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ABSTRACT A super-multivariate optimization algorithm is proposed to suppress the grating lobes (GLs)
of non-uniform arrays. For position-only variable cases of any huge array, it is always difficult to deal
with by using clustering algorithm because of thousands of variables. The proposed method achieves
grating lobe suppression (GLS) by taking position gradient of dynamic maximum GL and obtaining phase
difference by comparing with every element, which requires only precious few extra computations. When
gradient function varying with each element position is established, an appropriate sigmoid function will
be introduced and used to control the magnitude of small element displacement. After each generation of
element-movement operation, electric field of all elements are superimposed and partially cancelled out
each other in the target direction. In addition, the gradient computing does not significantly increase the cost
of total computation under multi-variable conditions, which avoids the unacceptable cost of conventional
clustering optimization algorithm. In this paper, a 16×16-element array is optimized, and a result comparison
with random optimization (RO), particle swarm optimization (PSO), and gradient algorithm (GA) is present.
The validity of the proposed algorithm for GLS is verified through using a 100×100-element array. In the
final, a large array antenna based on subarrays is optimized for a low sidelobe level (SLL) below −20dB
using the proposed algorithm. The results meet the requirements and show the effectiveness of the proposed
algorithm.

INDEX TERMS Grating lobe suppression, gradient, large non-uniform arrays, optimization algorithm,
sigmoid function.

I. INTRODUCTION
Phased array (PA) antennas, due to their good radiation
performance and excellent control over the radiating beam,
have been widely used in various applications [1]–[5]. For
deep space observation, target detection and medical imaging
cases, low grating lobe level (GLL) is required as a design
goal, which means that the GLS becomes a major concern
during the design of the PA. However, this could become
a big challenge for improving the radiation performance,
especially when the arrays contain antenna elements with
electrically large aperture size. The reason lies in that the
large spacing easily leads to grating lobes, even when the
beam of the array is not scanning. Therefore, the suppression
of GLs of PAs with large spacing between elements needs to
be studied.

The associate editor coordinating the review of this manuscript and
approving it for publication was Mingchun Tang.

In order to suppress the GLs of PA, the influence factors,
such as the amplitudes or phases of the elements, the lay-
outs of the array, the element rotation angle or even using
a good performance element antenna, could be considered
as the variables to optimize the overall performance [6], [7].
The grating lobe suppression problem we discuss here is
about the array antennas with only the element position as
variables. Thus, many numeral algorithms are employed into
the optimization process to solve the GLS problems, such
as particle swarm optimization (PSO) [8], [9], genetic algo-
rithm (GA) [10], least square method [11], [12] and other
methods [13]–[16]. However, a problem for them is that they
are not suitable for optimizing the radiation patterns of huge
arrays with likely more than 10-thousand elements. When
the number of variables is overlarge, those algorithms often
require a lot of computational costs. Besides, it is difficult for
them to ensure the convergence of cost function and thus to
obtain effective optimization results. The iterative fast Fourier
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transform (iFFT) is an efficient synthesis algorithm of huge
arrays [12], [17]. But it can only be used to deal with uniform
problems, at least not directly with non-uniform problems.
In addition, the convex optimizations (CO) [18], [19] or the
gradient methods [20], [21] are often used to process the
multivariable and non-uniform problems.

In this letter, we propose a method based on the gradient
and sigmoid function so as to consider the GLS problem
of non-uniform huge arrays with large element spacing in
position-only cases. In this method, positions of all elements
will be adjusted to trim their spatial phases for decreasing
the highest GL in each iteration. Meanwhile, the introduced
sigmoid function is used to define different small displace-
ment of elements, which can enhance the convergence of the
proposed algorithm. The principle of proposed algorithm and
details of sigmoid function control are elaborated in section
II. Then section III presents some examples of small and large
arrays. Some analysis is given in section IV.

II. PRINCIPLE AND FLOW OF THE ALGORITHM
A. PRINCIPLE OF THE ALGORITHM
The proposed algorithm suppresses the grating lobe level by
translating elements. Thus, the significant procedure is to
establish the relationship between the maximum GLL and
the position shift of each element. The gradient function is
an effective link for the two variables.

The array factor (AF) of a planar array withM×N element
antennas can be calculated by using (1).

E =
M×N∑
i=1

Iiejk(xiu+yiv) (1)

where k = 2π /λ is the wave number in free space, λ is
the operating wavelength. Ii is the excitation of the element
(i ranges from 1 to M × N ), and the coefficients of direction
are set as u = sin(θ )cos(ϕ) and v = sin(θ )sin(ϕ). This
study focuses on the position-only problems that all elements
are fed with the same excitation Ii = I0ejγ0 , where I0 and
γ0 are the amplitude and initial phase of the excitation Ii,
respectively. Both I0 and γ0 are constants. The xi and yi
represent coordinate positions of the i-th element.

According to (1), the position gradient of the pattern of the
i-th element can be written as

∇E = ex
∂E
∂xi
+ ey

∂E
∂yi

(2)

where 
∂E
∂xi
= jkuIiejk(xiu+yiv) = Aixejϕi

∂E
∂yi
= jkvIiejk(xiu+yiv) = Aiyejϕi

(3)

where Aix = jkuI i, Aiy = jkvI i, and ϕi = xiu + yiv. Taking
∂E /∂x as an example, it represents the relationship between
the array’s pattern and the x-axis position shift of each ele-
ment. When an element moves to the positive direction of the

x-axis, the pattern can produce an increment, which can be
denoted as

1E =
∂E
∂xi
·1xi = Aixej(ϕi+1ϕxi) ·1xi (4)

where 1xi represents the tiny position shift of i-th element,
1ϕxi = ku1xi represents the phase increment of the term of
∂E /∂x. As for the y-axis, there is a same form of function like
(4), and 1ϕyi = kv1yi.

The direction of the maximum GL is marked as (um,vm),
so the AF of (um,vm) can be represent as E(um,vm) = Amejϕ0,
where Am is the amplitude and ϕ0 is the phase. The phase
difference between the E(um,vm) and the AF increment of the
i-th element, 1Ei(um,vm), can be written as

1pi = ϕ0 − (ϕi +1ϕi) (5)

where 1pi is normalized into the interval of [-π , π ].
According to the principle of vector coherent superposition,
the increment along with x-axis can also be represented as

1Ei (um, vm) = |1Ei (um, vm)| · cos (1pi) (6)

Then, three cases need to be discussed:

1) |1pi| < π /2, it means that both of E(um,vm) and
1Ei(um,vm) are positive or negative. When the element
moves to positive side, E(um,vm) increases, so the ele-
ment i should be moved to the negative side to generate
an opposite phase to decrease the E(um,vm).

2) |1pi| > π /2, it means that E(um,vm) and 1Ei(um,vm)
have the phases with opposite sign. When the ele-
ment moves to the positive side, E(um,vm) decreases,
so the strategy of this case is moving the element i to
positive side.

3) |1pi| = π /2, it means that E(um,vm) and 1Ei(um,vm)
are orthogonal to each other, and the tiny movement of
the element do not contribute to the AF in this case.
Therefore, there is no need to move that element.

After discussing the three situations of the phase differ-
ence, all the element has its own suitable strategy of shifting.
By the way, the process of data in y-axis is the same as that
in x-axis discussed above.

B. SIGMOID FUNCTION
In this subsection we discuss how to control the position shift
of each element. Before that, a displacement matrix of the
j-th iteration, marked as D(j), is denoted at first. It can be
expressed as

D(j)
=


D(j)
11 D(j)

12 · · · D
(j)
1N

D(j)
21 D(j)

22 · · · D
(j)
2N

...
...

. . .
...

D(j)
M1 D

(j)
M1 · · · D

(j)
MN

 (7)
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FIGURE 1. Position of antenna i changes with the iteration steps. The
superscript j is the iteration step, and 1xi (j ), 1yi (j ) represent the
displacement of antenna i during j-th iteration.

or separated by two axes, as (8):

D(j)
x =


1x(j)11 1x(j)12 · · · 1x

(j)
1N

1x(j)21 1x(j)22 · · · 1x
(j)
2N

...
...

. . .
...

1x(j)M1 1x
(j)
M1 · · · 1x

(j)
MN



D(j)
y =


1y(j)11 1y(j)12 · · · 1y

(j)
1N

1y(j)21 1y(j)22 · · · 1y
(j)
2N

...
...

. . .
...

1y(j)M1 1y
(j)
M1 · · · 1y

(j)
MN


(8)

where j is the number of the current iteration, from 1 to n.
The subscripts, M and N , represent the number of elements
in x-axis and y-axis, respectively. Each Dmn(j) the matrix
D(j) can be written as Di(j) = (1xi(j), 1yi(j)), which means
the position shift of antenna i in the j-th iteration, as shown
in Fig. 1. Therefore, the displacement matrixD(j) indicates all
the position shifts of all the antennas of aM -element array in
the current iteration.

In order to control the displacements of each element,
the sigmoid function is employed into this problem. The
sigmoid function is often used to control the neural network
algorithm [22], or the imaging algorithm [23]. Here it is used
to make the transformation from the phase difference to the
suitable position displacement of element more effective and
reasonable. The sigmoid function is given by

f sigmoid (x) = d
(

2
1+ e−a(|x|−π/2)

− 1
)

(9)

where the input x represents the phase difference |1pi| in our
algorithm. Magnitude d is the max value of |f (x)| and we
denote it as the upper displacement limit (UDL) of arbitrary
element with a unit of 1λ. Coefficient a of (9) represents
a tunable factor without unit (referred to as factor a in the
following), which can be used to adjust the change intensity
from x to f (x), as shown in Fig. 2. The position shifts of1x(j)

and1y(j) in (8) are obtained by using (9) and their upper limit
are set to d , i.e. the UDL.
Here we discuss the effects of variables in sigmoid. When

d = 1, the f (x) curves with different factor a are shown in

FIGURE 2. Sigmoid function curves indicate the relationship between the
absolute value of phase difference and the position shifts of elements at
d = 1λ (unit of d is λ, the reference point of curves is set in (π/2,0)).

the Fig. 2. The phase differences 1pi are restricted to the
range from 0 to π by taking the absolute value of all the
negative phase difference, so that the corresponding position
shift can be restricted to the range of ±d . When 0< |1pi| <
π /2, the element’s displacement is negative, and when π /2<
|1pi| < π , the element’s displacement is positive, and
|1pi| = π /2 is related to zero displacement. These mean the
curve of sigmoid function we construct is satisfied the three
cases discussed in the last subsection. Thus, the GL should
be suppressed after iterations.

Here are some additional explanations. Since the position
shift corresponding to±π /2 is 0, all the elements are divided
into two groups in which the phase differences of the ele-
ments tend to ±π /2 as optimization steps increases. And the
phase difference between the two groups of elements is about
π , which satisfies the inverse phase condition. In this way,
the AF now has another representation as

|Em| =

∣∣∣∣∣∣I0ejγ0
∑
p∈S

ejϕmp +
∑
q∈S

ejϕmq

∣∣∣∣∣∣ (10)

where p = 1, 2, . . .,P, q = 1, 2, . . .,Q, andP+Q = M×N . S
is a set contains all the elements with |1pi| tending toπ /2, S̄ is
a set contains all the elements with |1pi| tending to -π /2, thus,
the two groups have a phase difference of π . All the elements
have the same amplitude of feed. Then, according to (10),
|Em| will decrease when the difference of the representation
|P−Q| approaches zero. Because, if the values of P andQ are
quite similar, the elements, both in the two groups, can cancel
out the increment of Em, i.e. 1E(um,vm), which is due to the
sum of the reverse components of electric fields with opposite
phases. Otherwise, if P is obviously greater than Q, or vice
versa, most of the elements enhance the Em because their
phases determine that the codirectional components are accu-
mulated. In conclusion, the uniform and dispersed phase dis-
tribution, which can lead to a uniform distribution of elements
to the two groups, is beneficial to the optimization results.
Therefore, the initial position of the array is added with a
random displacement matrix, so that the phase difference of
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all elements can be more evenly distributed. This strategy can
also avoid that the same row (or same column) elements in a
rectangular grid array always have the same position shifts.

C. FITNESS FUNCTION
The fitness function we constructed is maximum GL of the
current array. It is a dynamic variable because its position
changes with iteration. The cost function can be described as

Fitness = E (j)
m =

M×N∑
i=1

Iie
jk
(
x(j)i u

(j)
im+y

(j)
i v

(j)
m

)
(11)

where E (j)
m is denoted as the direction of maximum GL in j-th

iteration and also marked as E(um(j),vm(j)) as before.
As well known that the direction of the greatest GL varies

with the iteration step j. Thus, we need to determine the
distribution region (D-region) of the GLs. The D-region in
this work is set to be the whole visible region except the
pan mainlobe region which contains the mainlobe and several
sidelobes nearest to themainlobe. Because the sidelobes near-
est to the mainlobe are difficult to optimize by means of finite
displacement. If the D-region is determined, the direction
(um(j), vm(j)) can be easily identified and the corresponding
Em(j) can be extracted from the complete AF matrix by
the um(j) and v

(j)
m coordinates. Then, the fitness is obtained.

In addition, the complete AF, the direction (um, vm) and the
fitness value Em need to be updated in every iteration.

D. ALGORITHM FLOW
The basic steps of the dynamic algorithm of GLS based on
the position gradient are listed as follows:

1) Initialization: Define an original layout of the array,
for example, a rectangular grid layout plus a random
displacementmatrix which is conducive to carry out the
optimization. The variables of sigmoid function need to
be initialized.

2) AF Calculation: Calculate the AF of the total array,
E , then determine the direction of the maximum GL,
marked as (um, vm), and extract its electric field Em.

3) Position gradient: According to (2) and (3), we calcul-
ate the position gradient of every element pointing at
(um, vm), and get the phase difference, 1pi (including
1pxi and 1pyi).

4) Sigmoid control: Use the sigmoid function to control
the conversion from the phase difference 1pi to the
position shifts, 1xi and 1yi, and then generate the
displacement matrix D, denoted as (7).

5) Overlap detection: Conduct overlap pre-detection of
the new layout. If the element i is overlap with neighbor
elements, it should be reset to its position obtained from
last iteration by adjusting1xi or1yi or both of two to 0.
The detection is repeated until no overlap occurs. After
that, the matrixD should be updated to a newmatrixDs
with some elements of zero position shifts. The matrix
Ds ensure that there is no overlap in the new layout.

FIGURE 3. Flow chart of the proposed algorithm.

FIGURE 4. Comparison of array layout of 16×16 elements before and
after optimization.

6) Fitness evaluation: Recalculate E after loading Ds, and
update the data of (um, vm), then, evaluate the fitness
function of (11), i.e. Em.

7) Loop and termination: Repeat the steps (3) to (6) until
the optimization goal is reached or the iteration arrives
at its maximum step.

The flow chart of the proposed algorithm is given in Fig. 3.

III. PARAMETRIC STUDIES AND RESULTS ANALYSIS
A. PARAMETRIC STUDIES OF SIGMOID FUNCTION
In order to further understand the role of the sigmoid function,
some comparisons and parametric studies are carried out.
A 16×16 elements non-uniform array is taken as an example.
The layout of the array is initialized by randomly shifting a
rectangular grid array, as shown in Fig. 4. Since the aperture
of the element is 1λ× 1λ, the element spacing of the reference
rectangular layout is selected as 1.3λ on both the X and
Y axes. Thus, there is an enough translation space for the
neighboring elements to avoid overlaps.
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FIGURE 5. Convergence profiles with different factor a in case of
16×16-element antenna array at d = 0.1λ. Each no symbol mark curve
represents once calculation (the same in other figures), and each curve
with symbol mark is the average line of each curve cluster with different
value a.

FIGURE 6. Convergence profiles with different UDL d in case of
16×16-element antenna array at a = 4. Each curve with symbol mark is
the average of its curve cluster with different value d .

Firstly, the influence of the factor a on the convergence
curves is investigated and shown in Fig. 5. The d is fixed
as 0.1λ and the factor a varies from 1 to 4. It can be found
that the rate of convergence becomes faster when the factor
a increases in a certain range. When the factor a is greater
than 4, the rapidly decreasing portion of convergence curve
moves slightly to the left, which means the convergence rate
will not increase indefinitely. However, for the later iteration
steps, the smaller factor a leads to a better result. The curve
with a bigger a and a faster decline rate in the early iteration
steps can only converge to a relatively worse value. Because
the larger the factor a, the greater the fluctuations of the
convergence curve, which will appear and last to the end of
the iterations and make the optimization difficult to get finer
results.

On the other hand, Fig. 6 plots several curves with varying
d and fixed a. An obvious observation is the larger d corre-
sponds to the faster convergence in the early stage and the
relatively worse result in the end; Conversely, the smaller d
results in the slower convergence in the early stage and the
better result in the end. This observation is consistent with the
effect of factor a. As a result, we can control the convergence
process by changing d only.

FIGURE 7. Comparison of different algorithms (d = 0.05λ for RO, PSO and
GA, a = 4 for Grad. const. d and Grad. varied d (from 0.05λ to almost 0)).

B. OPTIMIZATION RESULTS AND COMPARISON
Two clusters of curves, corresponding to a constant d =
0.05λ and a varied d from 0.05λ to almost 0, are obtained
by the proposed gradient algorithm and shown in Fig. 7.
By virtue of the d varied as the optimization process, not
only early and fast convergence is achieved, but also better
convergence results are obtained at the end of optimization.

Besides the algorithm based on the position gradient and
sigmoid function, the results obtained with other algorithms
including the PSO, GA and random optimization (RO) are
also shown in Fig. 7 for the sake of comparison. It is noted
that the gradient-sigmoid-based algorithm proposed in this
study exhibits faster convergence rate. This is because the
displacements of the elements are calculated more reason-
ably by checking their position gradients. Furthermore, it is
precise because the displacement has a reasonable decision
basis, which ensures that the gradient-based optimization
method possesses better stability when optimizing the same
problem many times. More than 15 tests for each algorithm
are conducted to verify the stability of the proposed method.
Apparently, the fluctuation range H of curve cluster of RO is
larger than that of the gradient-sigmoid-based optimization
(record as h1 at a fixed d and h2 at a dynamic d), and
obviously, h2 < h1, as also shown in Fig. 7. The optimal AF
of the 16×16-element array after 1000 iterations is plotted
in Fig. 8. The highest GL is effectively suppressed by nearly
20 dB by the proposed algorithm.

C. CAPABILITY VERIFICATION OF SUPER MULTIVARIATE
A planar array with 100 × 100 elements is constructed
and optimized by the proposed algorithm. The obtained
results are shown in Fig. 9. About 20 thousand variables,
the coordinate positions for both axes are controlled at the
same time. The non-uniform fast Fourier transform (NuFFT)
is used to replace the conventional field superposition and
greatly improve the optimization efficiency. Through this
way, the pattern calculation can be accelerated. The opti-
mization goal of 32 dB reduction of GLL is achieved. This
numerical example is accomplishedwith a computer (Intel(R)
Core (TM) i3-3220 CPU at 3.3 GHz with 16 GB RAM) and
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FIGURE 8. Optimal results of AF of 16×16-element array (E-plane and
H-plane).

FIGURE 9. Optimal results of AF (E-plane and H-plane) obtained by the
proposed algorithm in the case of (a) 100×100-element array (the Ref.
curve represents AF of the uniform array with same size), and (b) is the
convergence curves.

each iteration generation takes only 6.16 seconds on average
by using NuFFT with 4096 × 4096 samples.

IV. GRATING LOBE SUPPRESSION IN SCANNING
In order to present the practicality of the proposed optimiza-
tion algorithm in real problems, a nested array antenna has
been studied and analysis in this section.

A. A LARGE ARRAY MODLE BASED ON SUBARRAYS
A large array antenna based on subarrays is presented and
expected to have a feature of low sidelobe, whose sketch map

FIGURE 10. Initial layout of the example array in which each hollow
square represents a basic subarray with 10×10 antenna elements using
solid squares as alternatives. (The patterns in the figure are not the lines
based on real data and they are just sketch maps used to exhibit their
differences in the three levels of the nested array as example.)

of the initial layout is plotted as Fig. 10. The layout of outer
array is set to a rectangular grid of 10×10 subarrays with
6 subarrays at each corner area removed, as shown in the
third part of Fig. 10. The maximum size of the whole aperture
of this array is limited to 1.11 times of the aperture size of
the compact subarray arrangement. In this array, the element
antennas in a certain subarray are managed as the distribution
of inner array in Fig. 10with 10×10 units but without element
removed. The element spacing in every subarray is set to 1λ,
and its maximum limit is set to 1.08λ. Therefore, the final size
limit in each direction has a 1.2 times which is determined
by 1.08 times 1.11. Because of the element size of 1λ×1λ,
the grating lobe appears quickly when themain beam deviates
from its boresight direction, so grating lobe suppression is a
significant task to be solved by the proposed algorithm.

The aim of low sidelobe is down to -20dB no matter which
direction is scanning at least 15 degrees. Aswell know that the
element spacing of array antennas is significantly related to
the grating lobe suppression, according to the basic theory of
array antenna. In this case of element spacing larger than 1λ,
the grating lobes must appear in some normal array antennas
when the scanning angle is reaching at 15 degrees. Therefore,
the optimization is challenging.

B. STRATEGIES IN THE PROGRESS OF OPTIMIZATION
A basic expectation is that when the array antenna layout
is optimized, side lobe suppression can be achieved regard-
less of elevation or azimuth scanning. It is different from
the no-scanning or single-axis-scanning cases because the
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FIGURE 11. Optimized results of 3D pattern of the example large array.
(a) Scanned at 20◦ in the u-axis; (b) Scanned at 20◦ in the v-axis.

algorithm needs to reduce sidelobe level both in two scanning
situations at the same time. The basic strategy of optimization
is the alternating optimization strategy (AOS), which means
the x-axis scanning and the y-axis scanning are set and opti-
mized one by one. In order to avoid the imbalance of the opti-
mizations in two axes, we improve the AOS to be no longer a
one-by-one alternative process, but a continuous optimization
of a relatively poor direction through the detection of results.
Actually, it is an alternating continuous optimization strat-
egy (ACOS). After optimized by using ACOS, the sidelobe
levels of the two scanning situations should decrease by an
approximate reduction.

To deal with the nested array, the strategy of inner-
optimization to outer-optimization (ITO) is carried out. The
inner optimization is referring to the subarray optimization
by adjusting each single element antenna and the pattern of a
subarray is obtained when the iteration of inner optimization
is completed. After then, the outer optimization is conducted
based on the results of the inner optimization. Because the
pattern of inner subarray (or element antenna) is the con-
stituent unit of the pattern calculation of the outer array.

TABLE 1. Comparison between the optimized and the initial results of
the example large array.

FIGURE 12. Optimized results of 1D pattern of the example large array
which are along the u-axis or the v-axis. The suffix, MP, refers to the
main-lobe peak point which means the 1D pattern is going through the
main-lobe peak point, and OP refers to the origin point of the coordinate,
that means the related 1D pattern is crossing the origin of its coordinate
system. Their distributions are paralleling to the u-axis or v-axis. Line
legends without MP or OP indicate that the line passes through these two
points. (a) Scanned at 20◦ in the u-axis; (b) Scanned at 20◦ in the v-axis.

The relationship among the element antenna, the inner array
and the outer array are actually determined by the layout of
whole array as shown in Fig. 10. By using the ITO strategy,
we can always maintain the formal distribution of arrays
based on subarrays, which is very important for the design
procedure and the engineering manufacture of large arrays.

C. OPTIMIZATION RESULTS
To validate the effectiveness of the proposed optimization
algorithm, the example of large array in Fig. 10 is took into
computation. We use a rectangular horn with its aperture
size of 1λ×1λ as the element antenna of the subarray which
compose the large array. Their active element pattern used
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FIGURE 13. Convergence curves of the optimization in the two scanning
conditions, respectively. (a) Inner array. (b) Outer array.

for pattern calculation is extracted at the beginning of the
optimization and updated at the end of the process of inner-
array optimization. That means the AEP of middle element in
the subarray is obtained from the optimized subarray, so that
some significant parts of the mutual coupling between array
elements can be considered. After the two iterative stages of
the optimization process, inner-array optimization and outer-
array optimization, we finally get the results of 3D patterns
which are as shown in the Fig. 11. Some 1D patterns extracted
from Fig. 11 are plotted in Fig. 12, which are distributed along
the u-axis (x-axis) or v-axis (y-axis) and crossing the main-
lobe peak point (MP) or the origin point (OP). It is obvious
that the sidelobe level of the 1D patterns are below −20dB
when the array is under a working situation of scanning
20 degrees no matter parallel to the u or v axis.
The specific data of the results are listed in Table I. The

initial data, including initial Gain and initial SLL, refer to
the pattern performance parameters of the array in the case
of rectangular grid layout as designed in Fig. 10. The initial
array is without any random element displacement which has
an element spacing 1.08λ and a subarray spacing 11.988λ,
both mentioned at the second paragraph of the section IV in
this paper. By comparing with the initial data, the optimized
results can prove the effectiveness of the optimization algo-
rithm we proposed. In particular, the SLLs, i.e. the difference
of the peak gain and the maximum sidelobe gain, are reduced
by 16.06dB and 16.36dB through optimization respectively
in the two axes. At the meanwhile, the peak gains are not
affected a lot.

FIGURE 14. Optimized layouts of the example large array. (Unit: λ) (a) The
whole array; The part inside the red dashed box is referring to a subarray
antenna, whose enlarged map is as shown in (b). (b) Subarray.

The convergence curves of the two iterative stages in the
optimization process, referring to the optimization of the
inner array and that of the outer array, can further confirm
the reliability of our proposed algorithm, as shown in Fig. 13.
During the optimization process of the inner array, the final
maximum gain inside all the sidelobe region of the subarray is
suppressed down to approximately 16.24dB. After the outer
iteration, the optimized sidelobe gain is reduced by nearly
7.5dB, and down to 26.24dB and 25.76dB in the two axes,
respectively. They are consistent with the data in the Table 1.
Here in Fig. 13, the first iteration results are calculated in
the situation of using a non-uniform array antenna formed
by summing the initial grid array with regular-distributed
layout and a random data array of displacement, rather than
directly using the initial one as shown in Fig. 10. The ran-
dom displacement array can make the initial phase distri-
bution more random and facilitate the optimization process,
and it can be generated by a random function with scale
constraints.

To demonstrate that the obtained results satisfy the range
constraints and the overlapping constraints, a real layout
map of whole array is plotted in Fig. 14(a). The lighted
part of blocks in the red dashed box represents a subar-
ray of the example array. Through observation, there is no
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FIGURE 15. The cascade diagram of the feed network (FN) of the
10000-element array. Only two types of FNs are needed for the large
array (in the dashed box). Both of FN1 and FN2 have one input port and
10×10 output ports. The complete FN consists of one FN1 and 10×10 FN2
by using cascade mode, to match the outer and inner arrays,
respectively.

obvious overlaps in the map which proves that the subar-
rays are separated from each other. As to the inner layout
of the subarray, an enlarged map is plotted in Fig. 14(b).
Similarly, the composed elements have no overlap parts
to each other. On the other hand, the aperture of arbi-
trary subarray and the whole array are constrained inside
an area of 10.8λ×10.8λ and 120λ×120λ, respectively. In a
word, the optimization process using the proposed algorithm
strictly complies with the expected constraints and meets the
requirements.

By the way, the feed network (FN) of the example array
can be designed as two levels (FN1 and FN2) to match
the outer array with 10×10 subarrays and the inner array
with 10×10 elements, respectively, as shown in Fig. 15.
That means each output port of the outer FN1 connects an
inner FN2 which also has one input port and 10×10 output
ports. This convenient approach benefits from that all subar-
ray layouts are the same. Compared to the Completely ran-
dom array, the design complexity of feed network is greatly
reduced.

V. CONCLUSION
In this paper, an effective optimization algorithm based on
position gradient and sigmoid function has been proposed
for non-uniform large-spacing array. Through the proposed
algorithm, GLS optimization for especially large-scale array
antennas, which are difficult for the conventional global opti-
mization algorithms to deal with the overwhelming variables,
become convenient and efficient. The sigmoid function is
used to control and optimize the iterative process. Its effec-
tiveness is verified by the result of the 16×16-element array.
A huge array with 10000 elements, up to 20 thousand position
variables, has been optimized to demonstrate the efficiency
of the proposed algorithm for grating lobe suppression. The
results of another large array antenna based on subarrays has
met the expectation of a low SLL of -20dB, which proves
the effectiveness of our proposed algorithm in large practical
layouts.
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