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ABSTRACT Identification of coherent generators (CGs) is necessary for the area-based monitoring and
protection system of a wide area power system. Synchrophasor has enabled smarter monitoring and control
measures to be devised; hence, measurement-based methodologies can be implemented in online applica-
tions to identify the CGs. This paper presents a new framework for coherency identification that is based on
the dynamic coupling of generators. A distance matrix that contains the dissimilarity indices between any pair
of generators is constructed from the pairwise dynamic coupling of generators after the post-disturbance data
are obtained by phasor measurement units (PMUs). The dataset is embedded in Euclidean space to produce a
new dataset with a metric distance between the points, and then the support vector clustering (SVC) technique
is applied to the embedded dataset to identify the final clusters of generators. Unlike other clustering methods
that need a priori knowledge about the number of clusters or the parameters of clustering, this information is
set in an automatic search procedure that results in the optimal number of clusters. The algorithm is verified
by time-domain simulations of defined scenarios in 39 bus and 118 bus test systems. Finally, the clustering
result of 39 bus systems is validated by cluster validity measures, and a comparative study investigates the
efficacy of the proposed algorithm to cluster the generators with an optimal number of clusters and also its
computational efficiency compared with other clustering methods.

INDEX TERMS Coherent generators, dynamic coupling, embedding, slow coherency, support vector

clustering, synchrophasor.

I. INTRODUCTION

Despite all the efforts have been devoted to group the gen-
erators in certain coherent groups according to their simi-
lar oscillatory behavior after a disturbance, the traditional
offline coherency studies are not able to fully demonstrate
the dynamic behavior of power systems [1]. On the other
hand, the gradual increase of demand in the electricity market
makes the power system operate at a point closer to its
stability margins, and the power system is more vulnerable
to the complicated dynamic behavior of the system following
a disturbance [2]. Furthermore, the impact of renewable
power generation on interarea oscillations of power system
shows that a power system with a high penetration level of
renewable generation can be pushed toward the unstable zone
of operation at certain oscillation modes [3]-[5]. Therefore,
conventional model-based monitoring and control systems,
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which are designed for a specific operating condition, are
not robust enough to track all dynamical responses of power
system caused by the heterogeneous dynamic behavior of
inverter connected renewable energy sources. Under such
conditions, developing a suitable data-based monitoring sys-
tem in a wide area power network, which depend on col-
lected measurements in online applications, is more desirable
to detect the transient oscillations between different areas.
This can be achieved with the assistance of Synchrophasor
technology, i.e., deployment of PMUs at appropriate buses
and design a reliable wide area monitoring, protection, and
control (WAMPC) system to secure the stable operation
and avoid a widespread blackout [6]. If local protective
systems fail to detect and operate against power system
disturbances, WAMPC system becomes active as the second
line of defence. The continuous surveillance of oscillations
between the emerged CGs in the post-disturbance condition
is the primary duty of such a WAMPC system. In this
context, generator coherency refers to the natural tendency of
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a group of generators in a power system swinging together
against other groups of generators after the occurrence of
a disturbance [7]. The motivation for improving the gener-
ator coherency studies comes from the necessity of apply-
ing the results of coherency analysis to some applications
of WAMPC system such as controlled islanding to split
the power system into a distinct number of self-sustaining
islands [8], and Wide-area Control [9] or other applications
such as power system model reduction [10]. The interarea
oscillation modes and emergence of coherent areas are mainly
recognized by some intrinsic characteristics of the grid such
as the number of internal and external lines of each area and
the impedance of interconnection lines [10]; however, pro-
tective schemes cannot rely only on offline studies due to the
unpredictable behavior of some loosely coherent generators
in each area [11]. Therefore, online identification of CGs is
inevitable.

Generally, there are two approaches to the study of gen-
erator coherency [12]. The model-based approach is used
in slow coherency based studies [7], [8], [10] in which the
oscillation modes are extracted from the Eigenanalysis of
a small-signal model of power system [7]. In some early
works, the validity of using a simplified linear model of
power system for coherency analysis even in large distur-
bance conditions was demonstrated in [13]. Applying the
singular perturbation theory to two-time-scale power system
model [7], [14] shows that there is a connection between
slow coherency and weak connections in power systems.
Slow coherency solves the problem of CG identification by
finding weak connections between the CGs. In this approach,
the coherency of generators is not affected by the location and
severity of disturbances in the power system [8]; however,
it is sensitive to the changes in system operating conditions.
A method was devised in [15] to trace the eigenvalues of
the system to update the CGs after any change in system
condition caused by disturbances. Effectiveness of applying
the model-based slow coherency to find the proper cutsets of
controlled islanding schemes in a very large power system
such as Western Electricity Coordinating Council (WECC)
system in North America with 15000 buses was investigated
in [16].

The measurement-based approach is implemented exten-
sively in contingency studies using time domain simula-
tion of different scenarios to analyze the dynamic response
of generators and is independent of the detailed model of
the power system. The motivation behind some studies was
to use PMU measurements to construct a reduced-order
model of large power system and capture the slow oscillation
between coherent areas or even transient stability margins
due to disturbances. Although a reduced-order model of the
power system is constructed in these studies, they should
not be confused with small signal model based methods.
The aggregated models of the WECC network obtained
in [17], [18] captured the dynamic response of the network to
different disturbances, however, it is not possible to trace the
dynamic behavior of each generator in a five-machine model

VOLUME 7, 2019

of WECC system. Other measurement-based coherency stud-
ies are based on a coherency criterion as the basis of split-
ting the generators, such as the frequency response of rotor
angles [19], frequency deviation of terminal buses of gen-
erators with respect to system nominal frequency [20], and
the difference between phases of dominant modes in the
frequency spectrum of rotor speed deviations [21]. Statisti-
cal assessment tools such as signal correlation coefficients
and Spearman’s rank correlation coefficients were used in
some other studies [2], [22], [23] for assessing the corre-
lation between angle and speed signals of generator pairs.
In [24], a method based on the wavelet transform of the
phase difference of generator rotor angles was proposed.
Modal analysis of swing curves was performed by Koopman
operator in [25] to extract the Koopman modes and recognize
the coherent generators. The phase of oscillation modes was
considered as coherency criterion in [26] by implementing
Empirical Mode Decomposition (EMD) technique combined
with Hilbert transform. A new multiflock-based coherency
identification was introduced in [27] that was inspired by the
flocking behavior of nature.

In contrast, some other studies employ clustering
techniques to separate the CGs based on an appropriate
predefined distance measure in Euclidean space. K-means
clustering technique combined with a competitive neural
network algorithm was proposed in [28] based on a speed
criterion as the coherency measure. Fuzzy C-means (FCM)
clustering was applied in [29]. Since FCM clustering method
needs random initialization and is time-consuming in large
power systems, another improved FCM clustering method
(FCMdd) was suggested in [12], [30] to tackle these problems
by an offline probabilistic coherency analysis of generators.
Also, subtractive clustering was proposed in [31] to overcome
the limitation of such dependence on random initialization.
The first three principal components of generator speed
and bus angles were obtained and then clustered by using
Principal Component Analysis (PCA) technique in [32]. The
idea of extracting the principal components of rotor angles
was extended in [33] by using a statistical technique to find
the optimal direction in projection from multi-dimensional
to low dimensional space. Spectral clustering algorithm has
also shown its effectiveness regarding simplicity, readiness
and its capability to define user-defined similarities [1].
A new data-driven similarity measure was extracted in [34]
by combining several similarity indices based on generator
rotor angle and rotor speed trajectories and then spectral
clustering was applied to obtain the CGs. A similar approach
with multiple similarity indices was adopted in [22] to derive
the similarity index, but agglomerative hierarchical clustering
was applied instead, to separate the generators. Hierarchical
clustering was also used in [35], [36] to motion trajectories
of power system based on similarity matrix and pattern
recognition techniques respectively. Kernel Principal Com-
ponent Analysis (KPCA) method was employed in [37] to
reduce the dimension of data and integrate multiple similarity
indices into a data-driven coherency detection algorithm,
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then Affinity Propagation (AP) method was accomplished to
cluster the generators, but only rotor angle and rotor speed
were considered for computing the similarity indices. Support
vector clustering was also applied before [38] directly on
angle or speed deviation of generators; however, it was shown
in [21] that the rotor angle deviation could result in the wrong
grouping of generators. This study, which employed the
concept of slow coherency of generators in a measurement-
based coherency detection method, also indicates that the
dynamic coupling is a more reliable coherency measure than
angle or speed deviation of generators.

All generator coherency studies are necessarily built on
two fundamental bases: a coherency measure and a tech-
nique to separate the generators according to the coherency
measure. This study proposes the dynamic coupling between
the generators as the coherency measure along with applying
SVC technique on embedded data points to determine the
CGs. All referred clustering-based methods are dependent
on a priori knowledge about the number of clusters [39]
or have some shortcomings such as recursive separation
as seen in [11] and [40]. To overcome these limitations,
an online coherency identification method is introduced in
this study that not only results in the formation of CGs with
more reliable coherency measure but also is independent of a
predefined number of clusters and can automatically set the
parameters of the clustering procedure such that the optimal
clustering structure is obtained. Furthermore, by applying
the SVC technique, any clustering algorithm is benefitted
from the merits of finding the clusters of a dataset with
arbitrary shaped boundaries, which is the unique advantage
of the SVC [41]. Another interesting aspect of the present
work is incorporating an embedding strategy in the clustering
algorithm to apply the clustering technique on a dataset with
an inherent Non-Euclidean distance measure.

Therefore, the contributions of this work include:
1) proposing an online coherency detection method that is
independent of a priory knowledge of number of partitions
2) adopting an embedding strategy in coherency identifica-
tion algorithm to incorporate any Non-Euclidean distance
measure in clustering procedure. In order to present the
framework, first, the coherency criterion is introduced in
section II, then after reviewing the background of support
vector clustering in section III, the required steps of pre-
processing the input data to be prepared for the clustering
algorithm are explained. The results will be validated by time-
domain simulations in 39 & 118 bus test systems, and the
effectiveness of the proposed algorithm is validated by a clus-
ter validity index, and also the results will be compared with
other existing clustering methods. Finally, the conclusion is
provided in section VIII.

Il. GENERATOR COHERENCY BASED ON

DYNAMIC COUPLING

For transient stability analysis, the network with n machines
and connected representating graph is reduced to only
the internal generator nodes (node behind the transient
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reactance), and all load and generator terminal buses are
eliminated. If Ypus = [Y;j] = [Gy+jBj;] is the admittance
matrix of the reduced network, then the behavior of this
system in response to a disturbance can be expressed by [10]:

2H;b; = Pyi — Pei

n
. 1
P, = EGii + Z E;Ej(Bjjsin§;; + Gjj cos 8;j) M
J=Lj#i

where §;, H;, E;, Ppi, Pe; are rotor angle, inertia constant,
internal generated voltage, input mechanical power and elec-
trical power of generator i respectively and §;; is the relative
angle between generators i and j. By linearizing above equa-
tions and neglecting the mutual conductance (Gj;), the small
deviation of rotor angle of generator i can be obtained from:
. n
2Hdip = — Kijdja )

j=1.j#i
dP;;
Kj = /) = E;E;B;j cos §;o 3)
TS '

5,‘j0

Above equations can also be formulated by matrices:
(Hereafter, all matrices are denoted by bold letters.)

2HSA = — K 4)

H is a diagonal matrix of the inertia coefficients of generators
and K = [Kj;] with diagonal entries defined as:

n
Ki==D uki ¢

K;j/2H; in (2) is interpreted as the acceleration of the rotor
angle of machine i due to a change in rotor angle of machine j.
According to the definition [42], two generators are exactly
coherent if the rotor acceleration of two generators due to a
disturbance is the same. Although exact coherency is an ideal
concept and rarely occurs in real power systems, it was shown
in [7] that after a disturbance there is an inherent tendency to
a strong dynamic coupling among some machines in the same
CG while swinging against other groups with inter-area weak
coupling. Therefore, this study proposes a coherency criterion
for the concept of dynamic coupling [43]. The similarity
function between generators i and j is defined as:

1 1
wij = (E + E,) E;E;B;j cos §jjo (6)
where w;; is the dynamic coupling between generators i and j.
Then this study employs the slow coherency as the coherency
measure in a measurement-based method. Above similar-
ity function indicates that generators with smaller inertia
constants and larger admittance of reduced network (hence,
smaller impedance) results in a larger coherency value, which
the latter reflects the effect of weak connections in power
system on slow coherency.
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lIl. BACKGROUND ON SUPPORT VECTOR CLUSTERING
SVC technique was inspired by the concept of Support Vector
Machine (SVM) that is generally used for classification of
data points [44]. The idea of using a hyperplane in feature
space for classifying the data points was extended in [45]
with formulating the new idea of using a hypersphere to find
the domain description of a dataset [45]; however, it was
observed in [41] that the same formulation framework could
be applied to solve a clustering problem. The main idea of
SVC is that if the data points in the original data space,
as shown in Fig. 1 are mapped into a higher dimensional
feature space by a nonlinear transformation (¢), the mini-
mum sphere in the feature space, which encloses all the data
points, is found and transformed back to the original space,
the obtained contours in original data space represent the
boundaries of the clusters [41].

Original Space Feature Space

Original Space
FIGURE 1. Transformation of data points to feature space.

Assume {x;} C X,i=1,...,N is adataset with X C R4,
the d-dimensional data space. An unknown nonlinear trans-
formation (¢) maps the data points to the feature space. The
minimal sphere that contains all the points in this space,
is described by:

I (xi) —all> <R*+& Vi, 7

where a and R are the center and radius of the enclosing
sphere and §&; is a slack variable for applying a soft margin
constraint to the optimization problem that can be formulated
as:

minR> + C Y ;&

st o) —al> <R*+& Vi & >0 ®

where C is the penalty constant that incorporates the
total violation of the constraints. For solving this prob-
lem, the Lagrangian function is employed, and it is shown
in [41] that by applying Karuch-Kuhn-Tucker conditions,
a data point known as Boundary Support Vectors (BSV) with
& > 0, B; = C is located outside the sphere in the feature
space. If & = 0, 8; > 0, the point lies on the surface of
the sphere and is called Support Vector (SV) and if & = 0,
Bi = 0, the point is located inside the minimal sphere. It is
also found that if C > 1, no BSV will exist, i.e., outlier
are not allowed to appear in the data set. By applying the
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above conditions to the primal optimization problem, it can
be transformed to a dual problem with the same solution.

!max Y Bib (i — Xy Bibid )b ()

st.0<Bi<C, Y.pi=1 C))

By finding an appropriate Kernel function that satisfies
Mercer theorem [46], dot products can be expressed by the
Kernel function. Gaussian Kernel function was employed
in this study, i.e., K (xi,xj) = exp <—q ”xi —xj”z) with
q as width parameter and ||.|| indicating the Euclidean dis-
tance; therefore, the optimization problem can be expressed
as below.

max Y _; BiK (xi, xi) — ;5 BiBiK (xi, x7)
st.0< B <C, ZilBi:l

The dual problem has only ;s as unknowns and can be solved
by a quadratic programming solver with choosing appropriate
values for g and C [47]. Then for any point x in the data space,
the distance of the image of this point in the feature space
from the center of the sphere is obtained from:

(10)

R0 = ¢ () = al” =K (&, 2) =2 ) BiK (5i,)
+ Zi’j BiBiK (xi,x) (1)
Then, the radius of the sphere is:
R ={R(x)|xiis SV} (12)

The enclosing contours of the points in the original data space
are expressed by a set of points:

{x|R(x) =R} (13)

Then in cluster labeling stage, all points are assigned
to distinct clusters [41]. Based on a proximity graph-based
method [41], given any pair of points in data space, the con-
necting path is divided into several points (e.g. 10 points
in this study), and if all the corresponding images in the
feature space located inside the minimal sphere, the points in
data space belong to the same cluster. An adjacency matrix,
A = [ay], is formed which a;; indicates that a pair of data
points i and j belong to the same cluster or not:

1 ifVAe[0,1],R(Axi+ (1 — M) x)) <
aij—

R
= . (14)
0 otherwise

Finally, the clusters are formed as the connected components
of the graph defined by A. A critical issue in SVC algorithm is
choosing appropriate values for width parameter of Gaussian
function (g) and soft margin constant (C). It was demon-
strated in [41] that how variations of g and C have effects
on the boundaries of clusters and the number of outliers
respectively. In this study, an algorithm for the automatic
setting of the values of ¢ and C is used to achieve the optimal
clustering result [48].
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IV. EMBEDDING THE DATA IN EUCLIDEAN SPACE:
PRE-PROCESSING THE DATA

In order to identify the coherent generators from dynamic
coupling, it is necessary to adopt a distance measure for
the SVC from the defined pairwise similarity between gen-
erators. Generally, metric distance measures are fundamen-
tal to machine learning-based algorithms such as SVC to
manipulate the datasets; therefore, non-metric distance mea-
sure defined on the pairwise similarity of data points must
be necessarily translated to an appropriate metric distance
to be usable. The Gaussian function employed in the SVC
algorithm needs the Euclidean distance between the points;
however, the dissimilarity or distance matrix, obtained from
the dynamic coupling analysis of generators is not intrinsi-
cally a metric distance measure. Embedding will translate
the defined non-metric pairwise similarity of data points into
a Euclidean space [49]. Therefore, embedding will find the
points in the Euclidean space such that their distance in
this space is equal to the calculated dissimilarity values of
generators obtained from the dynamic coupling study. Then
as shown in Fig. 2, the resultant points act as the input dataset
given to the clustering algorithm to be clustered according to
their Euclidean distances. In this study, a method that can be
interpreted as Kernel Principal Component Analysis (KPCA)
is used for embedding. KPCA is a nonlinear extension of
PCA [50], and is applied to find the principal components of
the data in Euclidean space. Then the principal components
are used to identify a dataset in Euclidean space, which
preserves the defined distance between the input data points.
The data embedded in the low dimensional Euclidean space
are non-linearly related to the high dimensional input data.
The difference of KPCA with the conventional PCA method
is that in the former method, the input data are mapped to a
feature space by a nonlinear kernel function and then PCA is
employed to extract the principal components of data in the
feature space. The detail of the embedding procedure is as
follows.

Embedding

1y,
=

FIGURE 2. Steps of embedding and clustering the input dataset.

According to the definition [49], the distance matrix
D = [dj;] is Euclidean if and only if n points can be found in
the Euclidean space such that the Euclidean distance between
points i and j is dj;. Embedding into a Euclidean space is
possible only if the distance matrix is Euclidean. Moreover,
it was proved [51] that if the similarity matrix S = [s;] is
positive semi-definite (p.s.d) with 0 < s; < 1 and s;;=1,
then the distance matrix D = [d;;] with djj = /1 —s;; is
Euclidean. Therefore, if we can define a similarity measure
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such that the distance matrix is p.s.d, embedding the points
into a Euclidean space is possible. In this study, the similarity
matrix is constructed in the format of a normalized Laplacian
matrix since it was shown in [52] that the Laplacian matrix is
p.s.d:

S=G 2 (G-W)G? (15)

where W is Coupling matrix with entries (w;;) equal to the
dynamic coupling of generators i, j and G is Degree matrix
which is a diagonal matrix with g;; = 27:1 Wij.

Having defined the similarity matrix such that the dataset
is embeddable in Euclidean space, the dataset is embedded in
Euclidean space according to the procedure shown in Fig. 3.
As shown, the next step is to compute matrix C from the
squared distance matrix. C is the covariance matrix of the
data points in the Euclidean space and can act as the kernel
function in the proposed KPCA-based method.

1
C=-5QDyQ. Dy = [dj] (16)

where Q is centering matrix defined as:
1
Q=1I— —ee' (17)
n

n is the number of points; I is unity matrix, and e is a
column vector of ones. Similar to KPCA method, the eigen-
decomposition of matrix C gives the desired data points in
the Euclidean space. The eigenvalues and eigenvectors of C
are obtained in the next step.

C =VAV! (18)

in which, V = [vy va ... v,] is row matrix of eigenvectors v;,
and A is a diagonal matrix of eigenvalues. The points in the
Euclidean space are obtained from:

X =VAl/? (19)

which X contains the corresponding n data points in n-
dimensional Euclidean space as the row vectors of the matrix.
Finally, the resultant dataset is given to the SVC algorithm as
the input data, and SVC will identify the distinct clusters of
this new dataset.

V. PROPOSED ALGORITHM FOR COHERENCY
IDENTIFICATION

Fig. 4 presents the overall view of the proposed procedure
to separate the coherent generators in a real-time application.
It is assumed that the whole network is fully observed through
PMUs installed at all buses, and the Synchrophasor data are
obtained for the last time window 7T which is long enough
to monitor the slow oscillations of generators. Furthermore,
the groupings of generators are updated every time step
AT<T. The algorithm shown in Fig. 4 demonstrates the steps
required for the time step AT'. The first step is to compute the
similarity values between any generator pair according to (6)
for the last time window 7. Therefore, the input data of the
clustering algorithm is an ng xn, distance matrix (ng is the
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FIGURE 3. Steps of embedding the input data into the Euclidean space.
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FIGURE 4. Proposed clustering flowchart.

number of generators). The SVC technique with parameter
selection and cluster validity method that previously verified
in [48] was implemented to achieve the optimal cluster struc-
ture. The proposed algorithm in this study for the coherency
detection is robust against noise or outliers. If the input
dataset contains some noise signals, this noise is eliminated
during preprocessing stage, when the input dataset is embed-
ded in the Euclidean space. The reason is that the KPC-based
technique orders the principal components of high-
dimensional dataset by their eigenvalues, then picks a number
(in here, ng) of largest eigenvalues that cover larger possible
variance, and neglects the noise with the lowest eigenvalues,
hence smaller variance. Moreover, the SVC method is the
best option to deal with the outliers due to its robustness to
outliers. Generally, soft constraint parameter, C, in SVC algo-
rithm allows exclusion of outliers or inclusion of singleton
clusters in the cluster structure. In this study, soft constraint
parameter is considered C=1 because it is required to assign
every generator to a cluster, and no generator is allowed to be
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unattended. In this method, SVC is carried out repeatedly for
several iterations, and the width parameter (g) is automati-
cally set at each iteration to result in the best possible cluster-
ing result. The key point used as the cluster validity measure
was that every cluster number corresponds to a g interval, and
the optimal cluster corresponds to the largest g interval [48].
The reason for this phenomenon comes from the fact that the
boundaries of the clusters change by variation of ¢. It was
observed that by increasing ¢, the tightness of the contours
of cluster boundaries, and also the number of SVs increases
gradually, until the current contours split into smaller con-
tours, consequently the number of clusters increases [48].
By adopting this approach, there is no need to evaluate
a conventional cluster validity index at each g step any-
more, and hence, the total number of iterations is consid-
erably reduced. According to Fig. 4, the first step, after
the dataset is embedded, is to find the search range of

qr = [Qminy Qmax] [41]
1 1

Gmax =

(20)

qmin = ; 3
min ||x; — x|

—_—,
max | x; — x| I<ij=n

I<ij<n
There is also a maximum number of clusters defined based on
practical considerations of the network operator. The simplest
heuristic search method to find the largest ¢ interval is to
divide ¢, into several intervals regarding an assumed accu-
racy and run the SVC at the mean value of each interval, but
the number of iterations would be too large with this method
in large search ranges, which is not feasible in real-time appli-
cations. To avoid excessive iterations, it is proposed to imple-
ment the previously introduced search method combining
both Fibonacci and Bisection search techniques with the min-
imum number of iterations [48]. The parameters and details
of Fibonacci and bisection search were chosen and performed
according to [47]. Assuming the number of clusters obtained
from an SVC run with q is n; (N(g) = n;), Fibonacci search
technique is used to find any two points in the overall search
range with the same number of clusters, i.e., N(gro) =
N(gr1) = n;, and Bisection search technique is used to locate
the approximate point that n; changes. The SVC is carried out
for every Fibonacci iteration within the range [gro,gr1] and
also for every Bisection iteration within the range [gp0,gp11.
The procedure starts with gro = gumin and g1 = 0.5(gmin +
gmax)- During the Fibonacci search, once two points with the
same number of clusters are located, the Fibonacci search
stops temporarily and the procedure enters a bisection search
to find the lower and upper bounds of the associated inter-
val for each cluster number. After the interval bounds are
found, i, is updated, and the same procedure is repeated for
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FIGURE 5. Rotor angle of generators during the defined scenarios in a) 39 bus b) 118 bus.

finding the next g interval until all intervals are covered and
the optimal clustering structure is provided as the clustering
result associated with the largest interval.

VI. RESULTS AND DISCUSSIONS

The efficacy of the proposed algorithm is demonstrated
through time domain simulation of defined events in 39 bus
and 118 bus test systems. The scenarios are based on the
assumption that all the rotor angle and voltage magnitude
of generators are obtained from the PMUs installed at all
generator buses.

Bus 31 and Bus 69 were considered as slack buses
in 39 bus and 118 bus system respectively. Full observability
was assumed for both test systems with the sampling rate
of 50 Hz. Moreover, to detect the low frequency oscillations,
the coherency analysis is carried out over the last time win-
dow of T = 10 s and it is updated for every time step
AT =1 s following the fault; therefore the CGs are updated.
The dominant interarea modes are generally within the range
of 0.1-0.8 Hz, thus a time window 7" = 10 s is suitable to
capture even the slowest modes [53].
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A. TEST SYSTEM I: NEW ENGLAND 39 BUS

The data of components of 39 bus power system were taken
from [54]; however, the parameters of synchronous genera-
tors including the power ratings and inertia constants were
adapted to achieve realistic inertia time constants and to
allow the power dispatch within reasonable governor limits.
A three-phase short circuit was created at the middle point of
line 4-14 at t = O s, then the fault is cleared by opening the
faulty line after 0.15 s and the line 16-17 is tripped at t = 2.1
s due to overloading. The oscillations of all ten generators are
demonstrated in Fig. 5a. The instant of fault clearing (#p) was
assumed to be the reference time for coherency study.

Based on the calculated dynamic coupling between gener-
ators, the pairwise distance values of generators are computed
according to (15). Fig. 6 displays the pairwise distance val-
ues as color image plots to better demonstrate the coupling
of generators over the time window 7 at three consecutive
time steps after the disturbance. The smaller the distance
(the larger the similarity) between the generators, the darker
is the corresponding square in the color plot. It can be
seen from Fig. 6(a) that the G2, G3 show strong coupling,
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FIGURE 6. Color plots of distance matrix for 39 bus system. a) At ty + AT.
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while G4, G5 are coupled together as well as G6, G7. It is
obvious that all diagonal units must be blue indicating the
maximum possible coupling because the distance of a genera-
tor with respect to itself is zero. It is evident from Fig. 6(b) that
1 s after the fault, the coupling between G2 and G3 weakens
while G1 shows a tendency to make a strong connection
with G2.

After the distance matrix is constructed for the current
time window, it is then used to embed the data points in the
Euclidean space. The three principal components of the rotor
angles in the new space are depicted in Fig 7. The clustering
algorithm is applied to the embedded data points to cluster the
data points with the optimal number of CGs of generators,
which is found to be five for the first time step. Generally,
the generators with closer distances may have stronger cou-
pling due to the effect of impedance in synchronizing coef-
ficient, however during a short time dynamic response of
the generators, this grouping can change, and a generator
may jump off a CG and join another group regarding the
dynamic change in acceleration of rotor angles. The dynamic
behavior of generators following the events are better demon-
strated in Fig. 8. It was observed that the clustering proce-
dure initially grouped the generators in five groups of {G1},
{G2, G3}, {G4, G5}, {G6, G7, G9}, and {G8, G10}.

FIGURE 7. Principle components of rotor angles embedded in Euclidean
space for 39 bus system. a) At ty + AT. b) At ty+2AT. c) At t5+3AT.
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FIGURE 8. The change of CGs in 39 bus system over time.

After the second time step, the grouping is updated such that
G2 separates from G3 and joins G1 to form a new CG while
G3 becomes a cluster containing a single generator. Then
after t=2.1 s, disconnecting the line 16-17 weakens the strong
tie between {G9} and {G6, G7}. Hence, G9 leaves its CG and
tends to oscillate with {G8, G10}. Similarly, G1 joins this
group and {Gl, G8, G9, G10} form a group of generators
swinging together.

Once the original data space is embedded in the Euclidean
space, SVC algorithm is initiated by setting the values of
both g and C parameters. Since it is expected to assign every
single generator to a CG, without invoking any outliers, C is
taken to be 1 while g is iteratively changed until the optimal ¢
associated with the optimal cluster number is achieved. For
the first time step, the minimum and maximum values of ¢
are computed from (20) as gy,jn = 1.13 and gex = 6912.7 to
identify the initial search range for g. A= 0.1 was chosen for
the final uncertainty interval of both Fibonacci and Bisection
search methods and ¢= 0.01 for the reduction factor in the
uncertainty interval of Fibonacci method. Fig. 9(a) shows
the relation between the number of clusters and ¢ obtained
by SVC. As seen, the optimal number of clusters is five for
the first time step, which is corresponding to the ¢ interval
[1030.8, 1888.2] with Ag=857.4. In comparison with the
case that all values of g within [1.13, 6912.7] are investigated
atevery g = 0.1 (because it was assumed that A = 0.1), itcan
be shown that the total number of SVC iteration decreased
considerably and it speeds up the computation procedure.

=
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FIGURE 9. No. of clusters vs. g parameter in SVC. a) 39 bus. b) 118 bus.

B. TEST SYSTEM II: IEEE 118 BUS

A three-phase short circuit was defined on the line 8-30
close to bus 8. Without considering autoreclosing, the fault
was cleared after 0.2 s by opening the corresponding line.

105427



IEEE Access

M. Babaei et al.: Identification of CGs by SVC With an Embedding Strategy

Then the lines 49-51, 100-103 and 103-104 were tripped
at t=2 s, t=3 s, t=3.2 s, respectively, due to overloading
protection. The post-disturbance behavior of rotor angle of
generators is depicted in Fig. 5(b). The curves with dash lines
are for the generators that change their CGs over the investi-
gated time, according to the proposed algorithm. The group-
ing result after four consecutive time steps is also presented
in Table 1. The proposed SVC technique has the advantage of
automatic identification of the best partition number. Finding
the optimal number of partitions of the generators is found
to be five, as shown in Fig. 9(b), which corresponds to the g
interval [86.79, 255.96] with Ag=169.2. The results indicate
that once the coherency of generators is identified after the
first event, it doesn’t change until the second event happens
at t=2 s. After the first event, five coherent areas are initially
identified while after the second event generator 49 changes
its cluster to group 4, and after the third event, group 5
splits into two different clusters. The offline studies show
that generators 10, 12, 25, 26, 31 have a natural tendency
to swing together [40], however, in this case, disconnecting
the line 8-30 weakens the inherent dynamic coupling of these
generators and causes two distinct groups of 10, 12 and 25,
26, 31 swing against each other and also the other CGs as
shown in Fig. 5(b). Then immediately after the occurrence
of the second event at t=2 s, opening the line 49-51 cuts
the loose coupling between the generator 49 and the rest of
generators in its CG. Following a disturbance in the network,
a significant change in the dynamic operating condition of the
grid induces a change in the coupling between the generators,
hence, in this particular scenario, the generator 49 separates
from its group and joins the groups of generator 65, 66, 69.
Similarly, immediately after opening the line 100-103 and
103-104, the group consisting the generators 80, 87, 89, 100,
103, 111 splits into two groups, while 80, 87, 89 swing in one
group against 100, 103, 111.

TABLE 1. Clustering result for 118 bus system.

Time | Group 1 | Group 2 Group 3 Group4 | Group 5 |Group 6

WAT | 1002 | 252631 [649.54.59.61 65,6669 | POTE00-

WR2AT | 10,12 | 252631 146:49,54,59,61 [65,66,69 xo,lsgés;)illoo,

WHAT | 10,12 | 252631 146,54,50,61  149,65.66,69 so,lsgés?illoo,
100,103,

WHAT | 10,12 | 252631 46,54,50,61  149,65,66,69| 80,87,89

111

Fig. 10 show the color plots of distance values for the
1%t and 4 time steps to demonstrate the change of coher-
ent groups (For simplicity, generators are numbered from
1 to 19 instead of showing the bus numbers). Several bluish
patches of square units are identifiable in the plot, which
means that these generators form different coherent clusters.
The dataset representing the generators with calculated pair-
wise similarity values (after the 1% time step) are embedded
in Euclidean space, and the three first principal components
of this new dataset are depicted in Fig. 11.
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FIGURE 10. Colour plots of distance matrix for 118 bus system.
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FIGURE 11. Principle components of rotor angles embedded in the
Euclidean space, 118 bus grid, the first time step.

VII. VALIDATION OF GENERATOR GROUPING AND
COMPARATIVE ANALYSIS

The average silhouette width is employed to validate the
grouping of the generators obtained by the proposed cluster-
ing algorithm. The silhouette width of any data point i (S;)
represents how similar is this point to other points that are
already grouped in the same cluster and how distant are the
points in a cluster to other neighboring clusters. S; is defined
as [55]:

l—a,-/b,- ifa,- <bl‘
Si =10 ifai = bl' (21)
b,-/a,- -1 ifa,' > b,’

where a; is the average distance of i to all other points within
its cluster, and b; is the smallest average distance of i to all
points in any other cluster of which i is not a member. The
overall silhouette width of a cluster structure (or shortly sil-
houette value) reflects both the compactness of dataset within
the clusters and separation from neighboring clusters in a
single value. From the above definition, —1 < §; < 1. Itis
noted that if the dataset is well clustered, S; tends to be larger
than the cases with poorer cluster quality. Fig. 12 shows five
silhouette plots of CGs for different cluster numbers during
the first time interval of 39 bus oscillation scenario. It can
be seen from Fig. 12(a) that the overall silhouette value for
the case with two CGs is 0.485, which means the generators
are not well clustered. As seen in Fig. 12(b)-(e), by incre-
menting the number of groups, the overall silhouette values
are obtained as 0.725, 0.741, 0.817 and 0.793 for 3, 4, 5 and
6 coherent groups, respectively. Therefore the proper number
of coherent groups should be five for the 1% time interval
with maximum silhouette value which means the generators
are better separated concerning their dynamic coupling in
comparison with other cluster structures. The results are in
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accordance with the output of the SVC algorithm, which was
shown in Fig. 7(a).

To better demonstrate the efficiency of the proposed
method (SVC method), it is compared with another
measurement-based coherency identification method which
was investigated in several studies [1], [29]. In this approach,
the degree of coherency between any pair of generators is
defined based on rotor speed deviation of generators. Spectral
Clustering (SC), and Fuzzy C-means Clustering (FCM) were
used to cluster the generators with the adopted coherency
measure in [1] and [29], respectively. SC method is based on
Eigenanalysis of the similarity matrix, and FCM is based on
minimization of the within-cluster variances. FCM assigns
each generator to multiple CGs with varying degrees of
membership. Table 2 presents the clustering structure and
overall silhouette values (S) of the first two intervals of 39 bus
grid, resulted from different methods including the proposed
method (SVC) in the present study.

TABLE 2. Clustering result for 39 bus system.

1.01

1.005 H /.

Rotor speed (pu)

r G1
r G2
r G3
r G4
r G5
G6
G7
G8

Time |Group 1|Group 2|Group 3 |Group 4|Group 5| S
svC totAT 1 2,3 4,5 6,7,9 8,10 0.817
tot2AT 1,2 3 4,5 6,7,9 8,10 0.809
FOM | AT 1 23 |456,79 3 10 |0.551
tot2AT 1 3 4,5,6,7 9 2,8,10 [0.632
sc | AT 1 2.3 45 6,79 3,10 |0.817
to+2AT 1 3 4,5 6,7.9 2,8,10 [0.785

It is noticed that in both clustering methods the grid is

G9
r G10

Time (s)
FIGURE 13. Rotor speed of generators with defined events in 39 bus
system.

ten-second time window. The last column of table 2 com-
pares all the overall silhouette values of cluster structures
resulted from different methods. The higher values of S for
SVC indicate the better quality of generator separation by
the proposed SVC method. Therefore dynamic coupling as
the coherency measure is a more reliable criterion than the
speed deviation because it is possible to cluster the gener-
ators based on their slow coherency, rather than closeness
of their rotor speeds. The reason why FCM method put two
generators 8 and 9 in separate clusters while they showed
strong dynamic coupling in both calculations and simulation
results, or similarly joined the groups of {4,5},{6,7,9} can be
explained by the dependence of FCM clustering algorithm on
randomly selected initial centers of the clusters. Furthermore,
both SC and FCM methods, the number of clusters must
be specified before applying the algorithm whereas, in SVC
algorithm, the optimal clustering solution and the proper
number of CGs are achieved by a reliable search method.
Comparison with other clustering methods reveals that the
proposed method results in more reliable coherent groups,
also with the advantage of identifying the proper number of
clusters automatically.

Finally, the computational efficiency of proposed method
is investigated, since the method is supposed to be imple-
mented in online applications. The computation times of
39-bus and 118-bus test cases for a particular disturbance
in each test case are listed in Table 3. The running times
are also compared among different methods as recorded in
MATLAB 2017a using Intel Core i7-6700 with 16 GB RAM.
The results show that despite other methods (FCM, SC) cost
less computation time, the proposed method is still suitable
to be used in real-time applications, because running times,
even in a laptop PC, is much lower than the updating time
step AT = 1 s. The running time of SVC is longer than
FCM and SC due to applying the embedding, and SVC stages
that both are time costly procedures. Despite this fact, consid-
ering other advantages of SVC method such as more reliable

split into five clusters of {1},{3},{4,5},{6,7,9}, {2,8,10}
after the second updating time interval. It is seen that the
generator 2 joined the group: {8,10} and the reason for this is
that as shown in Fig. 13, the rotor speed of generator 2 came
close to the group of {8,10} temporarily; however, generator
2 has stronger dynamic coupling with generator 3 over the

VOLUME 7, 2019

TABLE 3. Computational time of test cases.

FCM SC SvVC
[ 39-bus 0.003 s 0.010 s 0.051s
[118-bus | 0.005s 0.029 s 0.283 s
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clustering result, robustness to noise/outlier, and providing
automatically identified number of clusters, the proposed
method is more suitable option for coherency detection.

VIil. CONCLUSION

In this study, a generator coherency identification methodol-
ogy was proposed for online application based on measure-
ment of voltages and angles obtained from PMUs, which is
of vital importance in implementing the protective schemes
of power system such as controlled islanding or wide area
control. In this study, the dynamic coupling of generators,
which was defined based on the acceleration of generators
after a disturbance, was considered as the coherency criterion.
The algorithm included two main stages: embedding the
original dataset in Euclidean space and then performing the
SVC clustering technique on the embedded dataset to iden-
tify the coherent generators. It was shown that by clustering
the generators based on their slow coherency, it is possible
to discover the consistent oscillatory pattern of generators.
The most important feature of the proposed framework for
coherency analysis is its efficacy to identify the optimal
number of clusters. It was found that in contrast to other
clustering methods, the proposed method is independent of
a priori knowledge about the number of clusters and is able
to choose the best option systematically among all feasible
clustering structures. The proposed method is also robust to
noise or outliers. The noise is eliminated during the embed-
ding stage and the existence of outliers can be controlled by
the soft constraint parameter of SVC. Finally, the cluster-
ing results were verified by a cluster validity measure that
was defined based on the compactness of each cluster and
separation between clusters, and it was observed that the
proposed algorithm has an advantage over other coherency
detection methods in the reliable grouping of generators with
stronger dynamic coupling. The computational efficiency of
the proposed algorithm was also investigated and it was
shown that it is suitable to be implemented in real-time
applications. Another interesting aspect of the study is that
an embedding strategy incorporated in a clustering algorithm
can also be applied to other clustering applications such as
power network partitioning and controlled islanding after an
appropriately chosen dissimilarity measure is adopted which
is not even a metric distance measure.
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