binary code word for each pixel by comparing pixels values
in a 3x3 neighborhood with the center pixel value. Such
example is presented in Fig. 4. LBP image is a collection
of 8 bit binary code words out of all possible code words
(in 3x3 neighborhood 29−1 = 256 code words), that can
be represented as a histogram. This is known as the LBP
Histogram (LPBH). In [37] Ahonen et al. used LBPH in
a grid structure for face recognition task and achieved the
best results at the time. In grid structure LBPH captures
the shape of the nose, eyes, mouth and other shapes in the
face which can be then used for recognition. In object level,
LPBH may not be a good feature to differentiate one another
as a given object class can have very similar shape. But
when considering a grid based structure and concatenated
LBPH matching, structural information can be used to find
the best candidate. Unlike in face domain, at object level
structure may not be a reliable feature for recognition but the
object level structure can be a good feature to measure the
correlation between two structures in adjacent frames as the
structure of an object in not expected to change drastically in
adjacent frames of a video. Hence, we use grid based LBPHs
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to define a distance measure in this tracking task. The same
grid structure described in the section III-A.1 is used here was
well. Unlike during the appearance based matching, we only
match the concatenated LBPH of the detection with the most
recent concatenated LBPH of the track. The structure based
distance measure between ith detection and jth track, str(i, j)
is as defined in (6).

str(i, j) = 1.0−

∑
n corr(LBPHn,i,LBPHn,j)

n
(6)

where corr(LBPHn,i,LBPHn,j) is the correlation between
the LBPH of the nth grid cell of the ith detection LBPHn,i and
nth grid cell of the jth track LBPHn,j.

3) MOTION BASED DISTANCE
When tracking an object in adjacent frames, its motion
helps to predict the position of the object in the next frame.
We define the difference between the predicted position
pred(x, y) and the measured position det(x, y) as the motion
based distance measure as in (7). L2 norm is used. x and y
are the center positions of the object bounding box expressed
in 2D image coordinates. ndst is the value used to normalize
the distance measure.

loc(i, j) = min
(
1 ,
‖ det(x, y)− pred(x, y) ‖2

ndst

)
(7)

Predicted position pred(x, y) is calculated based on the
object bounding box information from its track history. The
predictions for the bounding box center (x, y), width w and
height h is generated using a weighted average of it’s previous
five frames information.We use five frames because it is large
enough to get good average for predictions and small enough
not to drift because of old information.We use weights to give
a higher weightage to the information from the most recent
track assignments in the history. Predicted bounding box bbpj
of the jth object in existing tracks is calculated based on (8)
below, where t is number of frames the jth track is matched
with a detection (i.e. bbtj bounding box contains the most
recent matched detection bounding information) and x, y,w
and h are bounding box parameters. m is the consecutive
number of frames that track is undetected.

bbpj =



xbbtj +1x(1+ m);

ybbtj +1y(1+ m);

wbbtj +1w(1+ m);

hbbtj +1h(1+ m);

(8)

where 1z : z ∈
[
x, y,w, h

]
is defined as in (9).

1z =

∑5
a=2

[
(a− 1)(zt+a−5 − zt+a−6)

]∑5
a=2(a− 1)

(9)

Predicted position pred(x, y) is defined as in (10) andwidth
of the most recent bounding box wbbtj is used as ndst .

pred(x, y) =

{
(x, y)bbtj ; if t < 5

(x, y)bbpj ; otherwise
(10)

4) SIZE BASED DISTANCE
Size based dissimilarity is calculated based on the object
localization information (object bounding box) of each
detection compared to the predicted localization informa-
tion from object track history. Specifically, intersection over
union (IoU) between the detection bounding box bbi,det of
the ith detection and the predicted bounding box bbj,pred of
the jth track is considered. IoU is inversely proportional to
the dissimilarity between two bounding boxes and the IoU
will directly provide the similarity value normalized to 0−1.
Therefore, size based dissimilarity is defined below as in (11).

iou(i, j) = 1−
bbi,det ∩ bbj,pred
bbi,det ∪ bbj,pred

(11)

IoU is measured considering both the location and size of
the bounding boxes in comparison, thus is a good measure of
the location similarity of bounding boxes. Predicted bounding
box bbj,pred for the jth track is as below in (12), where bbtj and
bbpj is as in (8).

bbj,pred =

{
bbtj ; if t < 5

bbpj ; otherwise
(12)

B. TRACK MATCH AND UPDATE
Once all four dissimilarity measurements are calculated,
overall dissimilarity values dis(i, j) is calculated as in (1) for
each ith detection in the current frame against each jth track
in the memory. Therefore, this dissimilarity matrix is used
in the Hungarian algorithm [12] to assign each of the object
detection in the current frame to the best matching track.
However, this association is done only if the dissimilarity
between the matched detection and track is below a certain
threshold thdis, otherwise the detected object is initiated as
a new track after tracking for false negatives detailed in the
section III-C.
In the detection and track association stage, object informa-

tion in the list of tracks is updated with the current detection’s
localization co-ordinates, LBPHs and detection confidence.
Appearance based histograms and occlusion information are
updated in a different manner. For each track three most
relevant concatenated appearance histogram and occlusion
information are stored. Firstly, from the already existing three
most relevant concatenated histograms themost occluded one
is removed. If the level of occlusion is similar, the oldest con-
catenated histogram is removed. Then the current matched
detection’s concatenated appearance histogram and occlusion
information is stored for the track.

C. TRACKING FALSE NEGATIVES FOR STABLE TRACKS
One of the applications of a tracking algorithm following
tracking-by-detection framework is to identify and main-
tain the track of an object that goes undetected in some
frame/frames (as a result of a false negative of the detection
algorithm), of a stable track. In this section we discuss the
method we propose to address this challenge. Fig. 5 visualize
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FIGURE 5. Maintaining the track in case of a false negative in detection.
(a) object with ID 0 is undetected in adjacent frames (t+1 and t+2) and
(b) track ID maintained based on the track history. Track ID is magnified
for better visualization. Orange boxes indicate the exit regions for track
ID 0.

an example on such missed detection successfully addressed
by the proposed method.

In this work we define a track is stale if it has been tracked
in at least five previous frames, as it is the number of frames
required to predict the localization information for a track
based on (8) and (9). Tracking for false negatives is initiated
after the track matching and updating step described in the
section III-B but before initiating new tracks for unmatched
detections and invalidating tracks as shown in the flow chart
in Fig. 1.

After the Hungarian assignment there are three outputs,
(a) ith detection matched with jth track, (b) unmatched detec-
tion and (c) unmatched track. For each of these unmatched
tracks, size based dissimilarity measure is calculated against
all the unmatched detections, according to (11) where the
predicted bounding box bbj,pred for the unmatched track is
bbpj as per the (8) and (9). If none of the above size based
dissimilarity measures, is not less than a threshold thiou (0.5 is
used as the threshold in this study during the experiments),
we calculate the appearance based dissimilarity according
to the (2) with a new detection defined using the predicted
bounding box bbj,pred for that track. If the appearance based
dissimilarity is less than a threshold thapp (0.6 is used as the
threshold in this study during the experiments) the predicted
bounding box bbj,pred for that track is considered as its current
frame match. However, if the predicted bounding box is out
of the frame, the corresponding track is immediately marked
as an invalid track. Additionally if the predicted bounding
box is fully within the exit regions as indicated in Fig. 5,
it is not considered as a match. Width of the exit regions are
dynamically defined for each track as the width of the track’s
last matched bounding box width.

In case of at least one detection has a dissimilarity mea-
sure less than thiou, these tracks and detections are con-
sidered in Hungarian assignment and matched with each
other. Association is done only if the dissimilarity between
the matched detection and track is below the same thresh-
old thiou, otherwise the detected object is initiated as a new
track.

After updating the track list with the current matched
detection data and tracking for false negatives, the track list
is updated to invalidate certain tracks which have not being
tracked (i.e. matching object not found) for a predefined
consecutive number of frames.

IV. RESULTS AND DISCUSSION
The proposed tracking framework is implemented using
C++ and all the test cases presented in this section is done in
a desktopwith Intel Xeon(R) CPUE5-1630 v3with 3.70GHz
8 processors. Even though there are 8 processors, code is not
optimized for parallel processing.

MOT16 [10] is a popular benchmark for human tracking
while KITTI [11] vision benchmark suite is a famous bench-
mark for autonomous driving based applications. We tested
the proposed tracking methodology in both these data-sets.
MOT171 includes all sequences of MOT16 with a new,
more accurate ground truth with three sets of detections
for each sequence. Hence, we use MOT17 benchmark for
human tracking evaluation.MOT17 tracking data-set consists
of 21 training sequences and 21 test sequences, where in each
of these sets, 2 sequences consist of images with 640 × 480
resolution while the remaining 19 sequences contain images
of 1920 × 1080 resolution. MOT17 training set has a total
of 15,948 frames with an average of 21.1 detections per
frame, while the test set contain a total of 17,757 frames
with an average of 31.8 detections per frame. KITTI track-
ing data-set consists of 21 training sequences and 29 test
sequences, where 31 sequences contains images of size
1242× 375 while other sequences contain images of similar
resolution (i.e. 12xx × 37x resolutions). KITTI training set
has a total of 8,008 frames with an average of 3.8 detections
per frame and the test set contain a total of 11,095 frames
with an average of 3.5 detections per frame. Since the pro-
posed tracking method does not require any training on
tracking data, both training and test data-sets have been
used as test beds in our experiments. The evaluation codes
by MOT17 and KITTI benchmarks were used, which are
based on CLEARMOT [38] and Mostly Tracked (MT: % of
ground truth trajectories which are covered by tracker output
for more than 80% in length) − Mostly Lost (ML: % of
ground truth trajectories which are covered by tracker output
for less than 20% in length) [39] metrics. CLEARMOT [38]
includes total Identity Switches (IDS: The total of number
of times that a tracked trajectory changes its matched ground
truth identity), Multiple Object Tracking Accuracy (MOTA),
Multiple Object Tracking Precision (MOTP) and average
run-time per frame excluding detection time (Time). Here,

MOTA = 1 −
∑

t (fnt+fpt+IDSt )∑
t gt

and MOTP =
∑

i,t d
i
t∑

t ct
, where t

is the frame t , fn is false negatives, fp is false positives, g is
ground truth detections, ct is correct matches found at frame t
and d it is the distance between predicted detection and ground
truth detection for each correct match which is taken as the
intersection of union between the two bounding boxes.

1MOT17: https://motchallenge.net/data/MOT17/
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A. DETECTIONS
In the proposed method we are following the tracking-by-
detection framework. For the MOT17 data, the benchmark
has made detections available for each sequence. In fact it
has made available detections from three human detectors
namely, DPM [40], F-RCNN [41] and SDP [42]. In total
there are 14 unique sequences and with three detection results
for each make it 42 sequences. KITTI benchmark does not
provide any detection results. Therefore, we used bounding
box results from RRC detector [19].

Bonding boxes from DPM [40] human detector has higher
number of false positives in general compared to other detec-
tors. Therefore, as a pre-processing step we introduce a fil-
tering criteria for DPM based detections by calculating a
threshold for detection confidence for each sequence. At each
frame, we search for the detections that overlaps with other
detections. If the overlap is greater than 50% of the detection,
we compare the detection confidence of the detection in con-
sideration against the most overlapped detection’s confidence
and invalidate the bonding box with the lower confidence.
This is repeated for the whole sequence and filter some
detections. Then based on these invalidated detection list we
define the threshold for detection confidence as the average
of all these invalidated detection confidences. This is done for
each sequence separately because of the large differences in
sequences in terms of view-point, dynamic & static camera,
illuminations differences and etc. Then all the detections
which has a lower confidence than the threshold is marked
as invalid and not used in tracking.

B. ABLATION STUDY AND PARAMETERS TUNING
Ablation study is conducted to understand the contribution
from each component defined in (1) and the contribution from
tracking false negative part described in section III-C.
We conducted all these experiments in MOT17 and KITTI

training data. First, we evaluate the contribution from each
component in (1) where we show the results in Table 1 for
tracking accuracy when the tracks and detections matching
is done only using each component in rows app, str, loc and
iou. When comparing MOTA values it is evident that each
component contribute almost equally for tracking accuracy.
Therefore, we define the weights in (1) to be equal, i.e.
wapp = wstr = wloc = wiou = 0.25. Hence, we maintain
dis(i, j) in (1) between 0 and 1.

Performance based on combining different components are
analyzed. Since the main feature is based on appearance,
we analyze the combinations that include app component.
Results in the dis row is when all the four components are
combined according to (1) (i.e. app+ str + loc+ iou). Even
though the MOTA is similar to the nearest decimal, IDS
is lowest when all the four components are combined. The
MASS row shows the results when ’tracking false negatives
for stable tracks’ is included on top of dis. The MOTA is
increased approximately by 0.8%when ’false negative track-
ing for stable tracks’ is incorporated for the MOT17 data.

TABLE 1. Ablation study in MOT17 and KITTI tracking training set.

Unlike the human detectors in MOT17, false negatives from
the car detector is very low, hence the improvement for KITTI
data is not that considerable (about 0.1 %) by incorporat-
ing false negative tracking. When considering the results of
each individual components for KITTI data, it can be seen
that appearance feature app based tracking performance is
low compared to other individual components due to higher
identity switches. When tracking humans, appearance is an
important factor since most of the time the clothes have
different colors and combination of colors is even more dis-
criminative (i.e. two persons may be wearing black and white
color clothes, but one may be using black for the top and
the other for the bottom, which can be used to differentiate
them). Since the proposed appearance matching is based on
grid based color information, different color combinations are
capturedwell. But in the case of cars, they have the same color
everywhere which makes the proposed appearance based
tracking method has a higher probability for error compared
to human tracking. In Table 2, evaluation results for test data
is shown as displayed in the benchmarks.

In the proposed tracking framework, after the Hungarian
assignment, detection is assigned to the matched track if
the dissimilarity cost dis(i, j) is below a certain threshold
thdis. The graph in the Fig. 6 shows how MOTA varies with
changing thdis for MOT17 and KITTI tracking training data.
Based on this, thdis = 0.75 is selected for the experiments.
Furthermore, number of grid cells n in the appearance feature
matching introduced in section III-A.1 has an impact on the
accuracy of the proposed tracking framework. It is visualized
in the same graph andwe selected n = 12 as the configuration
in this work. Grid cell division is defined based on the object
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TABLE 2. Results in MOT17 and KITTI tracking test set as displayed in the benchmark online (accessed in April 2019).

FIGURE 6. Comparison of Multiple Object Tracking Accuracy (MOTA) and Identity Switches (IDS) variations for different dissimilarity thresholds (thdis)
and number of grid cells (n). (a) for MOT17 Training Data and (b) for KITTI Training Data. Blue color represent MOTA and red color represent ID Switches.
MOTA and IDS values based on dissimilarity threshold thdis are in dotted lines while solid lines are based on number of grid cells n.

class. Human object has a greater height than the width where
as for car object it is the opposite. Therefore, when dividing
n = 12 grid cells, (3 × 4) is assigned for human class and
(4× 3) is assigned for car class. We are using the HSV color
space for color histogram where we use 15 bins for hue (H)
and 16 bins for saturation (S). The average processing time
per frame is 35 ms forMOT17 tracking training data and 5ms
for KITTI tracking training data.

C. COMPARISON WITH OTHERS
In this sectionwe compare the proposed trackingmethodwith
other state-of-the-art methods listed in the two benchmarks.
Comparison is made between the online methods that are
published. Summary of the performance of the selected track-
ers are as shown in Table 2. The proposedmethod is compared
with the best tracking frameworks in the KITTI [11] and
MOT17 [10] benchmarks that are published and are vision

based online multiple object tracking methods. Tracking per-
formance with the test data sets are compared in the bench-
marks. Test data is more challenging than the train data in
both benchmarks, which is why there is a performance drop
compared to results on training data stated in Table 1.

Our method is ranked top in the KITTI benchmark
for online tracking methods that are published and third
place among all online methods, in terms of MOTA.
MOTBeyondPixels [16], reports that it uses inputs from two
object detectors and is the next best to ours. In KITTI
benchmark the lowest amount that can be entered for time
is 0.01 s. In 3D-CNN/PMBM [32] authors record a run-
ning time of 73 fps for the test set while our method can
achieve 150+ fps. However, it should be noted that 3D-
CNN/PMBM [32] is based on Matlab.

In MOT17, out of all the published online tracking meth-
ods, the proposed tracker is ranked in seventh place at the
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FIGURE 7. Tracking results on few frames. (a) human tracking results from MOT17 training data and (b) car tracking results from KITTI training data.
At each sequence four tracks are highlighted using yellow, green, blue and green colors. These identities are uniquely tracked for more than 60 frames.

time of results submission. However, it recorded the sec-
ond best running speed and is nearly three times the speed
of the third best method PHD_GSDL17 [31] even though
PHD_GSDL17 [31] is implemented in Matlab. Out of the
best six methods, HAM_SADF17 [25] and DMAN [26]
pair-wise cost calculations are based on deeply leaned neural
networks while MOTDT17 [24] appearance cost is based on
deeply learned person re-identification cost. MTDF17 [30]
uses detection information from two object detectors in
its detection stage. Compared to AM_ADM17 [29] and
PHD_GSDL17 [31] the proposed method has lower MOTA
but higher running speeds. The proposed method is written
using C++ as it was to be implemented in an embedded sys-
tem for a real time application. The proposedmethod achieves
a good compromise between the speed and the accuracy,
making it suitable to be used in real time robotics application
with no requirement for specialized hardware for pedestrian
tracking. Tracking results on few random frames is visualized
in Fig. 7, where you can see the track ID is consistent across
the frames.

The running time of the proposed method depend on
the complexity of the scene rather than the frame size.
MOT17 training data-set has an average of 21.1 detections
per frame, while the test set has an average of 31.8 detec-
tions per frame. Running time for MOT17 training set is
35 ms while for test set it is 55 ms per frame. This reflects

TABLE 3. Comparison of results on different detection methods on
MOT17-3rd sequence.

the average detections per frame in each set. Compared to
MOT17, KITTI [11] training and test data has similar average
detections per frame (3.5 for test set and 3.8 for training set)
and result in similar running speeds (5 ms per frame). When
comparing MOT17 and KITTI, running speeds are higher in
KITTI data because the average number of detections per
frame is lower than that of MOT17. The proposed tracking
algorithm depends on number of detentions in the current
frame plus the number of tracks in the track list, which justify
the observed behavior.

Tracking performance of the methods following tracking-
by-detection framework is affected by the detection method
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used. In Table 3, tracking performance of the proposed
method and the best two methods in Table 2 is presented
considering the third sequence of theMOT17 benchmark. All
the three methods in Table 3 perform best when SDP [42]
detection results are used, followed by when F-RCNN [41]
and DPM [40] detection results are used. When SDP [42] is
used as the detector the proposed method achieve the best
MOTA. The proposed method performs competitively when
F-RCNN [41] is used as the detector but show poor results
when DPM [40] detection results are used in comparison
with other two methods. As explained in section IV-A DPM
detections contain large number of false positives and our
method does not handle these as well as other methods.

V. CONCLUSION
In this paper we have presented an efficient framework
for multiple object tracking problem that runs online and
achieves 150+ fps for KITTI data and 28.5 fps and 18.3 fps
for MOT17training and test data respectively. Thus, the pro-
posed method is highly suitable for real time applications and
the results show that the proposed method achieve state-of-
the-art performance for both human tracking and car tracking.
The running time increases with the complexity of the scene
(i.e. on the number of objects present in the frame). The
proposed tracker is based on combination of grid based color
histogram matching, grid based LBPHs matching, predicted
object motion matching and predicted size based matching.
Furthermore, in this work we have proposed a false nega-
tive tracking to compensate errors from the object detector.
As with all tracking-by-detection methods, tracking perfor-
mance depends on the accuracy of the detection results, where
the proposed method show very competitive results when
there are less number of false positives in detections. Further-
more, when comparing the results in Table 2, IDS are higher
in the proposed method. Therefore, including a false positive
removal mechanism as well as post processing method to
reduce IDS can be future directions to further improve the
tracking accuracy.
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