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ABSTRACT Micro Doppler analysis of spin stabilized objects is of a great significance for attitude
estimation and recognition of space targets. In practice, the radar cannot dwell on one target in a long interval
continuously. In this paper, we propose a novel approach for the micro Doppler frequency recovery from the
discontinuous radar observations, which is referred to as gapped sparse Bayesian learning forward backward
time-varying autoregressive (GSBL-FBTVAR) method. First, the sparse optimization model for estimating
the sparse FBTVARmodel coefficients from gapped samples is established. Then, the sparse FBTVARmodel
parameters corresponding to the gapped sampled data and the missing data are estimated via an extended
sparse Bayesian learning (SBL) algorithm and the missing-data iterative adaptive approach (MIAA). The
micro Doppler frequencies are estimated by investigating the relationship between the model parameters
and the poles. Finally, the experiments are carried out on the electromagnetic analysis data to verify the
proposed GSBL-FBTVAR method.

INDEX TERMS Spin stabilized object, micro Doppler recovery, gapped samples, TVAR, sparse Bayesian
learning.

I. INTRODUCTION
The spin stability is a method which is widely used in
the attitude control of space objects, such as missiles and
satellites [1]. In practice, since the torque caused by micro
force or massive imbalance cannot be avoided completely,
the nutation and precession are present accompanying with
the spin for most real spin stabilized objects [1]. In the radar
field, the spin, the precession and the nutation are referred to
as micro motions. The micro motions will generate a nonlin-
ear and time-varying Doppler modulation in the radar return
of the object, which is called the micro Doppler effect [2].
Since the micro Doppler contains the rich information of the
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attitude of the object, it is significant for the object identifi-
cation [2]–[6].

As a specific application of the micro Doppler, the theory
and method on micro Doppler analysis and processing of
spin objects draw a wide attention in the radar field [3], [4],
[7]–[12]. In [3], [4], the micro Doppler of the spin stabilized
ballistic missile is analyzed. In [7]–[10], the methods of
3-D spin and precession features and structure characteristics
extraction of a cone-like spin target based on micro Doppler
were proposed. Reference [11] proposed amethod to estimate
the micro motion parameters of a spin stabilized object with
unknown shape. And reference [12] developed a technique
to classify the warheads and the confusing objects according
to the micro Doppler. In the literatures mentioned above,
it is assumed that the radar observes a target continuously in
an interval of several seconds to obtain the micro Doppler
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of the target. However, in practice, the radar is required to
track multiple targets in different beams and search in some
regions in most cases, which causes that the resource of
the radar cannot dwell on one target continuously in a long
interval [13], [14]. Usually, the micro Doppler signal of the
spin stabilized object is nonstationary, and the problem of
the micro Doppler signal processing in the multiple targets
tracking scenarios can be boiled down to the instantaneous
frequency (IF) estimation of the nonstationary signal from the
gapped or incomplete data.

For stationary signals, the problem of spectral estimation
from the gapped data or incomplete data is considered thor-
oughly, and some effective algorithms based on the filter
banks [15]–[17] and the sparse reconstruction [18] were
developed. Recently, the problem of the nonstationary sig-
nal recovery has received much attention. However, most
of the relative works focus on the cases of random missing
samples [19]–[28], and exploit the sparsity of the signals
in the time-frequency (TF) domain based on the compres-
sive sensing (CS) technology [20]–[25]. Unlike the artifacts
caused by the random missing data which are uniformly
distributed in the TF plane, higher artifacts caused by the
gapped missing data are concentrated around the true signals
in TF domain [27], [28]. As a result, the IF estimation from
the gapped sampled nonstationary signal is much more chal-
lenging.

To the best of our knowledge, the work addressing the TF
analysis for the nonstationary signal with the gapped missing
data is much less than that of the TF analysis with random
missing data. By exploiting the Fourier transform relation-
ship between the Wigner-Ville distribution (WVD) and the
instantaneous ambiguity function (IAF) and the sparsity of
the signal in the TF plane, a method based on themissing-data
iterative adaptive approach (MIAA) in the IAF is proposed
in [27] to handle the problem of IF estimation form gapped
sampled data. In the latest work [28], a more efficient method
based on CS in the IAF is proposed, and the adaptive optimal
kernel is integrated to suppress the cross terms of multi-
ple components. The method is referred to as missing data
iterative sparse reconstruction with adaptive optimal kernel,
MI-SR (AOK).

In this paper, we develop a novel gapped sparse Bayesian
learning forward backward time-varying autoregression
(GSBL-FBTVAR) model to recover the micro Doppler fre-
quencies from the gapped sampled radar return signals. The
TVAR model is a parametric time-frequency method, which
allows one to incorporate the prior information of the signal
and to take advantages of the good time-frequency resolution
and the effective noise reduction [29]–[34]. Unfortunately,
the conventional least square (LS) TVAR method is not
suitable to deal with the discontinuous observations. In the
proposedmethod, the problem of the instantaneous frequency
recovery from the gapped radar data is transformed to the
FBTVAR model coefficients estimation problem. The coef-
ficients of the FBTVAR model corresponding to the avail-
able samples are estimated jointly among the discontinuous

sample segments by the extended sparse Bayesian learning
(SBL) algorithm [35] and the coefficients corresponding to
the missing samples are recovered by the missing-data itera-
tive adaptive approach (MIAA). There are two advantages to
recover the micro Doppler from discontinuous observations
via the proposed method. 1) The micro Doppler of the object
can be estimated from the gapped observations jointly based
on an unified TVAR model with sparse constraints, which
can not be solved by the LS TVAR method; 2) the proposed
method avoids the micro Doppler frequencies association of
multiple scatterers among the discontinuous observation seg-
ments by utilizing the relationship between the instantaneous
frequencies of the nonstationary signal and the coefficients of
the TVAR model.

The rest of this paper is organized as follows. In Section II,
we introduce the mathematical model of the micro Doppler
of a spin stabilized symmetric rigid object. In Section III,
we construct the sparse optimization problem to estimate
the FBTVAR coefficients from the gapped observations.
In Section IV, an extended SBL algorithm is developed to
solve the sparse FBTVAR problem corresponding to the
available observations, and the MIAA is employed to recover
the time-varying coefficients of the missing data from those
of the observed data. In Section V, the performance of the
proposed method is verified by a series of simulations based
on the electromagnetic analysis data. And the conclusions are
drawn in Section VI.

II. MICRO DOPPLER OF THE SPIN STABLIZED OBJECT
The motion of the spin stabilized space object can be decom-
posed into the centroid motion and the micro motion. Here,
we assume that the centroid motion is completely compen-
sated according to the orbit information. The micro motion
of the spin stabilized object can be approximated by the
superposition of the spin and the motion of the spin axis.
The later can be further decomposed into the conical rotation
of the spin axis around the nutation axis with the nutation
angular frequency ωN and the conical rotation of the nutation
axis around the precession axis with the precession angu-
lar frequency ωP. To establish the coordinates systems, the
intersecting point of the spin axis, the nutation axis and the
precession axis is set as the origin O. The axes aligned with
the precession axis, the nutation axis and the spin axis are
defined as Z ofOXYZ ,w ofOuvw and z ofOxyz, respectively.
The object-fixed coordinate system Oxyz rotates with the
object and the reference coordinate system OXYZ is moving
with the trajectory of the object. Moreover, the angle between
the spin axis and the nutation axis ψ and the angle between
the nutation axis and the precession axis β are constant in
stable state [11]. The z axis of the object-fixed coordinate
system is aligned with the spin axis of the object, and the
center is on the centroid of the object. The micro motion of a
symmetrical object is illustrated in Fig.1. For a symmetrical
object, the dominant scatterers are the slipping scatterers
coming from the edge of the object [4], [11] and only the
precession and the nutation can be observed from the micro
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FIGURE 1. Geometry of a spin stabilized object.

Doppler signal of the slipping scatterers. Assume that the
angle between the light of sight (LOS) and the precession axis
is γ , and the coordinate values of the kth slipping scatterer
in the object-fixed coordinate system is (xk , zk). According
to [11], the slant range of this scatterer rk at the time t is
given by,

rk (t) = skc (t)T = xk sin θ (t)+ zk cos θ (t) (1)

where sk =
[
xk zk

]
, c (t) =

[
sin θ (t) cos θ (t)

]
, the super-

script ‘‘T ’’ represents the operation of transpose, and θ (t) is
the angle between the LOS and the spin axis and expressed as,

θ (t) = acrcos {sin γ (sinβ cosψ

+ cosβ sinψ sin (ωN t)) cos (ωPt)

− sin γ sinψ cos (ωN t) sin (ωPt)

+ cos γ [cosβ cosψ − sinβ sinψ sin (ωN t)]} (2)

The instantaneous velocity of the kth slipping scatterer is
given by,

vk (t) =
drk (t)
dt
=

[
zk − xk

h (t)√
1− h2 (t)

]
dh (t)
dt

(3)

where h (t) = cos [θ (t)] and its derivative to the time t is,

dh (t)
dt
= ωN sin γ cosβ sinψ cos (ωN t) cos (ωPt)

−ωP sin γ cosβ sinψ sin (ωN t) sin (ωPt)

−ωP sin γ sinβ cosψ sin (ωPt)

+ωN sin γ sinψ sin (ωN t) sin (ωPt)

−ωP sin γ sinψ cos (ωN t) cos (ωPt)

−ωN cos γ sinβ sinψ cos (ωN t) (4)

Substitute (2) and (4) into (3), we can obtain the instan-
taneous velocity of the kth slipping scatterer, and its micro
Doppler frequency fdk at the time t is given by,

fdk (t) =
2vk (t)
λ

(5)

where λ is the wavelength of the radar transmitting signal.

Assume the pulse repetition interval is Tr , and there are K
slipping scatterers on the object to be observed, and then the
baseband signal of the target return after the range compres-
sion from the mth pulse can be expressed as,

s (m) =
K∑
k=1

ak (m) exp
[
j2π

∫ mTr

0
fdk (t) dt

]
m = 0, . . . ,M − 1 (6)

where ak (m) is the amplitude modulation function of the
kth slipping scatterer, and M is the number of the radar
transmit pulses during the observation interval.

III. SPARSE TVAR MODEL OF THE GAPPED
SAMPLED MICRO DOPPLER SIGNAL
Assume that the complete observation interval contains G
times discontinuous dwelling of the radar beam on the target,
and the signal can be modeled as G observable segments
spaced with G − 1 segments of the missing data. Then the
observation of the gth segment is,

xg(m) = sg(m)+ ng (m) , m = 0, · · · ,Mg − 1 (7)

where sg (m) and ng (m) are the signal and the complex white
Gaussian noise of the gth segment, respectively, the form of
the signal sg (m) is given by (6), and Mg is the number of
the pulses of the gth segment. That is, the number of all the

observations isM =
G∑
g=1

Mg.

The TVAR model is a method for the instantaneous fre-
quency estimation of the nonstationary signal with high pre-
cision and good robustness to noise [29]–[31]. The P–order
forward and backward TVARmodel of xg(m) are of the form,

xg(m) = −
P∑
p=1

cp
(
mm,g

)
xg (m− p)+ w(mm,g)

m = P, · · · ,Mg − 1 (8)

xg(m) = −
P∑
p=1

c∗p
(
mm,g

)
xg (m+ p)+ w(mm,g)

m = 0, · · · ,Mg − P− 1 (9)

where mm,g denoting the sampling instant of the mth sample
of the gth sample segment, cp

(
mm,g

)
is the pth order time-

varying coefficient at the time mm,g, the superscripts ‘‘∗’’
denotes the conjugate, w(mm,g) denotes the complex white
noise with the mean being zero and the variance being σ 2

w.
Generally, it is nontrivial to directly compute the time-varying
model parameters cp

(
mm,g

)
. To convert the time-varying

model parameters estimation problem to be time-invariant,
cp
(
mm,g

)
can be expanded as a linear combination of a set

of basis functions fq(mm,g), q = 1, · · · ,Q,

cp(mm,g) =
Q∑
q=1

bpqfq(mm,g) (10)
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Xf
g

=


f1(mP,g)xg(P− 1) · · · fQ(mP,g)xg(P− 1) · · · f1(mP,g)xg(0) · · · fQ(mP,g)xg(0)
f1(mP+1,g)xg(P) · · · fQ(mP+1,g)xg(P) · · · f1(mP+1,g)xg(1) · · · fQ(mP+1,g)xg(1)

...
. . .

... · · ·
...

. . .
...

f1(mMg−1,g)xg(Mg − 2) · · · fQ(mMg−1,g)xg(Mg − 2) · · · f1(mMg−1,g)xg(Mg − P− 1) · · · fQ(mMg−1,g)xg(Mg − P− 1)


(15)

Xb
g

=


f ∗1 (m0,g)xg(1) · · · f ∗Q (m0,g)xg(1) · · · f ∗1 (m0,g)xg(P) · · · f ∗Q (m0,g)xg(P)
f ∗1 (m1,g)xg(2) · · · f ∗Q (m1,g)xg(2) · · · f ∗1 (m1,g)xg(P+ 1) · · · f ∗Q (m1,g)xg(P+ 1)

...
. . .

... · · ·
...

. . .
...

f ∗1 (mMg−P−1,g)xg(Mg−P) · · · f ∗Q (mMg−P−1,g)xg(Mg−P) · · · f ∗1 (mMg−P−1,g)xg(Mg−1) · · · f ∗Q (mMg−P−1,g)xg(Mg−1)


(16)

where Q is the number of the basis functions, bpq, p =
1, . . . ,P, q = 1, . . . ,Q are the time-invariant coefficients.
Usually, the basis function can be the discrete cosine trans-
form (DCT) basis, the discrete Fourier transform (DFT) basis,
the Chebysheve basis, the polynomial basis, etc.

Substitute (10) into (8) and (9), and then the forward and
backward TVAR models of all the G observed data segments
can be rewritten in the matrix-vector form,

xf = −Xfβ + wf (11)

xb = −Xbβ
∗
+ wb (12)

where wf = [w(mP,g),w(mP+1,g), · · · ,w(mMg−1,g)]
T and

wb = [w(m0,g),w(m1,g), · · · ,w(mMg−P−1,g)]
T are the obser-

vation noise vectors; β = [b11, b12, . . . , b1Q, . . . , bP1,
bP2, . . . , bPQ]T is the time-invariant coefficient vector of the
forward TVARmodel, andβ∗ = [b∗11, b

∗

12, . . . , b
∗

1Q, . . . , b
∗

P1,

b∗P2, . . . , b
∗
PQ]

T is the time-invariant parameters vector of
the backward TVAR model; the forward measured data
vector is xf = [

(
xf1
)T (xf2)T · · · (xfG)T ]T with xfg =[

xg(P), xg(P+ 1), . . . , xg(Mg − 1)
]T
, g = 1, . . . ,G, and the

backward measured data vector is xb = [(xb1)
T (xb2)

T
· · ·

(xbG)
T ]T with xbg = [xg(0), xg(1), . . . , xg(Mg − P− 1)]T ,

g = 1, . . . ,G; the forward and backward partially data matrix
are defined as,

Xf =

[ (
Xf
1

)T (
Xf
2

)T
· · ·

(
Xf
G

)T ]T (13)

Xb =

[ (
Xb
1

)T (
Xb
2

)T
· · ·

(
Xb
G

)T ]T (14)

where Xf
g and Xb

g are denoted in (15) and (16), respectively,
as shown at the top of this page.

In the existing TVARmethods, the samples are assumed to
be successive, and the time-invariant coefficient vector β can
be estimated by the LS method as follows,

β̂LS = −

(
XH
f Xf + XH

b1Xb1

)−1 (
XH
f xf + XH

b1xb1
)

(17)

where β̂LS is the LS estimator of β,Xb1 = X∗b, xb1 = x∗b.

However, here β is not suitable to be estimated by the
LS method, as the time-varying coefficients of the TVAR
model are not smooth at the end points of the different seg-
ments. Considering that the number of the nonzero values
of β is small for most nonstationary signals and the sparse
optimization is successful for the signal recovery from the
discontinuous samples by preventing the LS estimation from
overfitting [18], we propose a sparse-aware method to esti-
mate β from the gapped samples by solving the following
optimization problem,min

β
‖xf + Xfβ‖

2
2 + ‖xb1 + Xb1β‖

2
2

s.t. |β|1 < δ
(18)

where |β|1 =
P∑
p=1

Q∑
q=1

∣∣bpq∣∣ and δ is the sparsity controlling

parameter.
Once β becomes available, it is easy to calculate the time-

varying coefficients cp (m) according to (10). Then, we can
compute the P poles ρp(m), p = 1, . . . ,P as functions of
time by investigating the relationship between the TVAR
coefficients and the poles,

1+
P∑
p=1

cp(m)z−p =
P∏
p=1

(1− ρp(m)z−1), m∈{All instants}

(19)

where z is the variable of the Z-transform.
The estimation of the micro Doppler frequencies corre-

sponding to the pth pole can be calculated as follows,

∧

fdp (m) = arctan

(
Im
[
ρp (m)

]
Re
[
ρp (m)

])/2π, m ∈ {All instants}

(20)

To this end, it is obvious that the key point to estimate
the micro Doppler frequencies is to calculate the time-
varying model coefficients. Since the data is gapped sampled,
the micro Doppler frequencies will be recovered as two parts:
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one is corresponding to the observed data and the other is
corresponding to the missing data.

IV. MICRO DOPPLER RECOVERY BASED ON
THE GAPPED SBL-FBTVAR AND MIAA
A. THE EXTENDED SBL ALGORITHM FOR TVAR
COEFFICIENTS ESTIMATION FROM
THE GAPPED DATA
Among the algorithms for resolving the sparse optimization,
the SBL method is robust when the sparse information of the
signal is absent [35]. The available SBL method is designed
for the problem with single `2 norm object function. Here
the object function is the sum of two `2 norms as in (18),
and thus we need to extend the available SBL algorithm
to solve the problem as following, which is referred to as
GSBL-FBTVAR.

Assume the time-invariant coefficient vector β ∈ CPQ

obeys the multi-variate complex Gaussian distribution,

p(β; γ ) ∼
PQ∏
i=1

CN (0, γi) (21)

where γ = [γ1, · · · , γPQ] is a PQ×1 hyperparameter vector
with γi being the prior variance of the weight component βi.
Suppose the observation noise is the complex white noise

with zero means and σ 2IM−p covariance matrix, where IM−p
is the (M − p)-dimensional identical matrix, i.e.,

p(wf; σ
2) ∼ CN (0, σ 2IM−p) (22)

and

p(wb; σ
2) ∼ CN (0, σ 2IM−p) (23)

According to (21) ∼ (23), it is easy to obtain the posterior
density of β from xf and xb1 as,

p(β1|xf; σ
2, γ ) ∼ CN (µβ1 ,6β1 ) (24)

and

p(β2|xb1; σ
2, γ ) ∼ CN (µβ2 ,6β2 ) (25)

where,

µβ1 = σ
−26β1X

H
f xf

6β1 = (6−10 + σ
−2XH

f Xf)−1 (26)

and

µβ2 = σ
−26β2X

H
b1xb1

6β2 = (6−10 + σ
−2XH

b1Xb1)−1 (27)

where the superscript ‘‘H ’’ represents the conjugate transpose
operations on one complex matrix or vector, and the subscript
‘‘1’’ and ‘‘2’’ correspond to the forward measured data vector
xf and the backward measured data vector xb, respectively,
and so forth.

Then, the time-invariant coefficient vector can be chosen
by satisfying,

β = (β1 + β2)/2
= (σ 26−10 + XH

f Xf)−1xf/2
+ (σ 26−10 + XH

b1Xb1)−1xb1/2 (28)

where 60 , diag(γ ).

Thus, the key point is to estimate the parameters � =
{γ , σ 2

}, which can be obtained by utilizing the fast
expectation–maximization algorithm. The update formulas
are derived as follows,

γi1 ←

∣∣∣µiβ
1

∣∣∣2 /(1− γ−1i1 6ii
β
1
)

σ 2
1 ←

∥∥xf + Xfµβ1

∥∥2
2
/(M − P− PQ+

PQ∑
i=1

γ−1i1 6ii
β
1
) (29)

γi2 ←

∣∣∣µiβ
2

∣∣∣2 /(1− γ−1i2 6ii
β
2
)

σ 2
2 ←

∥∥xb1 + Xb1µβ2

∥∥2
2
/(M − P− PQ+

PQ∑
i=1

γ−1i2 6ii
β
2
)

(30)

As β1 and β2 are the same in essence and the observations
contain the noise with the same variance, it is necessary to
make the following constraints,

γi ← (γi1 + γi2)/2

σ 2
← (σ 2

1 + σ
2
2 )/2 (31)

Given the initial values of σ 2 and 60 (i.e. γi, i =
1, . . . ,PQ), the estimation of β can be obtained by com-
puting (26) ∼ (31) iteratively, until the stopping condition
is satisfied. Benefiting from the sparse constraint, the esti-
mation of β is much more robust to the choice of P and
Q compared to the traditional LS based method [29]–[34].
Usually, P should be larger than the number of the signal
components and increase with the level of the measurement
noise [32], and Q can be empirically set larger than ten
times of P.

B. THE MICRO DOPPLER FREQUENCIES RECOVERY
CORRESPONDING TO THE MISSING
DATA WITH MIAA
For the gapped sampled return of the target with multiple
scatterers, it is difficult to associate the micro Doppler fre-
quencies of multiple scatterers with complex micro motions
among the discontinuous segments [14]. Here we would like
to overcome this difficulty by recovering the time-varying
coefficients of the missing data from those of the observed
data and then estimating the micro Doppler frequencies
according to (19) and (20).
When the noise is present, the order of the TVAR model

is larger than the number of the signal components, which
implies that the TVAR coefficients contain the factors from
the poles corresponding to the noise. Hence, we need to
reduce the influence of the noise in the TVAR coefficients of
the observed data to improve the recovery performance. The
poles of the signals and the noise are divided by the subspace
methods described in [29]–[31]. The estimated poles of the
kth scatterer at themth sampling time is ρ̂k (m). Define dk (m)
to be the expanded coefficient of the kth order term of the
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characterize polynomial
K∏
k=1

[
1− ρ̂k (m) z−1

]
, i.e.,

1+
K∑
k=1

dk (m)z−k =
K∏
k=1

[
1− ρ̂k (m) z−1

]
m ∈ {Observed instants} (32)

Since the time-varying coefficients of the TVARmodel are
the linear combination of some basis functions, the missing
data recovery approaches for linear model signals can be used
to recover dk (m) corresponding to the missing data. Here,
we will adopt the nonparametric MIAA due to its robustness
to the noise and the prior information of the signals [16].
Define the column xo composed of the estimated TVAR
coefficients corresponding to the observed data, the column
vectors dok and dmk composed of dk (m) corresponding to the
observed data and the missing data, respectively, and the
column vectors foq and f

m
q composed of the elements of fq (m)

corresponding to the sample time of the measured data and
missing data, respectively. Then, the expansion coefficients
αk,q of dk (m) and the matrix Ro

k can be estimated iteratively
as follows,

Ro
k =

Q∑
q=1

∣∣αk,q∣∣foq (foq)H (33)

αk,q =

(
foq
)H (

Ro
k

)−1 xo(
foq
)H (

Ro
k

)−1 foq (34)

and then recover dmk as,

dmk =
Q∑
q=1

∣∣αk,q∣∣2 fmq (fmq )H (Ro
k
)−1 dok (35)

Once the time-varying coefficients dk (m) , k = 1, · · · ,K ,
m ∈ {All instants} are obtained, the poles of the signal
components can be computed according to (32) followed by
estimating the micro Doppler frequencies according to (20).

C. COMPUTATION COMPLEXITY
The implementation of the proposed method includes three
primary steps, and their computation complexities are ana-
lyzed as following.

From (13) ∼ (16), it is easy to find that the number of the
rows and the columns of the forward and backward partially

data matrix are
G∑
g=1

(
Mg − P

)
and PQ, respectively. Thus,

the computation complexity of constructing the forward and
backward data matrix is given by,

O

2PQ
G∑
g=1

(
Mg − P

)
According to [35], the computation complexity of each

iteration of the SBL algorithm is O
(
N 2
rowNcol

)
, where Nrow

and Ncol are the number of the rows and columns of the

dictionarymatrix. Considering that the forward and backward
coefficient vectors are estimated independently, then the com-
putation complexity of the coefficient vector of the FBTVAR
model estimation is given by,

O

2ISBL

 G∑
g=1

(
Mg − P

)2

PQ


where ISBL is the iteration number of the SBL algorithm in
our method.

Taking advantage of the block Toeplitz structure of the
covariance matrix of the gapped sampled data, the iterations
of MIAA in (33) and (34) can be computed efficiently [17],
and the computation complexity of the MIAA used in our
method is given by,

KIMIAAO

1.5 (2G− 1)

 G∑
g=1

Mg

2

+ 12 (2G− 1)3 φ
(
2Mmax

g

)
+ 3φ (PQ)


where K is the number of the scatterers, IMIAA is the iterative
times of the MIAA, Mmax

g is the maximum value of Mg, g =
1, · · · ,G, and φ (N ) denotes the computation complexity of
the fast Fourier transform with the matrix size being N .

FIGURE 2. The target model.

V. SIMULATIONS AND RESULT ANALYSIS
In this section, we will verify the performance of the pro-
posed approach in recovering the micro Doppler frequencies
from the discontinuous radar measurements via several sim-
ulations. The radar observations are generated by the pro-
fessional 3D electromagnetic analysis software CST Studio
Suite 2017. The precession-with-nutation object model is a
combination of two frustums, as illustrated in Fig.2. The top
radius and the base radius of the upper frustum of the cone
are 0.04 m and 0.8 m, respectively, and the height is 1.1 m.
The top radius and the base radius of the lower frustum of the
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FIGURE 3. The micro Doppler of the spin stabilized target. (a) The micro Doppler of the spin stabilized target computed
according to (5). (b) the spectrogram of the micro Doppler signature obtained via STFT.

cone are 0.8m and 1.2m, respectively, and the height is 0.9m.
The angular frequencies of the spin, nutation and precession
are ωS = 10πrad

/
s, ωN = 6π rad

/
s and ωP = 1.6π rad

/
s,

respectively. The angle between the spin axis and the nutation
axis is ψ = 2◦, the angle between the nutation axis and the
precession axis is β = 20◦, and the angle between the LOS
axis and the precession axis is γ = 45◦. The center frequency
of the radar transmitted signal is fc = 10GHz, and the pulse
repetition frequency is PRF = 500 Hz. Fig.2 demonstrates
that there are three slipping scatterers on the object of interest
that appear to slip around the object as it rotates. They are
at the edge of the top of the upper frustum, denoted as A,
the edge of the joint between the two frustums and the edge
of the bottom of the lower frustum denoted as B and C,
respectively.

The micro Doppler of the target model with the micro
motion parameters mentioned above is computed according
to (5) and illustrated in Fig.3(a). The spectrogram of the
micro Doppler signature of the target from the continuous
observations is illustrated in Fig.3(b), which is obtained via
the short time Fourier transform (STFT) with the rectangular
window of 64 points length and 63 overlapped points.

The sparse FBTVAR model parameters are set as P = 12,
Q = 200 and fq (m) is the Fourier basis function. The signal
to noise ratio (SNR) is defined as the ratio of the average
power of the target return signal of one pulse to the variance
of the white Gaussian noise. We assume that the complete
observation interval is 3s and divided into 50 segments with
each segment containing 30 samples. The observable seg-
ments are selected from the 50 segments randomly with a
given proportion. In the other word, the length of the interval
of the radar beam dwelling on the target one time is 60ms,
which contains the returns of 30 pulses, and the revisit time
of the radar for the target is random but is the integer multiple
of 60ms.

The iteration of the extended SBL algorithm is stopped
once one of the following three conditions is satisfied [35]:

the minimum of γi is smaller than 10−6, the maximum abso-
lute value of the increment of the elements of β between
two iterations is smaller than 10−6, and the number of the
iterations equals to 500.

The time-frequency map can be obtained from the result of
the estimations of the poles and the amplitudes of the TVAR
model by

TF (m, f ) =
1

1+
3∑

k=1
dk (m) e−j

2π fk
PRF

(36)

where m is the discrete time variable, f is the discrete fre-
quency variable, dk (m) is the estimation of the time-varying
coefficients of the TVAR model.

To further demonstrate the effectiveness of the proposed
GSBL-FBTVAR method, some comparisons with the avail-
able methods are given in the following simulations. As we
have discussed in Section I, there are two relatively latest
literatures [27], [28] that handle the problem of the instan-
taneous frequency recovery from the gapped sampled data of
a multicomponent nonstationary signal, and MI-SR (AOK)
method is the latest one. In [28], the performance and compu-
tation complexity of the MI-SR (AOK) method is compared
with the method based on MIAA in the IAF proposed in [27]
with shorter signals, which shows that the performance of
MI-SR (AOK) is better thanMIAA in IAF with much smaller
computation loads. Another fact to be noted is that themethod
of MIAA in the IAF implements the MIAA for every time
variable of the IAF, and is impractical in the situation of
longer data records due to its large computation workloads
requirement [16], [17]. Hence, the MI-SR (AOK) method
is chosen to compare with the proposed GSBL-FBTVAR
followed by MIAA method.

Furthermore, we also give the results of the LS-FBTVAR
method in order to show the benefit of the sparse constraint
on the TVAR model in our method, where the traditional LS
method is used to estimate the parameters of the TVARmodel
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FIGURE 4. The time-frequency maps when the available data is complete and SNR = 25dB obtained by (a) the proposed
GSBL-FBTVAR method, (b) the LS-FBTVAR method, and (c) the AOK smoothed WVD, respectively. The dash lines are the ground
truth of the micro Dopplers.

according to (17), and theMIAA is used to recover the TVAR
model coefficients of the missing data.

A. THE TIME-FREQUENCY MAPS WHEN THE AVAILABLE
DATA IS COMPLETE AND SNR = 25dB
Firstly, we would like to investigate the time-frequency res-
olution of the proposed GSBL-FBTVAR method when the
observable data is complete, whose result is compared with
that of the LS-FBTVAR method and the AOK smoothed
WVDmethod. To be noted, theMI-SR (AOK)method in [28]
degenerates to be the AOK smoothed WVD method [36]
when the observation is complete.

Fig.4 shows the time-frequency maps obtained by the
three methods when the observable data is complete and the
SNR is 25dB. From Fig.4, we can find that the result of
the LS-FBTVAR method suffers from the effect of the noise
seriously, and the time-frequency resolution is worse in the
vicinity of the cross points of the micro Doppler frequencies
of different scatterers. The result of the AOK smoothedWVD
method is affected by the noise to a lesser degree, but it can-
not resolve different micro Doppler frequency components
completely when they are close to each other. The proposed

GSBL-FBTVAR method can still work well, which gives
the time-frequency map with much better time-frequency
aggregativeness and higher time-frequency resolution
simultaneously.

B. THE TIME-FREQUENCY MAPS VERSUS DIFFERENT
PROPORTIONS OF THE AVAILABLE SAMPLES
WHEN SNR = 20dB
In this subsection, we will analyze the performance of the
proposed GSBL-FBTVAR method when the data is gapped
sampled with different proportions of the available samples
at a relatively high SNR setting. The results are also com-
pared with those of the MI-SR (AOK) and the LS-FBTVAR
methods.

Fig.5 ∼ Fig.6 illustrate the recovery results of the micro
Doppler via the GSBL-FBTVAR, the LS-FBTVAR, and the
MI-SR (AOK) method, when the proportions of the avail-
able samples to the complete signal are 20% and 50%,
respectively and the SNR is 20dB. From Fig.5 ∼ Fig.6,
we can find that the accuracy of the recovery results is
greatly improved with the increasing proportion of the
available samples. Under the condition that the proportion of
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FIGURE 5. The recovery results of the micro Doppler when the proportion of the available samples is 20% and SNR = 20dB.
(a) The micro Doppler frequencies estimated by the GSBL-FBTVAR. (b) the time-frequency map generated from the estimations
obtained by the GSBL-FBTVAR followed by MIAA. (c) The time-frequency map generated from the estimations obtained by the
LS-FBTVAR followed by MIAA. (d) The time-frequency map generated by the MI-SR (AOK) method. The dash lines are the ground
truth of the micro Dopplers.

the available samples is 20%, there exist relative more parts
that the recovered micro Doppler frequencies deviate their
real values obviously. When the proportion of the available
samples reaches 50%, the recovered micro Dopplers frequen-
cies are quite close to the truths. Compared with the results
obtained by the GSBL-FBTVAR, the recovered results of the
MI-SR (AOK) method lead to much larger deviation from
the real values of the micro Doppler frequencies. We can
also find that there exists obvious overfitting phenomenon in
the results of the LS-FBTVAR, and the reason is that the LS
technology is used directly for gapped sampled data without
any regularization constraints.

C. THE TIME-FREQUENCY MAPS VERSUS DIFFERENT
PROPORTIONS OF THE AVAILABLE SAMPLES
WHEN SNR = 0dB
In this subsection, we will validate the performance of the
proposed GSBL-FBTVAR method versus different propor-
tions of the available samples with a relatively low SNR
setting.

The recovery results of the micro Doppler are demon-
strated in Fig.7∼ Fig.8, when the proportions of the available
samples to the complete signal are 20% and 50%, respectively
and the SNR is 0dB. From Fig.7 ∼ Fig.8, it is obvious that
the proposed method is more robust than the LS-FBTVAR
method and the MI-SR (AOK) method in the lower SNR
situation. Considering that the definition of the SNR is the
average power of the returns to the variance of the noise and
there are three scatterers, the SNR of each scatterer is actually
lower than 0dB. In such a lower SNR condition, the proposed
method can still work with a satisfactory accuracy, though the
variances of the recovered results are relative larger. However,
the MI-SR (AOK) method is affected by the noise too seri-
ously to identify the micro Doppler frequencies of different
scatterers. The LS-FBTVAR method can give distinct micro
Doppler spectrum under the low SNR condition, but it suffers
from serious overfitting, especially when the proportion of
the missing data is larger.

To be noted, it is usually hard to associate the micro
Dopplers of multiple scatterers among the discontinuous
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FIGURE 6. The recovery results of the micro Doppler when the proportion of the available samples is 50% and SNR = 20dB.
(a) The micro Doppler frequencies estimated by the GSBL-FBTVAR. (b) The time-frequency map generated from the estimations
obtained by the GSBL-FBTVAR followed by MIAA. (c) The time-frequency map generated from the estimations obtained by the
LS-FBTVAR followed by MIAA. (d) The time-frequency map generated by the MI-SR (AOK) method. The dash lines are the ground
truth of the micro Dopplers.

observation segments in Fig.7(a) ∼ Fig.8(a). While the dif-
ficulty of the association can be avoided by transferring the
problem of recovering instantaneous frequencies of themulti-
ple components into recovering the coefficients of the TVAR
model as described in subsection 4.2. That is, the proposed
GSBL-FBTVAR method does not involve the association
problem.

D. THE PERFORMANCE ASSESMENT OF THE
DOPPLER FREQUENCY RECOVERY
In order to evaluate the performance of the proposed micro
Doppler frequency recovery method quantitatively, we cal-
culate the root mean square error (RMSE) of the recovered
Doppler frequencies with 100 independent trials. Fig.9(a)
illustrates the RMSE curves of the recovered Doppler fre-
quencies as a function of the observable proportion (OP)
under different SNRs and Fig.9(b) illustrates the RMSE as
a function of the SNR corresponding to different observable
proportions.

From Fig.9, we can find that the RMSE of the recovery
decreases with the increasing SNR and the proportion of the
available samples. According to the curves showed in Fig.9, it
is observable that when the proportion of the observable data
is less than 0.4, the RMSE of the recovered micro Doppler
frequencies decreases with the increasing proportions of the
available data distinctly; in contrast, when the observable pro-
portion is larger than 0.4, the decreasing trend of the RMSE
versus the observable proportion is much flatter. And this
phenomenon is also present under different SNR conditions.
Therefore, we can deduce that the confidence level of the
results obtained via the proposed method is relatively higher
when the proportion of the available data is larger than 40%.

Furthermore, we compare the RMSE of the micro
Doppler frequencies recovered by the proposed method, the
LS-FBTVAR method and the MI-SR(AOK) method under
different available data proportions and SNRs. The RMSEs
are evaluated with 100 independent trials and the results are
illustrated in Fig.10 and Fig.11. Fig.10 shows the RMSEs of
the three methods that vary with the increasing available data
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FIGURE 7. The recovery results of the micro Doppler when the proportion of the available samples is 20% and
SNR = 0dB. (a) The micro Doppler frequencies estimated by the GSBL-FBTVAR. (b) the time-frequency map generated
from the estimations obtained by the GSBL-FBTVAR followed by MIAA. (c) The time-frequency map generated from the
estimations obtained by the LS-FBTVAR followed by MIAA. (d) The time-frequency map generated by the MI-SR (AOK)
method. The dash lines are the ground truth of the micro Dopplers.

proportions when the SNRs are 5dB, 10dB, 15dB and 20dB,
respectively. From Fig.10, we can find that the RMSEs of the
micro Doppler frequencies recovered by the three methods
decrease as the observable proportion increases.When theOP
is small, the performance of the proposed method is much
better than that of the MI-SR(AOK) method. And the gap
of the RMSEs between the two methods gradually decreases
with the increasing OP. The LS-FBTVAR method always
gives the worst RMSE because there is no regularization
constraint in the model and the overfitting generally occurs
especially when the observation is not continuous.

In Fig.11, we demonstrate the RMSEs of the three meth-
ods that vary with the increasing SNRs when the available
data proportions are 20%, 40%, 60%, and 80%, respectively.
Fig.11 illustrates that the performance of the three methods
improves as the SNR increases. The curves also reveal that
under the same conditions of SNR and observable proportion,
the RMSE of the proposed method is the lowest compared
with that of the LS-FBTVAR method and the MI-SR(AOK)
method. The RMSE of the LS-FBTVAR method does
not change obviously. This is because there is no sparse
constraint in the FBTVAR model, which may cause serious

overfitting and hence large RMSEs. The performance of the
MI-SR (AOK) method is much worse than that of the
proposed method when the SNR is low, and gradually
approaches to that of the proposed method when the SNR
becomes higher. The reason is that the MI-SR(AOK) method
is a quadratic method and suffers from the interference of the
cross terms in low SNR situations [28].

In conclude, both Fig.10 and Fig.11 imply that the pro-
posed GSBL-FBTVAR method has the best performance of
recovering the micro-Doppler frequencies.

E. THE COMPUTATION COMPLEXITY OF
THE PROPOSED METHOD
In this subsection, we would like to evaluate the compu-
tation times of the proposed GSBL-FBTVAR method, the
LS-FBTVAR, and the MI-SR(AOK) method. All the simu-
lations are implemented with MATLAB 2018b in the work-
station with Intel i7 6700HQ processor (Quad core, 2.6GHz),
and the memory is 32GB. The computation times of the
three methods are listed in Table 1, and the unit of the time
is second.
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FIGURE 8. The recovery results of the micro Doppler when the proportion of the available samples is 50% and
SNR = 0dB. (a) The time-frequency map generated from the estimations obtained by the GSBL-FBTVAR followed by
MIAA. (c) The time-frequency map generated from the estimations obtained by the LS-FBTVAR followed by MIAA. (d) The
time-frequency map generated by the MI-SR (AOK) method. The dash lines are the ground truth of the micro Dopplers.

FIGURE 9. (a) The RMSE curves of the recovered micro Doppler frequencies via the proposed method versus the
available data proportions when the SNR is varying from 0dB to 25dB. (b) The RMSE curves of the recovered micro
Doppler frequencies versus SNRs when the observable proportions are varying from 20% to 100%.

According to (17) and (18), the computation complexities
of the GSBL-FBTVAR, the LS-FBTVAR method, and the
MIAA method used followed them depend on the number
of samples. As a result, we evaluate the computation time of
these two methods when the observable proportion is from
20% to 90%. From Table 1, we can find that as the cost of
the much better performance, the required computation time

of the GSBL-FBTVAR method is much larger than that of
the LS-FBTVAR method, and increases distinctly with the
increasing observable proportion. According to [28], when
the AOK is used in the IAF of the signal, the missing data of
the IAF without smoothing is disappeared, and the computa-
tion time of the MI-SR (AOK) method does not change with
the observable proportion. Since the sparse reconstruction
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FIGURE 10. (a) The RMSE curves of the recovered micro Doppler frequencies obtained by the proposed method and
the two comparative methods versus the available data proportions when the SNRs are 5dB and 10dB, respectively.
(b) The RMSE curves of the recovered micro Doppler frequencies obtained by the proposed method and the two
comparative methods versus the available data proportions when the SNRs are 15dB and 20dB, respectively.

FIGURE 11. (a) The RMSE curves of the recovered micro Doppler frequencies obtained by the proposed method and
the two comparative methods versus SNRs when the observable proportions are 20% and 40%, respectively. (b) The
RMSE curves of the recovered micro Doppler frequencies obtained by the proposed method and the two comparative
methods versus SNR when the observable proportions are 60% and 80%, respectively.

TABLE 1. Computation time comparison of the three methods.

should be implemented with respect to the lag variable for
all time variables, the computation time of the MI-SR(AOK)
increases linearly with the number of the time variables of the
recovered time-frequency map, and is much more than that of
the proposed GSBL-TVAR method.

VI. CONCLUSION
To estimate themicro Doppler frequencies of a spin stabilized
object from discontinuous observations caused by multiple
target tracking or multiple task of the radar, a sparse FBTVAR
model based method referred to as GSBL-FBTVAR was

proposed in this paper. An extended SBL algorithm was
developed to estimate the coefficients of the sparse FBTVAR
model from the discontinuous observations and the MIAA
algorithm was used to recover the FBTVAR coefficients cor-
responding to the missing data. The proposed method not
only has the ability of instantaneous Doppler estimation from
discontinuous observations jointly, but also can effectively
avoid the micro Doppler frequencies association of multiple
scatterers among the discontinuous observation segments.
The simulations demonstrate that the proposed method is
more robust compared with the existing method under the
conditions of lower SNRs and less available data.
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