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ABSTRACT In this paper, we propose a novel stereovision-based system for vehicle speed measurement.
Our system is set in a fixed location to capture two view stereo videos for passing vehicles by using a
calibrated binocular stereovision system. An important feature of this system is the use of an optimized
single shot multibox detector network that can efficiently detect license plates in the captured two view
stereo videos. Then, the system performs only on the detected license plate area to extract stereo matching
point pairs rapidly. The world coordinates of 3D points corresponding to each stereo matching point pair are
calculated. Abnormal 3D points are removed in accordance with distance distribution. The remaining 3D
point closest to the license plate center is finally selected as the exact vehicle location of the current frame.
Vehicle speed is measured by dividing the distance between two selected 3D points by frame intervals.
Vehicle trajectory is depicted by connecting multiple selected 3D points. Our proposed system performs
non-intrusive and stealth measurement in intelligent traffic surveillance and overcomes the challenges of
speed measurement for multiple vehicles on multiple lanes in different motions simultaneously. Experimen-
tal results demonstrate its accuracy. Our system has a speed measurement error range of [−1.6, +1.1] km/h
and a maximum error rate of 3.80%, which are within the [−3, +2] km/h error limit of several countries’
regulatory authorities and the 6% error rate limit of China national standard GB/T 21255-2007.

INDEX TERMS Vehicle speed measurement, vehicle feature detection, SSD network, stereovision, stereo
matching.

I. INTRODUCTION
With the rapid development of intelligent transportation
system (ITS), ITS has provided intelligent traffic surveil-
lance, transportation management, dynamic information
service, and vehicle control [1]–[4]. Vehicle speed mea-
surement plays an important role in intelligent traffic
surveillance. At present, the most commonly used speed
measurement methods are divided into two main categories:
intrusive and non-intrusive [5]–[7]. Intrusive sensors, such
as inductive loop detectors (ILDs), are widely used. The
time interval during which a vehicle passes through a certain
length between ILDs is recorded to calculate the ave-rage
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speed of the vehicle [8]. However, the installation and main-
tenance of ILDs are complex and may damage road sur-
faces. Non-intrusive sensors, such as Radar and Lidar, are
also widely used. For Radar, an electromagnetic wave is
transmitted, and the frequency shift in the received signal
is calculated [9]. For Lidar, a laser is transmitted, and the
time of flight of the reflected signal is calculated [10]. Both
sensors have high measurement accuracy but have detectable
energy emission. When vehicles detect the energy emission,
it will intentionally slow down before entering the speed
measurement range. This action is undesirable for stealth
measurement. Moreover, these sensors require high cost and
frequent maintenance. Despite the popularity of ILDs, Radar,
and Lidar in traffic surveillance, three major problems still
exist and need to be solved.
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1) Synchronization of vehicle speed measurement and
vehicle information (e.g., license plate number, and
vehicle color, brand, and mode) identification.

2) Simultaneous speed measurement of multiple vehicles.
3) Speed measurement of vehicles in curved motion.
The technological advancement in vision system has

reduced the cost of cameras and increased the resolution
of the captured images. Video-based vehicle speed mea-
surement has received increasing attention [11]–[19] because
it is non-intrusive, suitable for stealth measurement, and
low cost. It can also provide vehicle speed measurement
and information identification in the same video simultane-
ously. The methods in [11], [12], [14] and [17] are monoc-
ular video-based vehicle speed measurement ones. Those
in [11], [12] and [14] are feature-based methods that identify
vehicles from the video frames by their features. The method
in [17] is a motion-based one that locates vehicles with opti-
cal flow. Thesemonocular methods calculate the time interval
of the vehicle passing through a distance and thusmeasure the
average speed of that vehicle. The 2018 AI City Challenge
Workshop in CVPR 2018 has a challenge track in 3D speed
estimation [13]. The winningmethod [14] can solve the prob-
lem of multi-vehicle speedmeasurement simultaneously with
the lowest RMSE. However, it uses perspective projection
and requires vehicles to be in straight line motion, with a
constant speed, and be parallel to the lane under test. The
methods in [18] and [19] are stereo video-based vehicle speed
measurement ones. The method in [18] is a feature-based
one that identifies the vehicle from the stereo video frames,
calculates the depth, and measures the speed. This method
can solve the problem of speed measurement of vehicles
in curved motion within structured environments. However,
the stereo visual tracking is achieved by particle filtering,
in which the manual setup of vehicle feature is required. One
time ofmanual setup is needed for one feature, while different
vehicles have varying features. Therefore, if multiple vehicle
speeds need to be measured, then multiple times of man-
ual setup are required. Thus, this method lacks intelligence.
The method in [19] is a motion-based one that subtracts a
static background from the video frame to detect the vehicle,
calculates the depth, and measures the speed. However, this
method has difficulty distinguishing between vehicles and
other moving objects. Therefore, it also lacks intelligence.

In this paper, we propose a novel stereovision-based sys-
tem for vehicle speed measurement. Fig. 1 shows the overall
view of our proposed system. The proposed system inte-
grates vehicle feature tracking with stereo motion estima-
tion for accurate and intelligent vehicle speed measurement.
The input left and right view videos are captured by a
fixed bino-cular stereovision camera. An optimized single
shot multibox detector (SSD) network, which is referred to
as license plate detection (LPD)-SSD (LPD-SSD), is used
to extract the typical feature (license plate) of a vehicle
synchronously from the stereo videos. Vehicle tracking in
the monocular video and stereo matching in the binocular
stereo videos are only carried out within the detected license

FIGURE 1. Overall view of the proposed vehicle speed measurement
system based on binocular stereovision system.

plate area. The actual spatial position of the vehicle is cal-
culated in accordance with the calibrated parameters of the
stereovision system and the disparity of vehicle in the stereo
videos. The vehicle speed is finally calculated between two
consecutive video frames. Our proposed system allows the
same video to be used for speed measurement and license
plate identification. It also allows speed measurement of
multiple vehicles on multiple lanes and of vehicles in straight
line or curved motion intelligently. However, this system is
only installed in a fixed location instead of in a vehicle at
present, which may be a future target of our project.

The rest of the paper is divided into four parts. In Section II,
we discuss the related works. In Section III, we present our
proposed system, which includes system configuration, vehi-
cle feature detection, vehicle tracking and stereo matching,
and speed measurement. In Section IV, we report experi-
mental procedures and results. In Section V, we make a
conclusion.

II. RELATED WORKS
Accurate vehicle feature detection in video frames is a prereq-
uisite for video-based vehicle speed measurement. License
plate has a regular appearance, uniform contour, and rela-
tively rich texture details and can thus be easily detected.
License plate is also unique and suitable for the synchroniza-
tion of speed measurement and information identification in
the future. Many existing traffic surveillance systems record
license plates of vehicles in traffic violations, and the infras-
tructure is already available [11]. Although the license plate
is not attached to the ground plane, the 3D spatial position of
the license plate center can be directly calculated using our
binocular stereovision system. The relative 3D displacements
can be obtained. Accordingly, accurate vehicle speed can be
derived. Therefore, we choose license plate as the object to
be detected in our system.

Traditional video object detection methods include back-
ground modeling [20], [21], frame difference [22], [23], and
optical flow [24], [25]. The two former methods are based
on video processing. They are suitable for detecting mov-
ing object with fixed background. However, license plate is
always a part of a moving vehicle and cannot be detected sep-
arately. Meanwhile, the latter method can track objects with
fixed or moving background. It can also track license plate as

VOLUME 7, 2019 106629



L. Yang et al.: Vehicle Speed Measurement Based on Binocular Stereovision System

a separate part but cannot detect license plate without man-
ual help. Morphological methods are widely used in image
object detection by relying on color, edge, shape, and tex-
ture attributes extracted with the Canny detector [26], Sobel
operator [27], template-matching [28], conditional random
field [29], or wavelet [30]. In [29], an edge operator is used to
extract the vertical edge of license plate. In [30], edge density
information is utilized to detect license plate. In [31], a rect-
angular sliding window is adopted to detect image regions
of high gradient density, such as license plate. All these
morphological methods are cumbersome, time consuming,
and unsuitable for LPD in complex background.

Modern object detection methods have developed with
the progress of convolutional neural network (CNN) [32].
Since AlexNet [33] won ILSVRC 2012 by a notable margin
in 2012, object detection methods with CNN have received
considerable attention. CNN-based object detection methods
can detect various objects accurately and intelligently with
the trained networks and models. The R-CNN series (e.g.,
R-CNN, Fast-RCNN, and Faster-RCNN) algorithms are typ-
ical examples of two-stage algorithms [34], [35]. They have
high accuracy but need long computation time. You only
look once (YOLO) [36] and SSD [37] are typical exam-
ples of one-stage algorithms. They are considerably faster
than the two-stage algorithms. For example, the detection
speed of SSD in VOC2007 dataset can reach 59 frames
per second (FPS), whereas that of Faster R-CNN can only
reach 7 FPS [37]. All these CNN-based object detection
methods are suitable for LPD. In [38], a CNN network is
trained and fine-tuned to detect license plate. In [39], a CNN-
based MD-YOLO framework for multidirectional LPD is
proposed. In [40], a region-based convolutional neural net-
work is trained to detect license plate. However, we build LPD
in our system on the basis of the framework of one-stage SSD
algorithm to meet the system requirements on efficiency and
accuracy fully.

III. PROPOSED SYSTEM
In the proposed vehicle speed measurement system, we use
two POINT GRAY FL2G-C industrial cameras to build the
stereovision system, as shown in Fig. 2. The camera has a
Sony ICX445 CCD, with a 1/3 inch size, a 1288×964 maxi-
mum resolution, 1.25 M effective pixels, a 32 MB onboard
buffer, and a 512 kB data flash memory. The stereovision
system also includes a laptop, with a Core i7 CPU, 8 G RAM,
a 2 G Nvidia Geforce 830 M discrete graphics card, and a
1 T solid-state hard disk. The laptop controls the cameras
and communicates with the cameras via a USB3.0 interface.
We use Zhengyou Zhang’s camera calibration method [41] to
calibrate our stereovision system.

The entire procedure of the proposed system is shown
in Fig. 3. System input includes left and right view videos
captured by the calibrated binocular stereovision system.
System output includes vehicle speed and trajectory. This
system consists of three main parts: vehicle feature detection,
vehicle tracking and stereo matching, speed and trajectory

FIGURE 2. Binocular stereovision system. (a) Capture system.
(b) Calibration board.

FIGURE 3. The whole procedure of the proposed vehicle speed
measurement system.

measurement. In the vehicle feature detection part, an LPD
model is trained on the basis of an optimized SSD network.
The trained model is then used to detect all license plates in
the left and right view videos. In the vehicle tracking and
stereo matching part, the license plate areas in consecutive
frames of the monocular video are matched to ensure inde-
pendent tracking for each license plate. Then, the license plate
areas in the frame pairs of the stereo videos are matched to
extract several stereo matching point pairs. In the speed and
trajectory measurement part, the world coordinates of the real

106630 VOLUME 7, 2019



L. Yang et al.: Vehicle Speed Measurement Based on Binocular Stereovision System

FIGURE 4. SSD network structure.

TABLE 1. Parameters of SSD Layers (pixels).

3D point corresponding to each stereo matching point pair
are calculated using the calibration parameters of the camera.
The distance between each real 3D point and the origin
is computed. In accordance with the distance distribution,
the abnormal points are removed first. Then, the point closest
to the license plate center is selected as the exact 3D location
of the current frame pairs. With the world coordinates of
the selected points, the distance traveled by a vehicle in a
certain period of time (i.e., one frame interval or several frame
intervals) is computed, and the trajectory is depicted. The
vehicle speed can be calculated by dividing the distance by
the time, and the vehicle movement direction can be derived.

A. VEHICLE FEATURE DETECTION
We first detect the vehicle feature in stereo video frames.
As described in the related works, we choose license plate
as the vehicle feature to be detected and select SSD as the
network structure to detect license plate. We also improve
the existing SSD network structure in accordance with the
statistical distribution of license plate size in some traffic
surveillance datasets. Fig. 4 shows the existing SSD network
structure. Table 1 shows the receptive field size of each
convolution layer and the output size of each feature layer.

We analyze 9850 traffic surveillance images in BIT-Vehicle
dataset [42], with image resolution 1920×1080, to design the
most suitable network structure for vehicle LPD in traffic
video. The license plate sizes are statistically classified in
accordance with the SSD receptive field size, as shown
in Fig. 5. The statistical distribution bar graph in Fig. 5 indi-
cates that the license plate sizes in traffic surveillance videos
are all in the resolution range below 260×260 pixels. Specif-
ically, the number of license plate sizes below 92×92 pixels
accounts for 58.8%, the number of license plate sizes between
92×92 pixels and 260×260 pixels accounts for 41.2%, and
the number of license plate sizes above 260×260 pixels
accounts for 0%. Among them, the number of license plate
sizes above 150×150 pixels only accounts for 0.17%, and the

FIGURE 5. Statistical distribution of license plate sizes.

FIGURE 6. Image with the maximum license plate size in BIT-Vehicle
dataset.

largest license plate size is 172×57 pixels, which is captured
at the closest position of the surveillance camera, as shown
in Fig. 6. Even if the resolution reaches 4K(4096×2160),
that is, the length and the width are expanded 2.13 times,
the size of license plate will still be 367×122 pixels and
will not exceed the receptive field size of conv10_2, that is,
485×485 pixels.

Therefore, we optimize the SSD network structure in
accordance with the statistical distribution of license plate
sizes by removing the conv11_2 layer and changing channel
number in the last layer to 2. For simplicity, we call this
optimized network as LPD-SSD. The LPD-SSD network
structure is shown in Fig. 7. The LPD-SSD network can
increase the model training and detection speed and reduce
the model data amount and can thus enhance the network
efficiency.

We randomly select 7000 images from three vehicle
datasets to build our license plate training and testing
sets. We include 1098 images selected from the CCPD
dataset (250000 images with resolution 720×1160) con-
structed by the University of Science and Technology of
China [43], 4500 images selected from the BIT-Vehicle
dataset (9850 images with resolution 1920×1080) estab-
lished by University of Science and Technology of
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FIGURE 7. LPD-SSD network structure.

FIGURE 8. Image examples of our dataset.

Beijing [42], and all 1402 images from an open license plate
dataset (resolution 1600×1200) provided by the OpenITS
research project [44] sponsored by Guangdong Key Lab-
oratory of Intelligent Transportation System. In addition,
800 images (resolution 4032×2268) with high resolution
and image quality are taken by Nikon d3200 SLR camera in
parking lots and streets at a distance of 1-15 m. Meanwhile,
1000 images (resolution 1920×1080) are extracted from the
campus security monitoring system of Zhongyuan University
of Technology, in which most vehicles are far from the cam-
eras and the license plate sizes are very small. In summary,
8800 images are obtained. With random image clipping and
scaling, the dataset size is expanded by a factor of three, that
is, 26400 images. Fig. 8 shows some image examples of our
license plate dataset.

We train the LPD model with half of the dataset, that is,
13200 images, as the training set in the SSD and LPD-SSD
network. The other half of the dataset are the testing set in
the training process. The testing set contains license plates
shot from various perspectives. After 23000 steps of training,
we obtain a trained SSD-based model and a trained LPD-
SSD-based model. The mean average precision (mAP) of the
SSD-based model reaches 0.971. The mAP of the LPD-SSD-
based model reaches 0.968, which is 0.3% lower than that of
SSD. As shown in Table 2, the loss function of the SSD-based
model converges to 1.45. The loss function of the LPD-
SSD-based model converges to 1.25, which is 0.2 lower than
that of SSD. Therefore, in the training process, the detection
accuracy of the LPD-SSD-based model is nearly the same as
that of the SSD-based model.

We select other 600 images, which are not used in the
training process, from BIT-Vehicle dataset as the validation

TABLE 2. Convergence value of loss function.

TABLE 3. Detection accuracy and speed.

FIGURE 9. License plate detection effect.

set to validate the detection accuracy of the two models
further. As shown in Table 3, the SSD-based model achieves
a detection accuracy rate of 98.0%. The LPD-SSD-based
model achieves a detection accuracy rate of 97.8%, which is
0.2% lower than that of the SSD in the validation process.
Both have good detection ability for license plate in surveil-
lance videos. The detection effect of LPD-SSD is shown
in Fig. 9.

However, the detection speed of SSD and LPD-SSD dif-
fers. On a local server, equipped with two 6-Core Intel
E5-2620 v3 @ 2.40 GHz CPUs, 32 G RAM, an 8 G
Nvidia Geforce GTX 1080 independent graphics card, and
a 1 T solid-state hard disk, the detection speeds of SSD
and LPD-SSD are 5 and 5.4 FPS, as shown in Table 3. The
speed of LPD-SSD is increased by 8%. The detection effi-
ciency of the LPD-SSD-based model is improved, whereas
the detection accuracy remains unchanged. Thus, we choose
the LPD-SSD network with the trained LPD model to detect
license plates in our vehicle speed measurement system.
Notably, the processing speed will increase as the CPU and
GPU processing power increases. The position and distance
of the camera to the vehicle will also matter, and the SSD
network structure can be adjusted in accordance with the
environmental situation.

Blurring may occasionally occur in the captured stereo
video frames, during which license plate cannot be detected.
However, vehicle speed can be measured as long as two
pairs of video frames contain clear license plates in the speed
measurement range. Therefore, we only keep the frame pairs
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FIGURE 10. License plate detected at a distance of 15 m.

FIGURE 11. License plate detected at a distance of 1 m.

with clear license plates and skip those with blurred license
plates. At least 10 frame pairs can be captured for the vehicle
speed of 120 km/h with a measurement range of 10 m and
a frame rate of 30 FPS. These frame pairs are sufficient to
remove the effect of occasional blurring. At least five frame
pairs can be captured even for the vehicle speed of 240 km/h,
which is a prohibited speed in traffic. These frame pairs
are also sufficient to remove the effect of occasional
blurring.

Fig. 10 shows the detected license plate in a pair of stereo
video frames at a distance of 15m from the vehicle to the cam-
era. The detected license plate is small but detectable. If the
vehicle is more than 15 m away from the camera, then the
license plate will be too small to be detected or lack of details
to perform the following stereo matching. Fig. 11 shows the
detected license plate in a pair of stereo video frames at a
distance of 1 m from the vehicle to the camera. If the vehicle
is less than 1 m away from the camera, then the license plate
will be easily blurred because of the fast displacement at
a close range. By experimental verification, the system can
achieve very high LPD accuracy in the speed measurement
range of 1-15 m. The resolution of license plates in this
speed measurement range is sufficiently high for detection
and matching in our system. Therefore, we conduct vehicle
speed and trajectory measurement in the speed measurement
range of 1-15 m in the following experiments.

B. VEHICLE TRACKING AND STEREO MATCHING
Multiple vehicles may appear simultaneously on the road.
Thus, multiple license plates may be detected in one frame
in the preceding vehicle feature detection process. Each
license plate should be precisely tracked in the consecutive
frames of the monocular video to measure the speed of each
vehicle separately. In addition, license plates in the frame
pairs of the stereo videos should be matched to calculate the
spatial position of the vehicle at a certain time. Therefore,

FIGURE 12. Tracking result of the same license plate in consecutive
frames of the monocular video.

FIGURE 13. Stereo matching result of the same license plate in frame
pairs of stereo videos.

the license plates in the stereo videos should be accurately
matched.

In essence, vehicle tracking and stereo matching are the
same because they both belong to matching problem between
two images. For vehicle tracking, the scale of the license plate
varies with the distance between the vehicle and the camera.
Therefore, the matching algorithm should be scale invari-
ant. For stereo matching, the translation and rotation of the
license plate vary with the range and angle of the stereovision
camera. Thus, the matching algorithm should be translation
and rotation invariant. The matching algorithms that meet the
aforementioned requirements include scale-invariant feature
transform (SIFT) [45], speed up robust features (SURF) [46],
locality preserving matching [47], [48], and vector field con-
sensusmatching [49]. In our system,we use SURF to perform
license plate tracking in consecutive frames of the monocular
video. We also use SURF to perform feature points matching
on the license plate area in the frame pairs of the stereo videos.
As shown in Fig. 12, the license plate in the left image is used
as the matching template, and the two detected license plates
in the right image are matched separately. The tracking result
is accurately located on the right license plate. As shown
in Fig. 13, the license plates in frame pairs of the stereo
videos are matched. Matching point pairs are extracted, and
a homography matrix is used to remove most mismatching
point pairs for the first time [50], [51]. The remaining match-
ing point pairs are used for speed and trajectory measurement
in the following part. We limit the SURF operation only on
the detected license plate area to save processing time.

C. SPEED AND TRAJECTORY MEASUREMENT
Although we perform SURF operation only on the detected
license plate area, we still extract many matching point pairs.
In our experiments, the number of matching point pairs is
approximately 60 at the farthest distance (i.e., 15 m) and
is nearly 140 at the nearest distance (i.e., 1 m). We further
reduce the number of the extracted matching point pairs by
narrowing the license plate area to a small circular area to
increase the measurement efficiency. We choose a circular
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FIGURE 14. Filter of matching point pairs.

area because it is easy to calculate. We take the center of the
detected license plate area as the center because it is easy and
quick to locate. We take the height of the detected license
plate area as the diameter because the circular area with this
diameter covers nearly a quarter of the total license plate
area. The matching point pairs with left point in left circle
and right point in right circle are retained, and the remaining
matching point pairs are abandoned. As shown in Fig. 14,
we can retain two pairs of matching points connected by solid
lines and remove another pair of matching points connected
by dashed lines. With this circle, we can effectively reduce
the computational complexity by at least a quarter. We can
reduce the number of matching point pairs to approximately
10 at the farthest distance (i.e., 15 m) and nearly 30 at the
nearest distance (i.e., 1 m). Such number is suitable for the
following error elimination process. If the diameter becomes
small, then the number of matching point pairs at the farthest
distance of 15 m will be too small to perform the statistical
analysis in the following error elimination process and thus
affect accuracy.

MISMATCH-POINT-PAIRS-FILTER(A)
1 for i = 1 to n
2 matched_pairs(i) = left_point(i)+ right_point(i)
3 if left_point(i) not in left circle area
4 matched_pair(i) is abandoned
5 else If right_point(i) not in right circle area
6 matched_pair(i) is abandoned
7 PL = Remaining matched_pairs in P
8 λ = Deviation value of distance between
9 camera and point(i) in PL
10 if λ > 20
11 matched_pair(i) is abandoned
12 Q = Remaining matched_pairs in PL

After matching point pairs are filtered, the world coordi-
nates of the real 3D points corresponding to each retained
stereo matching point pairs are calculated using the calibra-
tion parameters of the stereovision camera. In our system,
a convergent binocular stereovision model [52] is used, that
is, the optical axes of the left and right cameras intersect at a
point in front of the cameras, as shown in Fig. 15. With the
left camera as the main camera, the external parameters of
the system, such as the relative displacement T = (l,m,n)T ,
and the relative rotation T = (α,β,γ )T , and the internal
parameters of the two cameras, such as focal length, principal
point cc, and distortion kc, can be obtained by Zhengyou
Zhang’s camera calibration method. As shown in Fig. 16,
the world coordinates pi(x i,yi,zi) of a 3D point corresponding
to a matching point pair can be calculated with the internal

FIGURE 15. Geometry of a convergent binocular stereovision system.

FIGURE 16. Schematic diagram of world coordinates calculation.

parameters, the external parameters, and the 2D coordinates
of the matching point pair in the left and right image planes,
that is, (x l ,yl) and (xr ,yr ) [53].

The CCD plane center of the left camera is assumed to be
the origin of the coordinate system. Thus, the distance d i from
the target 3D point pi(x i,yi,zi) to the camera can be expressed
as

di =
√
x2i + y

2
i + z

2
i (1)

The relative distance d ij between two 3D points pi(x i,yi,zi)
and pj(x j,yj,zj) can be calculated as

dij =
√(

xj − xi
)2
+
(
yj − yi

)2
+
(
zj − zi

)2 (2)

To eliminate the stereo measurement error in the stereo
matching further, we calculate the mean value µ and the
standard deviation σ of the distance d i for all retained 3D
points and compute the z_score Z i of each d i as follows:

µ =

∑N
i=1 di
N

(3)

σ =

√√√√ 1
N

N∑
i=1

(di − µ)2 (4)

Zi =
(di − µ)
σ

(5)

Table 4 shows some exemplar distance measurement
results of 3D points. From Z i in Table 4, the z_score of
point 5 reaches −2.756. On this basis, the distance of point
5 has a large deviation and should be discarded to increase
the measurement accuracy. We eliminate the points with the
absolute value of Z i greater than 1. We select the world
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TABLE 4. Exemplar distance measurement results of 3D points.

coordinates of the point closest to the license plate center in
the remaining points as the exact spatial location of the target
vehicle in the current stereo frame pair.

As analyzed above, the speed measurement range of our
system is 1-15 m. We then assume that the stereo cameras
shoot at 10 FPS and each pair of stereo frames are not blurred.
For correct measurement, the maximum distance traveled by
a vehicle in the time interval1t = 1/framerate= 1/10= 0.1 s
between two consecutive frames should not exceed1l = 15-
1= 14 m. Accordingly, our system can theoretically measure
a maximum vehicle speed of Vmax = 504 km/h

Vmax =
1l
1t
=

14 m
0.1 s

= 140 m/s = 504 km/h (6)

That is sufficiently high for all traffic vehicles. Generally
speaking,N pairs of stereo frames would be captured depend-
ing on the vehicle speed:

N =
[
1l
V1t

]
+ 1 =

[
140
V

]
+ 1 (7)

where N represents the number of video frames that can be
captured for a vehicle passing through the speedmeasurement
range and V represents the vehicle speed (m/s). For example,
if a vehicle travels at a speed of 100 km/h, that is, 27.8 m/s,
then the system can capture six pairs of stereo frames. Then,
we can calculate the vehicle speed V in accordance with
two spatial positions pk (xk ,yk ,zk ) and pk+1(xk+1,yk+1,zk+1)
of the vehicle and the time interval 1t between the corre-
sponding consecutive frames:

V =

√
(xk+1 − xk)2 + (yk+1 − yk)2 + (zk+1 − zk)2

1t
(8)

The 3D vehicle trajectory can be depicted using the spa-
tial locations of pk−1(xk−1, yk−1, zk−1), pk (xk ,yk ,zk ) and
pk+1(xk+1,yk+1,zk+1) of the vehicle, as shown in Fig. 17.
For simplicity, we project the 3D vehicle trajectory onto the

ground plane (XOY plane) to observe the vehicle movement
direction. As shown in Fig. 18, vectors Ea and Eb represent the

FIGURE 17. 3D vehicle trajectory.

FIGURE 18. 2D projection of a 3D vehicle trajectory.

FIGURE 19. P-Gear P-510 professional satellite speed meter.

moving vectors in XOY plane of vehicle traveling from point
pk−1 to point pk and from point pk to point pk+1, respectively:

Ea = (xa, ya) = (xk − xk−1, yk − yk−1)
Eb = (xb, yb) = (xk+1 − xk , yk+1 − yk) (9)

According to the vector cross product formula, we can cal-
culate the steering angle ϕ of the vehicle (10)–(12), as shown
at the bottom of the next page:

If ϕ = 0, then the vehicle travels in straight line motion.
If ϕ > 0, then the vehicle turns left. If ϕ < 0, then the vehicle
turns right.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
In practical vehicle measurement test, we adjust the focal
length of the two POINT GRAY FL2G-C industrial cameras.
In this manner, these cameras can shoot the license plate
clearly in the measurement range of 1-15 m. The cameras
shoot at a relatively slow speed of 10 FPS to avoid blurring.
That is, we can perform vehicle speed measurement 10 times
per second. For comparison, we take the speed measured by a
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FIGURE 20. Single vehicle speed measurement experiments. (a) Straight
line motion with a constant speed. (b) Curved motion with a constant
speed. (c) Straight line motion with a changing speed.

P-Gear P-510 professional satellite speed meter in the vehicle
as the ground truth. This speed meter utilizes the data of the
GPS+GLONASS dual satellite positioning system tomeasure
speed and exchanges results with mobile phone 10 times
per second by Bluetooth 4.0. The measurement error is 2%.
The real-time speed and trajectory of the vehicle are recorded
and displayed using a mobile app, as shown in Fig. 19.
We set up five vehicle speed measurement scenar-

ios, which can be divided into two groups: GROUP
I - single-vehicle speed measurement experiments and
GROUP II - multi-vehicle speed measurement experiments.
In GROUP I, we measure the speed of a single vehicle in
three motions: straight line motion with a constant speed
(Fig. 20(a)), curvedmotionwith a constant speed (Fig. 20(b)),
and straight line motion with a changing speed (Fig. 20(c)).

FIGURE 21. Multi-vehicle speed measurement experiments. (a) Multiple
vehicles in the same direction. (b) Multiple vehicles in opposite directions.

In GROUP II, we measure the speeds of two vehicles travel-
ing at a constant speed in the same direction (Fig. 21(a)) and
opposite directions (Fig. 21(b)), separately. The maximum
speed in our experiments is no more than 50 km/h due to
the speed limit on campus. The exemplary images of the five
vehicle speed measurement scenarios are shown in Fig. 20
and Fig. 21.

B. SINGLE VEHICLE SPEED MEASUREMENT
EXPERIMENTS
We measure the speed of a single vehicle in three different
motions. We set up the speed measurement system on the
right side of the road by keeping an angle of 15◦ from the
road. However, we can select other suitable system locations
if we perform an accurate calibration.

Fig. 22 shows the speed measurement graphic results of a
single vehicle in three scenarios. Fig. 22(a) shows the result
of a straight line motion with a constant speed of 30 km/h.
Fig. 22(b) shows the result of a curved motion with a constant
speed of 30 km/h. Fig. 22(c) shows the result of a straight
line motion with a changing speed from 40 km/h to 50 km/h.
The blue line with cross represents the ground truth speed
measured by satellite. The red line with circle represents the
speed measured by our proposed system and fits the blue line
with cross very well.

Ea× Eb =

∣∣∣∣ xa ya
xb yb

∣∣∣∣ = xa · yb − xb · ya = |Ea|·|Eb| · sinϕ (10)

sinϕ =
xa · yb − xb · ya
|Ea| · |Eb|

=
(xk − xk−1) · (yk+1 − yk)− (xk+1 − xk) · (yk − yk−1)√

(xk − xk−1)2 + (yk − yk−1)2 ·
√
(xk+1 − xk)2 + (yk+1 − yk)2

= C (11)

ϕ = arcsinC (12)
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FIGURE 22. Speed measurement graphic results of GROUP I. (a) Straight line motion with a constant speed. (b) Curved motion
with a constant speed. (c) Straight line motion with a changing speed.

TABLE 5. Speed values of GROUP I(a).

TABLE 6. Speed values of GROUP I(b).

The specific speed values measured in GROUP I(a), (b),
and (c) are shown in Table 5, Table 6, and Table 7, respec-
tively. We also calculate the error and the error rate. The
maximum error and error rate of GROUP I(a), which appear
in the time step 10, are−0.7 km/h and−2.30%, respectively.
The maximum error and error rate of GROUP I(b), which
appear in the time step 4, are −0.9 km/h and −3.10%. The
maximum error and error rate of GROUP I(c), which appear
in the time step 2, are −1.6 km/h and −3.42%. In GROUP I,
the maximum error is−1.6 km/h, and themaximum error rate
is −3.42%; correspondingly, the speed measured by satellite
is 46.8 km/h, whereas the speed measured by our proposed
system is 45.2 km/h.

The steering angles measured in Group I(b) are shown
in Table 8. The trajectory is shown in Fig. 23(a). The tra-
jectory comparison is shown in Fig. 23(b). The results show

TABLE 7. Speed values of GROUP I(c).

TABLE 8. Steering angles of GROUP I(b).

that the vehicle trajectory measured by our system is highly
consistent with the vehicle trajectory recorded by the satellite
speed meter.

C. MULTI-VEHICLE SPEED MEASUREMENT EXPERIMENTS
We measure the speeds of multiple vehicles on multi-
ple lanes and in different directions simultaneously. In the
multi-vehicle speed measurement experiments, we set up the
speed measurement system on the right side of the road by
keeping an angle of 15◦ from the road for vehicles traveling
in the same direction. We set up the speed measurement
system in the middle of the road by keeping it parallel to
the road for vehicles traveling in opposite directions. We can
select other suitable system locations if precise calibration is
performed.
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FIGURE 23. Trajectory comparison of single vehicle in a curved motion
with a constant speed. (a) Trajectory of our proposed system.
(b) Trajectory comparison with P-Gear P-510.

FIGURE 24. Speed measurement graphic results of GROUP II. (a) Two
vehicles in the same direction. (b) Two vehicles in opposite directions.

In accordancewith the distance between the vehicle and the
camera, we set the speed to positive value when the vehicle
is coming near and to negative value when the vehicle is
moving away. Fig. 24 shows the speed measurement graphic
results of multiple vehicles in two scenarios. Fig. 24(a) shows
the result of two vehicles moving away in the same direc-
tion and both in straight line motions with constant speeds
of 30 km/h. Fig. 24(b) shows the result of two vehicles
traveling in opposite directions. The left SUV comes near in
a straight line motion with a changing speed from 20 km/h
to 30 km/h, whereas the right MPV moves away in a straight
line motion with a changing speed from 20 km/h to 30 km/h.
The blue line with cross represents the ground truth speed
measured by satellite. The red line with circle represents the
speed measured by our proposed system and fits the blue
line with cross very well. However, Fig. 24(b) shows that the
speed cannot be measured when the vehicles are far and not
within the measurement range of 1-15 m. For the left SUV,
the speed can only be measured from time step 8 to 18. For
the right MPV, the speed can only be measured from time
step 0 to 10. However, this condition does not affect system
performance because the speed of each vehicle is measured
separately.

TABLE 9. Speed values of GROUP II(a).

TABLE 10. Speed values of GROUP II(b).

The specific speed values measured in
GROUP II(a) and (b) are shown in Table 9 and Table 10,
respectively. We also calculate the error and the error rate.
The maximum error and error rate for the left SUV of
GROUP II (a), which appear in the time step 2, are 1.1 km/h
and 3.80%. The maximum error and error rate for the right
MPV of GROUP II (a), which appear in the time step 6, are
−1.1 km/h and −3.58%. The maximum error and error rate
for the left SUV of GROUP II (b), which appear in the time
step 18 and 8, are −1.0 km/h and −3.69%. The maximum
error and error rate for the rightMPVofGROUP II (b), which
appear in the time step 2, are −0.8 km/h and −3.59%. The
maximum error for the left SUV of GROUP II is 1.1 km/h,
and the maximum error rate is 3.80%; correspondingly,
the speed measured by satellite is −30.6 km/h, whereas the
speed measured by our proposed system is −31.7 km/h. The
maximum error for the rightMPV ofGROUP II is−0.8 km/h,
and the maximum error rate is −3.59%; correspondingly,
the speed measured by satellite is −22.3 km/h, whereas the
speed measured by our proposed system is −21.5 km/h.
Fig. 25(a) shows the trajectories of two vehicles in the same
direction. Fig. 25(b) shows the trajectories of two vehicles
in opposite directions. Each vehicle keeps driving with a
trajectory parallel to each other.

Overall, the measured speed has a maximum negative error
of −1.6 km/h and a maximum positive error of +1.1 km/h,
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FIGURE 25. Trajectories of multi-vehicle experiments. (a) Two vehicles in
the same direction. (b) Two vehicles in opposite directions.

TABLE 11. Error comparison for vehicle speed measurement.

which are within the [−3 km/h, +2 km/h] error interval
decided by the regulatory authorities of many countries [11].
Furthermore, the measured speed has a maximum error rate
of 3.80%, which is within the 6% error rate determined by the
China national standard GB/T 21255-2007 of motor vehicle
speed meter [54].

We compare the speed measurement error with three other
video-based vehicle speed measurement methods, namely,
Luvizon et al.’s method [11], Tang et al.’s method [14], and
VSS-SURF [19], as shown in Table 11. The error mean of our
proposed system is −0.02 km/h, which is less than the error
mean of [11] with −0.5 km/h. The RMSE of our proposed
system is 0.65 km/h, which is also less than the RMSEs
of [11], [14], and [19] with 1.36, 6.59, and 1.29 km/h. The
maximum error of our proposed system is [−1.6,+1.1] km/h,
which is less than that of [11] with [−4.68, +6.00] km/h
and that of [19] with [−2.0, +2.0] km/h. In summary, our
system not only can measure the speed of multi-vehicle on
multi-lane in different motions simultaneously but also can
achieve better measurement accuracy than other methods.

V. CONCLUSION
In this study, we solved the problem of intelligently mea-
suring vehicle speeds on the basis of videos captured by the
binocular stereovision system. We presented a system com-
posed of vehicle feature detection, vehicle tracking and stereo
matching, speed and trajectory measurement. We integrated
the vehicle feature detection within the SSD framework to
propose a novel LPD-SSD network particularly for accu-
rate and intelligent LPD. Several matching point pairs were
obtained by vehicle tracking in consecutive frames of the
monocular video and stereo matching in frame pairs of stereo
videos. Real 3D points calculated from matching point pairs
were filtered in accordance with the distance distribution, and
the best ones representing the vehicle positions were chosen.
The distance was computed, and the trajectory was depicted.

The speed was calculated, and the direction was derived. The
speed measurement performance of our proposed system was
verified by the experiments of single- andmulti-vehicle speed
measurement in five different scenarios. The results show that
ourmethod is efficient and reliable in the practical application
of vehicle speed measurement. In our experiments, the mea-
sured speeds have an error range of [−1.6, +1.1] km/h and a
maximum error rate of 3.80%, which are within the [−3,+2]
km/h error limit of several countries’ regulatory authorities
and the 6% error rate limit of China national standard GB/T
21255-2007. In particular, our method is non-intrusive, suit-
able for stealth measurement, and low cost. It can measure
the speeds of multiple vehicles on multiple lanes in the same
direction or in different directions simultaneously. It can also
measure the speed and trajectory of the vehicle in straight line
or curved motion. It deals with a speed measurement range
of 10 m where distance estimation errors are in the order of
centimeters. Moreover, the method has no strict restrictions
on system location if appropriately calibrated. In the future
work, we intend to combine vehicle speed measurement with
vehicle information identification of license plate in the same
video at the same time. We also aim to train a compound
vehicle feature detection model to identify a considerable
amount of feature information adaptively if the license plate
information is unavailable or inadequate.
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