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ABSTRACT This paper presented a framework based on fog computing for convenient and efficient
Physiological Function Assessment, which consists of three parts: 1)measuring the degree of joint mobility;
2) investigating the abnormality of actions of upper limbs; and 3) abnormal gait detection for lower limbs.
Especially, we introduced semi-automatic Rapid Upper Limb Assessment (RULA) using Kinect v2 for the
upper limb motion evaluation. Since a specific action can be described by action sequences of different
length, we used dynamic time warping (DTW) to find the similarity between action sequences with different
length. Traditional DTW algorithm does not work well when the action sequences are long and complex.
To address this problem, we improved the DTWmethod by modifying the mapping relationship and limiting
the computation space. Our modified DTW algorithm was evaluated on a standard 3D action dataset (SYSU
3D HOI) and Human Upper Action dataset (HUA), achieving the accuracy of 83.75%, 89.50%, respectively.
The result is significantly better than the traditional DTW and the reported methods. In our previous work,
we described the framework and how to make physiological function assessment. The goal of this paper is to
1) enrich the experiments of previous work and 2) introduce the framework of using RULA for physiological
function assessment. All the tests have been done in this framework based on fog computing.

INDEX TERMS Physiological function assessment, fog computing, kinect, human activity recognition,
RULA.

I. INTRODUCTION
A. PHYSIOLOGICAL FUNCTION ASSESSMENT
FRAMEWORK BASED ON FOG COMPUTING
At present, the commonly used methods of physiological
function testing mainly include photographic method, wear-
able device method and other artificial detection methods.
These tests need to be completed with the help of profes-
sional staffs in specific occasions, which are expensive and
time-consuming. In order to conduct Physiological Func-
tion Assessment(PFA) in hospital even at home efficiently
and conveniently, many researchers have proposed to use
cloud computing to solve this problem. A remote monitor-
ing platform based on cloud computing was proposed to
monitor the health status for the elderly in real time [1].
According to monitor data, doctors can give suggestions for
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better treatment in details. The authors presented a real-time
monitoring method of multi-physiological parameters cluster
applying to the remote monitoring platform for efficiently
detection and evaluation [2]. As mobile Internet and Internet
of Things technologies develop further, cloud computing is
becoming more and more accessible. However, a study by
Gartner suggested that centralizing all this distributed data
into one data center in the big data era is technically and
economically infeasible [3]. Firstly, the growth rate of data
exceeds the growth rate of network bandwidth, which will
cause the cloud server to be overloaded, causing network
congestion, and users’ requests are unable to get response
in time. Secondly, the physical distance between the cloud
server and the terminal device is generally far, which leads to
the increasing delay of data transmission between them.

Hence, this study presented a new framework based on
fog computing to reduce the problem caused by cloud com-
puting. Between the cloud server and the terminal device,
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some special equipment is used as fog service for computing,
storage. Data processing is scattered on fog servers located
on the edge of the network, so that the data processing can be
close to the terminal equipment and offer service to the users.
In this framework, data would be sent to the fog servers for
the priority processing, which could reduce the unnecessary
network transmission and increases the response speed of
application systems [4].

B. PFA BASED ON SKELETON TRACKING
Human movement status is key to physiological function
assessment, which is also a main indicator of human health.
In this paper, we focused on evaluation for human body
movement for PFA. The decline in the function of human
movement, which is affected by joints and muscles of human
body, will lead to many diseases, such as Periarthritis [5],
Osteoarthritis [6], Osteoporosis [7], Stroke [8] and even
paralysis. Therefore, PFA for the elderly in time, and even
monitoring and evaluating them over time, will enable early
diagnosis of diseases and help find the best treatment.

Many researcher have explored different aspects for human
body function, whichmainly include 1)measuring theDegree
of Joint Mobility (DJM), 2) investigating the abnormality of
actions of upper limbs and 3) abnormal gait detection for
lower limbs. Hu et al. calculated DJM by using a NDI Polaris
Spectra to track the 3D position of the reflective ball on the
limb bones [9]. Kinect device was used to monitor and detect
elderly people when they are likely to fall by measuring their
gaits in [10]. Hu et al. used Kinect mounted on the pedals
to get walkers’ leg information (angles of lower joints, rela-
tive distance between joints) to carry out gait detection [11].
Standen et al. used Kinect to capture the scene and then tested
the posture of the upper limbs [12].

These methods obtain the locations of body joints and eval-
uate the body movements. The Kinect v2, released in 2013,
use a technology of time-of-flight, has a excellent perfor-
mance of tracking the positions of 25 body joints. Kinect is
widely used in the study of physiological function assess-
ment. Li et al. used Kinect to improve the efficiency and
accuracy of rapid upper limb assessment (RULA) while
reducing the workload [13]. Chen et al. designed a physio-
logical function improvement game for old people based on
Kinect system [14]. Bernardino et al. used Kinect to collect
a dataset, which contains a number of fitness tests accord-
ing to the physiological function standards of reliability and
validity [15].

Joints status is an important indicator of physiological
functions, which is reflected by the action of the human
body such as hand waving, TW stretching etc. Therefore,
the evaluation for upper limbs can be done well with the
pose being recognized. A typical way for action recognition
is to search the action sequence database finding the similar
sequence with smallest distance. A specific action can be
described by an action sequence which consists of extracted
features. People perform actions differently, even for the same
action type, e.g. walking. Therefore, the action sequences

describing the same action could have different length.
To compare two action sequences, Dynamic Time Warp-
ing (DTW) can be used to find the smallest distance. DTW
has been reported in several publications [16]–[18], where
it has been shown by the preliminary test on Japanese digit
words indicating DTW’s effectiveness. However, the match-
ing process is time-consuming and inaccurate in some cases,
especially when the two sequences are complicated. In order
to improve the matching performance, we modified the DTW
algorithm [19] with a better distance measure and a lim-
ited the search space during the dynamic programming (dp)
procedure.

Rapid Upper Limb Assessment(RULA) [20], is one of the
most popular observational methods [21] used to evaluate
the risk of work-relatedmusculoskeletal disorders (WMSDs).
This weakness of RULA is the requirement of a field expert
to analyze the postures, which is time-consuming and labor-
some. Many methods have been developed for this prob-
lem, suggesting a semi-automatic approaches using low-cost
and easy-to-use cameras. Several work explored the accu-
racy of kinematic data provided by Kinect v1 in various
applications [22]–[25]. Kinect v1 was used to make the
RULA for posture analysis, which shows the advantages: cal-
culating in real time, minimizing the time consumption of the
assessing procedures, reducing the bias from the analyst [26].
Kinect v2 was also used on the validation of RULA grand-
scores. Manghisi et al. compared the RULA scores from
Kinect v2 with the ones obtained by the RULA experts,
Jack-TAT and optical motion capture system [27]. The results
above show that Kinect v2 device is an effective tool for
RULA analysis. Therefore, we introduced this method into
our PFA framework and made posture evaluation test based
on it. In addition, instead of setting the neck twist manually as
in [27], we used the joint orientation data provided by Kinect
to calculate the neck twist in real time.

Gait abnormal detection is the key to gait analysis.We have
modified theDTWand usedK-Nearest Neighbor (KNN) [28]
to process action sequences detecting whether the movement
is abnormal as in [29].

In our previous work [30], we have introduced the fog
computing framework for PFA, abnormality assessment and
modified DTW algorithm. Based on this, in this paper,
we conducted more experiments with more subjects to
validate the effectiveness of joint angle measurements,
motion recognition and gait abnormality detection with the
modified DTW (MDTW) algorithm, and introduced the
semi-automatic approach for RULA assessment using Kinect
sensor.

The paper is organized as follows. Section II describes the
framework of PFA based on fog computing, and how to make
PFA based on Kinect v2. In Section III, we validated the
effectiveness of the proposed method for motion recognition.
And, we compared the grand-scores from Kinect v2 with
a RULA expert and validate the feasibility of the RULA
using Kinect in our PFA framework. Section IV provides
conclusions for this paper and suggestions for future studies.
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II. METHOD
A. PFA BASED ON FOG COMPUTING
The system based on fog computing consists of four lay-
ers: 1) fog servers, 2) terminal users, 3) cloud servers and
4) medical center (Fig. 1). The layer of terminal users col-
lect physiological data, which would be transferred to fog
server immediately. Fog servers analyze these data and return
a report about these physiological data, e.g. the status of
the elderly. The analysis process is based on the cached
database in the hospital or medical center. In order to adapt
to different scenarios, the fog server would cache lots of
useful information for users according to the characteristics
of the application scenes [31]. For instance, in hospitals, fog
server should save standard biometric data to help doctor
judge whether there is something wrong with the elderly. The
report given by fog servers would be fed back to terminal
users and medical center. Based on the feedback, the doctor
can give timely advise to the terminal users. Given that the
primary application of the system is to carry out physiological
function assessment efficiently, the cloud server would take
over the works above when the data to process is too complex
to handle for fog servers.
Description of Terminal Users: This layer can have many

electronic sensors, like cameras and wearable sensors, which
can capture the physiological state of the elderly. In our study,
Kinect v2 sensor was used as data collecting tool.
Description of Fog Computing Layer: The fog computing

layer consists of various small computing devices, routers,
small servers, switches, etc., which are at the edge of the
network and close to the user. Therefore, the data from termi-
nal users could be sent to fog server instead of remote cloud
server for the priority processing. As illustrated in Fig. 1,
fog computing layer analyzes the physiological data from
terminal users, searches the database, and then feeds back
to terminal users as well as medical centers. To ensure the
repeatability and reproducibility, the fog servers may update
its database using the new results to make it more complete
and accurate.

FIGURE 1. Family physiological function assessment based on fog
computing.

Description of Cloud Computing Layer: Cloud servers are
usually powerful in computing and have large storage. When
a task needs to handle huge amount of data, the data will
be transferred from the fog servers to the cloud servers. As
illustrated in Fig. 1, the cloud servers process the data that
the fog server cannot analyze and return a feedback results to
the medical centers as well as terminal users.
Description of Medical Center: Feedback resulted from

fog or cloud servers would serve as a reference for doc-
tors’ diagnosis. Doctors would give suggestions to the family
according to these feedback. In addition, the valuable data in
these feedback are used to enrich the database, which can be
a reference to the analysis of fog or cloud servers.

B. PFA WITH KINECT V2
In this work, we mainly focused on the movement assessment
using RGB-D camera (Microsoft Kinect v2) for physiolog-
ical function assessment. Kinect v2 can track the locations
of 25 major nodes of the human body (Fig. 2) and present
them in the body image, which lays the foundation of motion
detection [32], [33]. The Kinect coordinate system is defined
as the right-handed coordinate system, in which the Z-axis
is pointing in the direction as the camera sees and Y-axis
pointing upward. We studied three aspects: degree of joint
mobility (DJM), action recognition, and abnormal gait detec-
tion to assess whether the movements are normal.

FIGURE 2. The 25 body joints Kinect v2 can capture.

1) DEGREE OF JOINT MOBILITY (DJM)
DJM is defined as the angle range of body joints, e.g. the
extension and flexion of joints, which reflects a person’s
health condition. Some diseases such as muscle weakness,
frozen shoulder and osteoarthritis caused by joint or muscle
damage would lead to the abnormality of DJM. Therefore,
the investigation of DJM is essential for PFA. According
to the range of the joint mobility, we can tell if the joint
movement is normal. In order to assess physiological function
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TABLE 1. The chart for DJM in unit of degree of five main joints of human
body. The scores in the first row correspond to the maximum angle range
the joint can reach.

FIGURE 3. Joint angles for elbow or knee. A is the shoulder/hip joint, B is
the elbow/knee joint, and C is the wrist/ankle joint. The coordinates of A,
B and C are given by Kinect.

in detail, we created a chart to describe the joint mobility
(see Table 1). We studied five main joints involved in daily
activities of human body: neck, shoulder, elbow, hip and knee.
The scores of the first row in the table are determined by
the joint motion range. The smaller action range of the joint,
the lower the score. For example, for the hip joint, if the action
range is less than 15◦, the score is 1, but if the joint can do an
action of wider range of 45◦ to 90◦, the score is 4.

a: ELBOW/KNEE EXTENSION AND FLEXION
For the elbow/knee joints, the corresponding joint angle can
be obtained easily by calculating the angle between

−→
BC

and
−→
BA (Fig. 3). Let A(x1, y1, z1) denote the shoulder/hip

joint, B(x2, y2, z2) the elbow/knee joint, and C(x3, y3, z3) the
wrist/ankle joint. When the tester moves, the angle between
−→
BA and

−→
BC (6 ABC) changes. The distance between point

M (x1, y1, z1) and N (x2, y2, z2) is defined as

d(M ,N ) =
√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (1)

where M and N can be any of A, B and C. The joint angle is

θ = arccos
a2 + c2 − b2

2ac
(2)

where a = d(B,C), b = d(A,C) and c = d(A,B).

b: NECK EXTENSION AND FLEXION
We assessed the neck extension/flexion by computing the
angle θ between the vector connecting the neck to the head
and the vector connecting the SpineShoulder joint (Kinect
v2 nomenclature from Fig. 2) to the neck. Fig. 4 shows a part
of the skeleton information Kinect v2 captured. A(x1, y1, z1)
denotes the SpineShoulder joint, B(x2, y2, z2) the Neck joint,
and C(x3, y3, z3) the Head. The joint angle for the Neck can

FIGURE 4. Neck extension or flexion calculation with the coordinates
given by Kinect.

be calculated by

θ = arccos
−→
AB •
−→
BC∣∣∣−→AB∣∣∣ ∣∣∣−→BC∣∣∣ (3)

where
−→
AB •

−→
BC is the dot product between

−→
AB and

−→
BC . θ

is positive when the Head is tilted to the ShoulderLeft, and
negative when the Head is tilted to the ShoulderRight.

c: SHOULDER/HIP EXTENSION AND FLEXION
In Fig. 5, we defined the trunk vector (

−→
CE) as the vector con-

necting the SpineShoulder (from Kinect v2 nomenclature) to
the Spinebase. For shoulder and hip, no explicit angle can be
used to describe the corresponding DJM effectively, so we
introduced the angle between the trunk vector and the vector
corresponding to the projection of

−→
BA or

−→
FG on the sagittal

plane. The latter is evaluated as the one passing through the
trunk vector and perpendicular to the straight line connecting
the shoulder or knee. As showed in Fig. 5, θ can be obtained
by calculating the angle between the trunk

−→
CE and

−→
ba. It is

worth noting that:
−→
ba = (

−→
EF ×

−→
BA)×

−→
EF (4)

where
−→
EF (connecting the SpineBase joint and HipRight

joint) represents the normal vector of the sagittal plane.
−→
BA

FIGURE 5. The joint of Shoulder and Hip assessment geometrical
construction.
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is the vector connecting shoulder to elbow. We used cross
product to obtain

−→
ba, θ can be computed by substituting

Eq. (4) in (3).

2) ACTION RECOGNITION
Upper limbs motions are mainly expressed by the limbs and
the trunk. Therefore, in this work, we extracted 7 joint points
(shoulder, elbow,wrist and spineMid) to construct action fea-
ture (AF) in the upper part of human body. An AF consists
of two components 1) the angle of joints and 2) the relative
displacement between joints. Relative joint displacement is
the spatial displacements of human skeletal joints based on
the difference to the reference joints [34]. We calculated the
angle of shoulder and elbow (4 angles including left and
right), the relative position from wrist and elbow to the
SpineMid respectively (4 distances including left and right).
Therefore, we have a feature vector of 8 dimensions for each
action.

AF = {A1,A2,A3,A4, d1, d2, d3, d4} (5)

whereAi denotes the angle of joints, di is the distance between
joints.

a: DTW ALGORITHM
In order to measure the similarity between two action
sequences, DTW is used to find the alignment with smallest
distance. Timing difference between two action sequences are
eliminated by warping the time axis of one so that the max-
imum coincidence is attained with the other. Then, the time-
normalized distance is calculated as the minimized residual
distance between them. Suppose A and B are two action
sequences

A = {a1, a2, ..., am}

B = {b1, b2, ..., bn} (6)

If m = n, we can directly calculate the distance or similarity
between A and B. If m 6= n, we set up an m×n score matrix
(Fig. 6), where DTW algorithm assigns a scoreD(i, j) to each
matrix element by:

D(i, j) = min{D(i, j− 1),D(i− 1, j),D(i− 1, j− 1)}

+ d(i, j)

where d(ai, bj) is the Euclidean distance d(ai, bj) = (ai −
bj)2. Then, try to find the optimal alignment path (the red path
in Fig. 6) by

W = (w1, ...,wk−1,wk ), k ∈ [max(m, n),m+ n− 1] (7)

The optimal alignment minimizes

DTW (A,B) =

√∑K
k=1 wk

K
(8)

where DTW(A,B) is considered as the distance between A
and B. K is the length of the alignment path and wk is the
mapping between ai and bj at the k-th node of the path.

FIGURE 6. Score matrix of dynamic programming. Each point (wk+1) at
the warping path (the red) is obtained by the minimum of D(i+1, j),
D(i, j+1) and D(i+1, j+1).

b: MODIFICATION OF MAPPING RELATIONSHIP
Suppose two action sequences A and B as defined in Eq. (6),
time axis is the X axis, ai or bj is the value on Y axis.
Traditional DTW algorithm only considers the values on Y
axis when mapping the sequences. However, in some case,
even ai = bj, there is no mapping relationship between ai in
A and bj in B, for ai is in the upper slope of A and bj in the
lower slope of B. We found that the maximum, minimum and
the inflection points of the sequences can be used to improve
the dynamic programming process. The new definition of
d(ai, bj) has incorporated the first and second derivative of
the sequence curve.

d(ai, bj) = w1 × (ai − bj)2 + w2 × (a′i − b
′
j)
2

+w3 × (a′′i − b
′′
j )

2 (9)

where a′i =
(ai−ai−1)+(ai+1−ai−1)/2

2 and a′′i = ai+1+ai−1−2ai.
Parameters w1, w2, w3 must satisfy:

w1 + w2 + w3 = 1

w1 < w2, w1 < w3

c: LIMITATION ON COMPUTATION PATH
The main drawback of DTW is the large computation when
the sequences are long. In our experiments, we found for most
cases some of the area in the score matrix is not reachable
during the DP process. Inspired by the work [35], [36] on
improved DTW, we limited the slope of the path within the
range from 0.5 to 2, as shown in Fig. 7. In Fig. 7, the slope of
line A and B is 2 and slope of line C and D is 0.5. So we have

Xa + Xb = N , 2Xa +
1
2
Xb = M (10)

Further, we have the constraints on M and N

2M − N ≥ 3, 2N −M ≥ 2 (11)

When it is not satisfied, we think the two sequences are too
different to align. In this case, we only need to align X to the
[ymin, ymax] part of Y, where

ymin =
x
2
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FIGURE 7. Limit path selection in dynamic programming.

FIGURE 8. Angles for abnormal gait detection.

ymax = 2x x ≤ Xa

ymin =
x
2

ymax =
x
2
+ (M −

N
2
) Xa ≤ x ≤ Xb

ymin = 2x − 2N +M

ymax =
x
2
+ (M −

N
2
) x ≥ Xb (12)

In this way, the calculation area in the dynamic programming
matrix is reduced.

3) ABNORMAL GAIT DETECTION
Abnormal gait detection is to assess if the lower limb move-
ment is abnormal. Because of the occlusion problem during
the assessment using Kinect sensors, in our study, we only
assessed the gait status of in terms of two states, i.e. nor-
mal and abnormal. For the lower limb movement, the hip,
knees and ankles are the main participants of the walking
process. Therefore, gait features mainly include the motion
characteristics such as step length, walking pace, angles of
the knee and hip angles. Let X axis be the walking direc-
tion, Y axis is vertical downward. We calculated four joint
angles α1, α2, α3, α4 related to hip joints and two knee angles
β1, β2, see Fig. 8. So the feature vector to describe gait is

FIGURE 9. Left figure shows the position of the left and right ankle
during walking. Right one shows the changes of 1x and 1z . 1x is the
ankle position difference in each frame during walking. 1z is the distance
between the tester and Kinect.

[α1, α2, α3, α4, β1, β2, v, s], where v, s are the walking pace
and step length, respectively.

Step and pace are calculated according to the relative posi-
tion of ankles given by the Kinect. As is shown in Fig. 9
(Left), the points correspond to the positions of left and right
ankle. A walking process can be expressed as a sequence of
position changes in the X-Z plane. Define 1x as the ankle
position difference

1xi = Li − Ri (13)

where L, R denote the left and right ankle position, i repre-
sents the i-th frame image. Kinect captures many data frames
of ankle positions during walking. We calculated a flag for
every frame by comparing the two adjacent frames 1xi and
1xi+1.

flag =

{
1 1xi 6= 1xi+1
0 1xi = 1xi+1

We can see that flag = 1 means the tester is walking. Each
consecutive segment of 1s (flage=1) is a step, and the length
of step Sj is maximum of 1xi within the frames of the step j.
The walking pace V could be obtained by

V =
n× Sj
T

(14)

where n is the total number of steps and T is the duration of
the walking.

Fig. 9 (Right) shows the changes of 1z and 1x, where
1z curve shows the difference in Z direction, which is the
distance between the tester and the Kinect. From the curve,
we can see it is quite constant, which means the walking
direction is parallel to the Kinect X axis. We can see that the
step length is about 0.43m, which is around the peaks of the
dashed line.

With the data sampled by Kinect for the lower limb activi-
ties, we used MDTW+K-nearest neighbor(KNN) [29] algo-
rithm to compare the sample data of the target to the samples
in the database, and found the smallest K samples as the
nearest neighbors of the test sample, and then determined
the category of the test sample, which is the most frequent
category among the K neighbors found from database.
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FIGURE 10. Overview of RULA GUI based on Kinect v2. It can automatically capture the assessment parameters and give RULA score in real
time. Most of the parameters are from RULA worksheet of Fig. 18. Fig. 11 shows the calculation of neck side bending, trunk side-bending
and trunk twist.

FIGURE 11. Calculation of neck bending (left), trunk angle (middle) and trunk side-bending (right).

C. RULA EVALUATION BASED ON KINECT V2
1) THE RULA METHOD
The RULA is a postural targeting method for estimating the
risks of upper limb disorders, which gives a quick and system-
atic assessment of the postural risks to the tester. The grand
score given by RULA based on the movement of those body
parts indicates whether or not the intervention is required to
reduce the risks of injury. For the simplicity, we do not include
the RULA here. Basically, the grand score is calculated using
three tables A, B and C. Table A gives the posture score
according to the movements of arms and wrists. And table B
assesses neck, trunk and legs. Then, Table C takes the scores
from A and B as input and calculate the final score. The
meaning of the final score is listed as following.
• 1 or 2: the posture is acceptable if it is not maintained or
repeated for long periods.

• 3 or 4: the posture should be investigated and making a
change.

• 5 or 6: a further investigation is needed and change soon.
• 7: investigate and change immediately.

For more details, please check the RULAworksheet shown
in Fig. 18.

2) SEMI-AUTOMATIC RULA BASED ON KINECT V2
Kinect v2 can return a joint skeleton of 25 main joints of
human body, as shown in Fig. 2. According to the RULA
requirement, 19 of the 25 joints are used to compute RULA
paremeters. We designed a software tool based on Kinect
for semi-automatic RULA (Fig. 10). The GUI is updated in
real-time according to the position of arms, wrists, neck and
trunk. For each of these parts, a score is assigned using the
RULA tables mentioned above. Then, the final grand score
will be obtained and showed in the GUI. The [Record] button
allows user to record the whole posture data and save in files
for offline analysis. [FaceTrace] button allows user to track
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the participant’s face, so that we can detect whether the neck
is twisted in real time.

Most of the parameters shown in Fig. 10 are directly
taken from the RULA worksheet shown in Fig. 18. For Neck
section, the angle of neck is defined as the θ in Fig. 4. The
calculation of neck bending is shown in Fig. 11. If the angle is
within the range of [75◦105◦], it is false. Neck twist is related
to the angle of tuning the head to left or right, if the angle
is more than a threshold, usually 5◦, it is set to true. For the
trunk part, the middle and right sub-figure of Fig. 11 shows
the definition of trunk angle and trunk side-bending. If the
θ is within the range of [75◦, 105◦], trunk bending is false.
Similar to neck twist, trunk twist is related to the angle of
turning the body trunk to left or right. if the angle is more
than a threshold, usually 5◦, it is set to true.

III. EXPERIMENT AND RESULTS
We evaluated the Kinect v2 based RULA system in the fol-
lowing four directions:

1) evaluate the effectiveness of the joint angles obtained
by Kinect by comparing to the digital angle protractor.

2) evaluate the improved motion recognition based on
joint angle features.

3) evaluate the performance of gait abnormal detection
based on joint angle features.

4) validate the effectiveness of the implemented RULA
system using Kinect v2.

All of the experiments were based on the proposed fog frame-
work using Kinect v2. A tower-scale server (T130) with CPU
of Intel Core E3-1200V5 3.0 GHz and 4GB of RAM was
used as fog server; Microsoft Kinect v2 sensors with a PC
(CPU: Intel Core i5-4200 2.50 GHz, 8GB RAM) were used
as collecting tools. The Kinect was mounted at 1.2 meters
high from and parallel to the ground. The testers are walking
parallel to the Kinect camera, and about 3.5meters away from
the camera for RULA test, 2.5 meters for other experiments.

A. COMPARISON WITH DIGITAL ANGLE PROTRACTOR
In order to validate the effectiveness of the joint angles
obtained by Kinect, we compared with the measurement
using digital angle protractor which is widely used in angle
measurement.

20 university students participated in this comparison. The
average age was 23.9 ± 1.90; body mass index ranged from
18.2 to 32.8 kg·m−2 (mean 24.0 kg·m−2, standard deviation 4
kg · m−2). None of them was suffering from any physical or
mental impairment that would affect this experiment. Writ-
ten consents were obtained. They were asked to do specific
motions in our experiments. The 20 participants were asked to
do motions specified in Table 1. While the tester was keeping
a pose for a few seconds, we measured the angle for each
joint.

The biggest difference is less than 0.76◦, the average error
is 0.67◦ and the standard deviation is 0.19◦. Table 2 shows
the average angle measurement between Kinect and digital

TABLE 2. Comparison of mean angle measurements between goniometer
and our method. The unit is degree.

angle protractor for each category. From the mean values in
the table obtained from the 20 participants, we can see that
the two measurements are very close. So, it is good enough
to use Kinect sensor to obtain the joint angles.

B. VALIDATION OF ACTION RECOGNITION
To validate the effectiveness of the modified dynamic time
warping (MDTW), we compared the traditional DTW and
MDTW in terms of accuracy and efficiency. We tested the
methods on two datasets, i.e. SYSU 3D Human-Object Inter-
action dataset and in-house collected Human Upper Action
dataset.

The weight parametersw1,w2,w3 in Eq. (9) were assigned
empirically to 0.1, 0.4, 0.5 respectively in the beginning for
all the experiments. In order to find which parameter plays a
major role in improving action recognition, we changed the
proportion of w1,w2 and w3 in the following directions: 1)
w1 > w2,w3, 2) w2 > w1,w3, and 3) w3 > w1,w2.

1) TEST ON SYSU 3D HUMAN-OBJECT INTERACTION
DATASET
We tested the MDTW method on SYSU 3D Human-Object
Interaction Dataset [40], which is commonly used as a stan-
dard set for 3D human activity study. It contains 480 video
clips of 12 different activities (drinking, pouring, calling
phone, etc) performed by 40 individuals. We followed the
same experimental setting as other related works. Half of the
actions were used as dataset for searching and the other half
for testing.

To evaluate our MDTW method, we compared it
with the reported results focusing on different feature
extraction [37]–[39], including traditional DTW. Table 3
shows the result and comparison. Our method achieves an
accuracy of 83.7%, which outperforms other RGB-D activity
recognition systems, especially the traditional DTWby a con-
siderable margin (27%), which implies MDTWhas improved
the dynamic mapping process and reduced the mapping rela-
tionship errors effectively.

Weight parametersw1,w2,w3 could change the proportion
of the three components in Eq. (9). Table 5 shows how
the action recognition accuracy varies with different weight
parameters. We can see that the action recognition accuracy
reaches the highest accuracy (0.8375) when parameter w2
plays the major role (w2 > w1;w3, i.e. (0.3,0.5,0.2)).
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TABLE 3. Accuracy comparison on SYSU 3D Human-Object Interaction set.

TABLE 4. Accuracy comparison on Human Upper Action dataset.

TABLE 5. The recognition accuracy on SYSU 3D Human-Object Interaction dataset with different weights.

TABLE 6. Recognition accuracy of MDTW on Human Upper Action set with different weights.

The confusion matrix of the results by our MDTW is
presented in Fig. 12. It can be seen that MDTW often con-
fuses the activity of sweeping with mopping, as the two are
similar. In addition, taking from wallet occasionally is also
misidentified as calling phone and playing phone due to the
similarity among the three.

2) TEST ON HUMAN UPPER ACTION DATASET
We collected a new dataset containing upper body actions
using Microsoft Kinect v2 camera to evaluate MDTW. We
named this as Human Upper Action dataset (HUA). To col-
lect this set, 10 subjects were asked to perform 12 different
actions, three times for each. The average agewas 22.7±1.30;
bodymass index ranged from 19.3 to 28.3 kg·m−2 (mean 23.8
kg ·m−2, standard deviation 3.9 kg ·m−2) The 12 actions are
cross-waving, raising hand, shoulder turning etc. as shown
in Fig. 13. So, this dataset has in total 360 skeleton clips.
For the test, for each action, half of the samples are used for
testing and the rest form the dataset for searching.

The comparison result is shown in Table 4.MDTWmethod
achieves the accuracy of 89.5%, significantly better than that
of the traditional DTW by a large margin (9.0%). Chang-
ing the values of w1,w2,w3, we can see from Table 6 that
the action recognition accuracy reaches the highest (0.895)
when w1,w2,w3 = 0.5, 0.4, 0.1, (the first and second order
differential play the major part), which implies the fusion
of original values, first and second order differential with a
particular weight can improve the dynamic matching process
and recognition accuracy.
By examining the confusion matrix of MDTW in Fig. 14,

we observed that MDTW method can distinguish most of
the actions well, including walking, arm swing, TW stretch-
ing (stretching out hands to resemble ‘T’ or ‘W’), shoulder
shaking and cross-waving. However, we noticed that the
action of striking is often confused with TW stretching by
MDTW. This is because the action of TW stretching is quite
similar with the action of striking. The same for swing up and
down.
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FIGURE 12. Confusion matrix of test MDTW on SYSU 3D Human-Object
Interaction dataset.

FIGURE 13. Snapshots of twelve actions in HUA dataset. The skeleton
data are indicated in RGB channels.

3) COMPARISON OF COMPUTATION TIME
In MDTW method, we limited the search space during the
dynamic programming process to speed up the running time.
Here we show more detailed comparison on the computation
complexity of the method, which is mainly the calculating
time to obtain the score matrix. Suppose an action sequence

FIGURE 14. Confusion matrix of test MDTW on Human Upper Action
dataset.

FIGURE 15. Comparison of computation time in seconds between MDTW
and DTW with different feature size. The X-axis is the template size, Y-axis
is the computation time in unit of second.

contains 80 frames, each with 8 action features. We search
the action sequence against the HUA dataset, which makes
alignments between the query action sequence and database
action sequences. Fig. 15 shows how the computation com-
plexity changes with the dataset size and action feature size
(AF= 1, 4, 8). We can see that the computation time reduces
using MDTWmethod. Especially, with the increasing size of
the dataset, the gap between the traditional DTW andMDTW
increases significantly.

C. EVALUATION OF GAIT ABNORMALITY DETECTION
18 subjects participated in this experiment. The average age
was 22.8 ± 1.20, body mass index ranged from 19.3 to
31.1 kg·m−2 (mean 23.1 kg·m−2, standard deviation 3.92 kg·
m−2). The data collected from 10 of them was used as the
database, the remaining 8 people for testing. Each participant
was required to walk 20 times in the direction parallel to
Kinect. Among the 20walkings, 10were normal and the other
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TABLE 7. Simulated anomaly walking. If the step length or duration of
left and right leg are significantly different, it is treated as anomaly.

TABLE 8. Results of gait anomaly detection.

10 were simulated gait anomalies. Therefore, in the database,
we have 200 gait sequences, 100-150 frames for each gait
sequence. 10-fold cross-validation was used to find out the
optimal value of K for KNN algorithm, which is a number
from 1 to 9.

Many parameters can be used to describe human gait from
different perspectives [41]. We considered two meaningful
parameters, short step length and short step time, to con-
trol the abnormal gait simulation. Short step length refers
to the distance between two successive placements of the
same foot while short step time is the time spending on
one step with the same foot. According to Table 7, we sim-
ulated the abnormal gait in two ways with respect to the
two control parameters: 1) taking bigger steps with one of
the legs(a empirical threshold set to about 15cm); 2) spend
more time on steps of one leg(a empirical threshold set to
about 3s).

Table 8 shows the gait detection results from the 8 testers,
i.e. 80 sequences for normal walking and 80 for anomalies.
The table shows the detection accuracywith different metrics.
It can be observed that the detection is very accurate whose
mean accuracy is 93.13% and the sensitivity is 93.75%.

D. EVALUATION OF RULA USING KINECT V2 IN PFA
Due to the strongmotion capture capability and the affordable
cost of Kinect v2, it has been proved to be a good choice
for RULA by several works that conducted semi-automatic
RULA [27], [42], [43]. Therefore, we just do a brief valida-
tion for RULAwithKinect in this part. Onemajor issue of this
scheme is that one has to estimate the neck twist manually
during the RULA process, which introduces a significant
basis into the evaluation. In our study, the joint orientation
data provided by Kinect was used to calculate the status of
the face and the neck. Usually, if the neck’s twist exceeds
a predefined threshold (which usually set to 5◦), we say
the neck is twisted. This makes the RULA evaluation more
accurate.

FIGURE 16. Ten actions numbered sequentially from left to right.

FIGURE 17. RULA score of action state for 12 actions from HUA dataset,
Fig. 13.

1) VALIDATION OF THE RULA USING KINECT V2
We compared this semi-automatic RULA system with an
expert to validate its effectiveness in fog computing frame-
work. To do this, we selected 10 postures as shown
in Fig. 16, which are related to musculoskeletal disorders
in workplace [27]. These 10 postures were performed by
three participants, whose average age was 22.3 ± 0.47 and
body mass index are 19.3,21.9 and 26.3 respectively. We also
invited one RULA expert, who is a professional doctor with
more than 10 years of practice. More experts may produce
statistically stabler result, but Sara et al. conducted an inves-
tigation of RULA reliability and demonstrated that intra-rater
reliability is higher than the inter-rater reliability [44], which
implies that serial assessments would be more consistent if
carried out by the same person.

During the processing, the software tool kept tracking the
tester’s face and calculating the RULA parameters and the
RULA final score of the tester’s posture in real time. The
participants did the tests 10 times. Table 9 shows the rounded
average RULA grand score by the software compared with
the scores by the RULA expert. We can see that the two sets
of scores shows a good agreement, especially for action one,
four, six, seven, eight and ten. In action two, expert’s score
is lower than Kinect score because the expert cannot get the
position of the neck precisely, which leads to the underesti-
mation of the ergonomic risks. In action three, five and nine,
There are some differences between the Kinect score and
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TABLE 9. Comparison between RULA software and expert evaluation. The numbers are rounded average scores of the tests repeated 10 times. Lower
score means better health conditions.

FIGURE 18. RULA worksheet.

expert because of the occlusion during the motion capture.
On average, the grand-scores given by the tool agree with
that of the expert very well, except for the first a few actions
in Table 9. In terms of the difference between Kinect tool and
the expert, for tester 1, the mean difference is 0.2, standard
deviation (std) is 0.98; for tester 2, the mean difference is 0.3,
std is 1.345; for tester 3, the mean is 0.4 and std is 1.113.

Except for the occlusion problem, the modified semi-
automatic RULA system can be used effectively compared
with a RULA expert evaluation and reduce the bias from the
expert for some actions.

2) TEST SEMI-AUTOMATIC RULA IN PFA FRAMEWORK
We used the semi-automatic RULA system to make evalu-
ation for the human body upper limb motions. The actions
in HUA dataset was used for the experiment. In this test,
we did not consider any load for arms and legs, i.e. choose
the option of less than 2kg in RULA. Each tester started
with hands down as the initial state. During each of the
actions, we recorded the changes in the RULA score. For each
action in HUA dataset (Fig. 13), we split the period into four
roughly equal segments. Each segment corresponds to a state
or moment.
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Fig. 17 shows the RULA scores for each state of the twelve
actions. We can see that RULA scores are relatively low
for the beginning states for all twelve actions. These actions
have different RULA scores, which means different level
of ergonomic risks. For example, activities of walking and
akimbo have lower grand-score than strenuous actions such
as arm swing, arm up, striking and arm cross waving. And
strenuous exercise have higher risks.

IV. CONCLUSIONS
In this paper, we presented a framework based on fog com-
puting and described how it works for families. Under this
framework, we first evaluated the accuracy for joints angles
using Kinect, compared with digital angle protractor. Then
we modified the traditional DTW algorithm improving the
measurements of the similarity between two actions and
accelerating the calculation. Tests of motion recognition on
two datasets(one is collected by autors) showed a better
recognition accuracy. To test the gait abnormal detection,
we set up a gait dataset using RULA and showed high detec-
tion accuracy with the modified DTW algorithm and simple
KNN method. Finally, we evaluated the RULA software tool
to show that the high agreement between the automatic RULA
and RULA by human expert. The overall results showed
the effectiveness of physiological function assessment using
Kinect v2 in fog computing environment.

To extend the work in the future, we are going to deploy
the fog servers in medical centers, collect real data from
elderly to validate the effectiveness of proposed physiological
function assessment framework and the performance of the
function components such as motion recognition and gait
abnormal detection. Another future work would be to enrich
themethods assess the physiological conditions of the elderly,
for example, to measure TUG (Time Up and Go) to assess
their walking.
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