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ABSTRACT Due to high fuel consumption, we face the problem of not only the increased cost, but it also
affects greenhouse gas emission. This paper presents an assorted approach for monitoring fuel consumption
in trucks with the objective to minimize fuel consumption. We propose a control charting structure for
joint monitoring of mean and dispersion parameters based on the well-known max approach. The proposed
joint assorted chart is evaluated through various performance measures such as average run length, extra
quadratic loss, performance comparison index, and relative average run length. The comparison of the
proposed chart is carried out with existing control charts, including a combination of X̄ and S, the maximum
exponentially weighted moving average (Max-EWMA), combined mixed exponentially weighted moving
average-cumulative sum (CMEC), maximum double exponentially weighted average (MDEWMA), and
combined mixed double EWMA-CUSUM (CMDEC) charts. The implementation of the proposed chart is
presented using real data regarding the monitoring of fuel consumption in trucks. The outcomes revealed
that the joint assorted chart is very efficient to detect different kinds of shifts in process behaviors and has
superior performance than its competitor charts.

INDEX TERMS Control charts, CUSUM, EWMA, greenhouse gas, logistics, run length.

NOMENCLATURE
Abbreviation/ Symbol Description
ARL Average run length
EQL Extra quadratic loss
PCI Performance comparison index
CUSUM Cumulative sum
EWMA Exponentially weighted moving

average
RARL Relative average run length
Max-EWMA Maximum exponentially

weighted moving average
Max-CUSUM Maximum cumulative sum
CMEC Combined mixed exponentially

weighted moving average-
cumulative sum

The associate editor coordinating the review of this manuscript and
approving it for publication was Qingchao Jiang.

MDEWMA Maximum double exponentially weighted
moving average

CMDEC Combined mixed double EWMA-CUSUM
CC Combined cumulative sum
SPC Statistical process control
SS-DEWMA Sum of squares double exponentially

weighted moving average
KME Design parameter for Max EWMA chart
K2 Control limit coefficient of MDEWMA

chart
K Control limit coefficient of CUSUM chart
UCL Upper control limit
IC In-control
OOC Out-of-control
RL Run length
GHG Greenhouse gas
EU European Union
F Final statistic of proposed study
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k, λ Sensitivity parameters of proposed chart
a Shift in mean in proposed design structure
b Shift in dispersion in proposed design

structure
µ0 IC mean
µ1 OOC mean
σ0 IC standard deviation
n Sample size
h Decision interval
cs Charting constant for Shewhart in proposed

study
hc Charting constant for CUSUM in proposed

study
Le Charting constant for EWMA in proposed

study
LT 1 Proposed statistic used to detect large shift in

mean
LT+2 Proposed statistic used to detect positive

medium shift in mean
LT−2 Proposed statistic used to detect negative

medium shift in mean
kMC Reference value of Max- CUSUM chart
KSD Control limit coefficient of SS-DEWMA

chart
Ki Control limit coefficient of CMEC chart
LT 3 Proposed statistic used to detect small shift in

mean
DT 1 Proposed statistic used to detect large shift in

dispersion
DT+2 Proposed statistic used to detect positive

medium shift in dispersion
DT−2 Proposed statistic used to detect negative

medium shift in dispersion
DT 3 Proposed statistics used to detect small shift

in dispersion
JAk,λ Joint assorted chart
(k, λ) Sensitivity parameters

I. INTRODUCTION
One third of the total operating cost in logistics is mostly
used as fuel and maintenance expense. Due to economic
issues, the price of gasoline has increased, in general, in oil-
dependent countries. Nowadays, many companies are facing
tough financial challenges. The monitoring and control of
fuel usage is an essential part of logistic operations manage-
ment requiring an intensive, systematic and comprehensive
approach.

In the developing countries, a substantial proportion of
logistic companies do not have advanced systems that can
offer them the potential for fuel saving through monitoring
and management of the fuel usage of their fleets. Currently,
in most of the companies, average fuel consumption is cal-
culated in a very simple way (i.e. fuel purchased divided
by total distance travelled). Many transport operators do not
have systems that treat fuel as money. The basic problem

with monitoring of fuel consumption of vehicles is the very
rapid changes, as the fuel consumption varies minute by
minute or mile by mile. There is no direct linear relation
between fuel consumption and distance because it depends
on several factors such as speed, load, acceleration, terrain,
vehicle condition and several other drivers’ related factors.

The Statistical Process Control (SPC) is a methodology
used for monitoring and controlling the quality of a process
through different analysis tools. Control charts are one of the
prime tools in SPC that are used for controlling the unnatural
variations in a process. These unnatural variations (known
as shifts) in the process parameter(s) can be categorized as
small, moderate and large. Generally, the Shewhart control
chart efficiently detects large shifts, whereas to detect small
and moderate shifts, CUSUM and EWMA are better options.
A commonly used approach is to monitor each parameter
separately, such as dispersion and location parameters. But
in real life, we come across some situations, where joint
monitoring of mean and variance parameters of a process is
required.

In literature, many studies have proposed charts for
the joint monitoring of location and scale parameters,
for instance, see. Domangue and Patch [1], Gan [2],
Albin et al. [3]. Max-EWMA chart for joint monitoring
of process location and scale was proposed by Xie [4],
while a joint EWMA chart for monitoring location and scale
was proposed by Gan [5]. Reynolds Jr and Stoumbos [6]
proposed three joint charts. Max-EWMA chart proposed
Chen et al. [7] compared its ARL performance with a com-
bination chart (X̄ and S). A Max-CUSUM chart was pro-
posed by Thaga [8] for joint monitoring, whereas Costa and
Rahim [9] proposed a chart for joint monitoring of mean and
dispersion parameters based on EWMA. Furthermore, Costa
and Rahim [10] enhanced the proposal of Chen et al. [11].
Moreover, Khoo et al. [12] and Teh et al. [13] proposed
Max-DEWMA and SS-DEWMA charts for joint monitoring.
Recently, three charts namely CMEC, CDMEC and CC, were
proposed by Zaman et al. [14] for the simultaneous monitor-
ing of location and scale parameters.

The afore-mentioned approaches were designed to detect
only the specific amounts of shifts (small, medium and large).
Some advancement on the topic may also be seen in [15]–[24]
and the references therein.

This study proposes a generalized chart based on the max
approach to detect small, moderate and large amounts of
shifts in the process mean and variation simultaneously. The
proposal combines all the three basic structures (Shewhart,
EWMA, CUSUM) both for mean and variance and targets all
types of shifts in process parameter. The proposal is named as
joint assorted chart for simultaneous monitoring of location
and dispersion parameters.

The organization of this study outlined as follows: exist-
ing control charts for joint monitoring are discussed in
Section II; performancemeasures are described in Section III;
the design of the joint assorted chart is provided in Section IV;
the performance evaluation of the joint assorted chart is
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demonstrated in Section V; comparative analysis of the pro-
posed chart and existing charts is portrayed in Section VI; an
application of the proposed chart is shown in Section VII; and
concluding remarks are discussed in Section VIII.

II. EXISTING CONTROL CHARTS FOR JOINT MONITORING
The design structures of some existing studies for the joint
monitoring (location and scale) parameters are discussed
here.

A. MAX-EWMA CONTROL CHART
Max-EWMA chart was proposed by Chen et al. [11] for
the detection of positive and negative shifts in location
and/or scale parameters. The design structure ofMax-EWMA
control charts is given below:

Yi = (1− λ)Yi−1 + λUi, (1)

Zi = (1− λ)Zi−1 + λVi,

0 < λ ≤ 1, i = 1, 2, . . . . . . . . . (2)

where Y0 = 0, Z0 = 0,

Ui =
(X̄i − µ)

σ
/√

ni
, (3)

and

Vi = 8−1
{
H
(ni − 1)S2i

σ 2 ; ni − 1

}
,

Mi = max {|Yi| , |Zi|} . (4)

Because Mi is non-negative. Therefore, the upper control
limit (UCL) is given as

UCL = E (Mi)+ KME
√
V (Mi)

where KME , E (Mi) and V (Mi) are design parameter,
the mean and the variance of Mi respectively, when the
process is in-control.

B. MAX-CUSUM CHART
Thaga [8] proposed Max-CUSUM chart for simultaneous
monitoring of process parameters (location and scale) by
using a single monitoring statistic. The design structure of
Max-CUSUM chart with respect to equations (3) and (4) are
given as follows:

C+i = max
[
0,U i − kMC + C+i−1

]
C−i = max

[
0,−kMC − U i + C−i−1

] }

and

S+i = max
[
0,V i − kMC + S+i−1

]
S−i = max

[
0,−kMC + S−i−1

] }
where C0 and S0 are the staring points while kMC is the
reference value of Max-CUSUM chart. If either C+i or C−i is
greater than the decision interval (h), the process is deemed
out-of-control due to changes in the process mean. Simi-
larly, a process is declared out-of-control for the changes in

process standard deviation if either S+i or S−i is larger than
the decision interval. As,Ui and Vi are standardized normally
distributed, a new statistic that can simultaneously monitor
process parameters (location and scale) is given as

Mi = max
{
C+i ,C

−

i , S
+

i , S
−

i

}
Since, M ′i s are non-negative, hence they are compared only
with UCL (i.e. h), and any Mi falling outside UCL signals
out-of-control.

C. MDEWMA CHART
Khoo et al. [12] proposed a single Max-DEWMA chart.
An extended version of Max-EWMA chart was proposed by
Chen et al. [11]. The design structure of MDEWMA chart is
given below:

Wi = λYi + (1− λ)Wi−1, (5)

Qi = λZi + (1− λ)Qi−1 (6)

where i = 1, 2, . . . .., W0 = Q0 = 0, Yi and Zi are given
in equations (1) and (2). The final statistic of MDEWMA is
given as

Li = max {|Wi| , |Qi|}

There is only UCL because Li have non-negative values,
which is described below:

UCL = E (Li)+ K2
√
V (Li)

where E (Li) and V (Li) are the mean and variance of Li for
the in-control process respectively while K2 is the control
limit coefficient. If there is a variation in the process mean
and/or scale parameter, the statistic Li will be large and will
jump out of UCL if the process goes in an out-of-control state.

D. SS-DEWMA CHART
SS-DEWMA control chart was proposed by Teh et al. [13],
they also reviewed a single sum of square EWMA
(SS-EWMA) control chart proposed by Xie [4]. The two
SS-DEWMA statistics are given below:

Pi = λYi + (1− λ)Pi−1, (7)

Qi = λZi + (1− λ)Qi−1, (8)

where Yi and Zi are as given in equations (1) and (2). The
starting values of Pi and Qi are both zero, i.e. P0 = Q0 = 0.

The final statistic of SS-DEWMA is obtained by two statis-
tics mentioned in the above equations (7) and (8):

Li = P2i + Q
2
i , (9)

The UCL of this statistic is described as

UCL = E (Li)+ KSD
√
V (Li)

where E (Li) and V (Li) are the mean and the variance of Li
respectively while KSD is a control limit coefficient, when the
process is in-control. If the mean and/or variance go out-of-
control, then Li will fall outside the UCL.
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E. THE CMEC, CMDEC AND CC CONTROL CHART
Zaman et al. [14] proposed three different approaches to
monitor location and scale parameters. Here we outline the
plotting statistics and control limits of these approaches.

The EWMA structures for location and dispersion are
given in equations (1) and (2), respectively. The classical
CUSUM statistics for location and dispersion are, respec-
tively, given as:

L+i = max
[
0, (Ui − µ)− K + L

+

i−1

]
L−i = min

[
0, (Ui − µ)+ K + L

−

i−1

] } , (10)

D+i = max
[
0, (Vi − µ)− K + D

+

i−1

]
D−i = min

[
0, (Vi − µ)+ K + D

−

i−1

] } , (11)

where K is the optimal parameter for detecting shifts. The
output values of equations (3) and (4) are considered as an
input value of CUSUM structure in equations (10) and (11).
The plotting statistics of CMEC control chart are defined as:

CMECL+i =max
[
0, (Yi − µ)− Ki+CMECL

+

i−1

]
CMECL−i =min

[
0, (Yi−µ)+Ki+CMECL

+

i−1

] } , (12)

CMECV+i =max
[
0, (Zi−µ)− Ki+CMECV

+

i−1

]
CMECV−i =min

[
0, (Zi − µ)+Ki+CMECV

+

i−1

] } , (13)

where Ki = kcmec ∗
√
Var(Yi) and kcmec represents a constant

coefficient. These statistics are plotted against (±Hi). The
process is deemed out-of-control if:

CMECL+i or CMECV+i > (Hi), or

CMECL−i or CMECV−i < (−Hi).

Zaman et al. [14] also discussed the one-sided proposed
structure of these statistics which are defined as

CMECL+i =max[0, (Yi − µ)−Ki+CMECL
+

i−1]
CMECL−i =max[0,−(Yi − µ)−Ki+CMECL

−

i−1]

}
, (14)

CMECV+i =max[0, (Zi−µ)−Ki+CMECV
+

i−1]
CMECV−i =min[0,−(Zi−µ)− Ki+CMECV

−

i−1]

}
, (15)

For these modified statistics only Hi is used as the control
limit. Any of these statistics exceeding the limit indicate out-
of-control scenario.

F. CONTROL CHARTING STRUCTURE OF CMDEC
The control charting structure of CMDEC is the modification
of Chen et al. [11] and Khoo et al. [12]. For the CMDEC
control chart structure, the statistics defined in equations (5)
and (6) are considered as input statistics in the CUSUM chart.
The following statistics of CMDEC are used for mean and
variance monitoring, respectively.

CMDECL+i = max[0,(W i−µ)−K1i + CMDECL
+

i−1]
CMDECL−i = min[0, (Wi−µ)+ K1i + CMDECL

−

i−1]

}
,

(16)
CMDECV+i =max

[
0,(Qi−µ)− K1i+CMDECV

+

i−1]
CMDECV−i =min

[
0,(Qi−µ)+ K1i + CMDECV

−

i−1]

}
,

(17)

where K1i = k1σ 2
wi , k1 is the coefficient like kcmec and ±HDi

are the control limits for CMDEC control chart. The decision
procedure remains the same as that of the CMEC control
chart.

G. CONTROL CHARTING STRUCTURE OF CC
The CC is a special case of CMEC and CMDEC control
charts, CMEC and CMDEC charts become classical CUSUM
chart for smoothing constant (λ = 1) . The control charting
structure of CC is defined as:

CCL+i = max[0,(U i−µ)−K2i + CCL
+

i−1]
CCL−i = min[0, (Ui−µ)+ K2i + CCL

−

i−1]

}
, (18)

CCV+i = max[0,(V i −µ)− K2i + CCV+i−1]
CCV−i = min[0, (V i−µ)+ K2i + CCV−i−1]

}
, (19)

where K2i is the same as Ki and K1i. The control limits of CC
chart are ±H2.

III. PERFORMANCE MEASURES
The performance of control charts is evaluated using some
useful performance measures. In this section, a brief outline
is given about these measures.
Assume X is a normally distributed random variable, Xij ∼

N
(
µ0 + aσ0, b2σ 2

0

)
, i = 1, 2, . . . . . . .. and j = 1, 2, . . . ., n.

It is to be mentioned here that: a = 0 and b = 1 refers to
an in-control (IC) model; a 6= 0 and/or b 6= 1 refers to an
out-of-control (OOC) model.

The shift in mean can be defined as a = (µ1 − µ0)
/(

σ0
/√

n
)
, where µ0 is IC mean, µ1 (shifted mean) is OOC

mean defined as µ1 = µ0 + a
(
σ0
/√

n
)
, where σ0 and n

represent IC standard deviation and sample size, respec-
tively. Similarly, a shift in the dispersion can be defined as:
b = σ1

/
σ0. Where σ0 is IC standard deviation, σ1 is OOC

standard deviation, defined as: σ1 = bσ0. Using the afore-
mentioned terminologies, we discuss here some performance
measures.

A. RUN LENGTH (RL)
A series of points plotted on a graph until an OOC signal
is indicated known as a run. The number of points in a run
is called run length. Furthermore, RL has two main states,
namely IC state and OOC state. A greater in-control RL
indicates a lower false alarm rate, and a smaller out-of-control
RL indicate better detection ability of a charting scheme.

B. AVERAGE RUN LENGTH (ARL)
The most frequent performance measure used in control
charts is ARL. The average amount of sample points awaited
until the first out-of-control signal happens. In addi-
tion, ARL classified into two types, ICARL(ARL0) and OOC
ARL (ARL1).
ARL0 needs to be maximized to delay the false alarm as far

as feasible when the process is IC, while OOC ARL (ARL1)
is required to be minimized to detect the signal at the earliest
for OOC process.
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C. EXTRA QUADRATIC LOSS (EQL)/
The EQL is described as the weighted average ARL for the
domain of shifts (0 < a ≤ amax , 1 < b ≤ bmax) by
considering the square of shift (a2 + b2 − 1) as weight.
Mathematically ,EQL is described as:

EQL =
1

amax .(bmax − 1)

∫ amax

0

∫ bmax

1

× (a2 + b2 − 1)ARL (a, b) dadb,

D. PERFORMANCE COMPARISON INDEX (PCI)
The proportion of a chart’s EQL and a chart with minimal
EQL (EQLbenchmark ) is known as PCI .

PCI =
EQL

EQLbenchmark
,

For the benchmark chart PCI = 1 while for other charts,
it deviates from 1. If PCI > 1, the competing chart is
considered as inferior than the benchmark, and otherwise
superior.

For more details on the above-mentioned performance
index, see [25]–[27].

IV. THE DESIGN STRUCTURE OF JOINT
ASSORTED CHART (JAK ,λ)
The design structure of the joint assorted chart to monitor
location and scale parameters with the aim to detect the
different amount of shifts (small, moderate and large) in a
single control charting structure is given below:

A. LOCATIONS
The following statistics of location (for Shewhart, CUSUM
and EWMA charts) in joint assorted chart are given as:

Shewhart : X̄i =

∑n
j=1 Xij
n

CUSUM :
C+i = max[0, (X̄i − µ0)− k

σ0√
n + C

+

i−1]

C−i = min[0, (X̄i − µ0)+ k
σ0√
n + C

−

i−1]

}
EWMA : Zi = λX̄i + (1− λ)Zi−1

Let LT1 statistic is used to detect a large amount of shift in
the process location and it is defined as:

LT1i =

∣∣∣∣ vics
∣∣∣∣ , (20)

where cs represents charting constant for Shewhart chart and
Ui is as defined in equation (3). The following statistics are
used for detecting medium shift in the process mean:

LT+2i =
C+i
hc

σ0√
n

,LT−2i =
C−i
hc

σ0√
n

, (21)

where hc is the CUSUMcharting constant. Likewise, to detect
a small amount of shift in the process mean, used the follow-
ing statistic:

LT3 i =

∣∣∣∣Zi − µ0

L

∣∣∣∣ , (22)

where = Le
σ0√
n

[√
λ

2−λ

[
1− (1− λ)2i

]]
, where 0 < λ ≤ 1

and Le is the charting constant for EWMA chart.

B. VARIABILITY
The large shift in process variability is detected by the statis-
tics DT 1 defined as:

DT 1i =
Vi
Cs

(23)

where cs is Shewhart chart control limit coefficient and Vi as
defined in equation (4). Let DT+2 and DT−2 are the statistics
used to detect the moderate shifts in the process variability.
These statistics are defined as:

DT+2i = max
[
0,Vi − k + DT

+

2i−1

]/
hc,

DT−2i = max
[
0,−V i − k + DT

−

2i−1

]/
hc, (24)

where hc is CUSUMcontrol limit coefficient and k is the opti-
mal parameter for detectingmedium shifts. The small amount
of shift in process variance is detected by the following

DT 3i= (λVi + (1− λ)DT 3i−1)/Le

√
λ

2− λ

[
1−(1− λ)2i

]
(25)

where Le and λ (between 0 and 1) represent the control limit
coefficient and sensitivity parameter respectively for EWMA.

Assume Fi is the ultimate plotting statistic of the proposed
chart which consists of location and dispersion statistics
given as:

Fi= max(LT 1i,LT
+

2i,LT
−

2i,LT 3iDT 1i,DT
+

2i,DT
−

2i,DT 3i)

(26)

In equation (26), F will have the maximum positive value
of the eight statistics (as mentioned above). Therefore, it has
only upper control limit and its limit is defined as:

UCL = 1 (27)

Any point Fi exceeding 1 shows an OOC signal in the process
location and/or scale parameters.

The rationale for UCL=1: It is interesting to note the
rationale for selecting 1 as UCL, and it is outlined below:

As Fi = max(LT 1i,LT
+

2i,LT
−

2i,LT 3iDT 1i,DT
+

2i,DT
−

2i,

DT 3i) (cf. equation (26)), so Fi > 1 indicates the following:
� either L T1i > 1 and/or DT1i > 1 (cf. equations (20) &

(23))⇒ the Shewhart statistic exceed their correspond-
ing control limit cs for location/dispersion parameters;

� and/or LT+2iorLT
−

2i > 1 and/or DT+2iorDT
−

2i > 1
(cf. equations (21) & (24)) ⇒ the CUSUM statistic
exceed their corresponding control limit hc for location/
dispersion parameters;

� and/or T3i > 1 and/or DT3i > 1 (cf. equations
(22) & (25)),⇒ the EWMA statistics go beyond its
respective control limit L for location and/or scale
parameters.
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TABLE 1. Sensitivity parameters and category of shifts.

The sensitivity of the proposed chart relies on the choice of
design parameters (k, λ). For that purpose, we will repre-
sent our proposed chart by JAk,λ. In this study, sensitivity
parameters (k, λ) are listed in 17 different cases with the
objective to detect a small, moderate and large amount of
shifts.

Three kinds of charting constants are used to identify
large, medium, and small shifts in the process mean and/or
dispersion parameters. Different types of shifts and sensitivity
parameters are portrayed in Table 1.

Our next task is to work out an optimal combination to
set the control limit coefficients (hc,Le, cs) after choosing an
apt choice of sensitivity parameters (k, λ). For this purpose,
the following optimality criteria is adopted:
Objective function: min(EQL)
Subject to: ARL0 = τ such that ARLs = ARLe = ARLc.
where ARLs,ARLe and ARLc refer to the ARL values

respectively for the Shewhart, EWMA and CUSUM charts.

In an IC state (i.e.a = 0 and b = 1) for a fixed ARL0
(e.g. ARL0 = 185) the control limit coefficients (hc,Le, cs)
need to be adjusted accordingly for JAk,λ control chart.
For this purpose, 17 distinct cases of sensitivity parameters
(k, λ) are used and we worked out the triplets (hc,Le, cs) for
JAk,λ control chart. The combinations (hc,Le, cs) are selected
so that the ARL0 of six individual charts are exactly same,
which discards the possibility of either of them being fully-
or semi-redundant. The resulting control charting constants
(hc,Le, cs) are portrayed in Table 2 for 17 distinct cases
(combinations) of (k, λ) for the two well-known selection of
ARL0 = 185 and ARL0 = 250.
Special Cases:
It is interesting to note that the following charts become

special cases, under the said conditions, of our proposed JAk,λ
chart as listed below:

� Shewhart’s joint (X̄ , S2) chart, when hc and Le
approaches to∞;

� CUSUM joint
(
X̄ , S2

)
chart, when cs and Le approaches

to∞;
� EWMA joint (X̄ , S2) chart, when cs and hc approaches

to∞.

V. PERFORMANCE EVALUATIONS
In this section, we will present the performance evaluation
and comparison of the proposed chart with existing charts.
The competitor charts include (Max-EWMA, Max-EWMA,

TABLE 2. Charting constant at ARL0 = 185 and ARL0 = 250.
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TABLE 3. Average run length of the Joint Assortedk,λ chart ARL0 = 185.

joint (X̄ , S), MDEWMA, CMEC and CMDEC) charts.
We used various performance measures depending on run
length (as discussed in Section III) including ARL, EQL
and PCI.

We have discussed many OOC scenarios in order to assess
thesemeasures by considering varying values of shifts a and b
ranging between 0 to 2 for three types of shifts (small,
moderate and large).

For these measures, the computational algorithm is
provided as:
(i) Generate random samples from a parent distribution

(e.g. normal);
(ii) Calculate the sample statistics (which are the plotting

statistics);
(iii) Set the control limits of the control chart;
(iv) Repeat steps (i)–(iii), implement the procedural steps

of RL based on λ and k options (cf. Table 2);
(v) Based on step (iv) RLs, use the definitions provided in

section III to calculate the measures at specific shifts,
i.e. ARL.

(vi) Based on the outcomes of step (v) for ARL, evalu-
ate the overall measures (such as EQL as described

in Section III) using a suitable numerical integration
method (such as Simpson or Trapezoidal).

A. PERFORMANCE ANALYSIS OF JAk,λ CHART
The efficiency of the joint assorted (JAk,λ) chart is assessed
using various measures such as ARL and EQL for differ-
ent combinations of k, λ and at varying values of a & b.
The outcomes are provided in Tables 3 and 4 at ARL0 =
185 and ARL0 = 250 respectively. The results reveal the
following:

� The JAk,λ chart is sensitive to small, medium and large
shifts (cf. Tables 3 and 4).

� The sensitivity analysis advocates that case 15 is an
appropriate choice among the distinct combination of
(k, λ) because it has smaller EQLs at ARL0 = 185
and ARL0 = 250 ((3.11 and 3.22 respectively)
(cf. Tables 3- 4).

� It is to be mentioned that in comparative analy-
sis, case 15 will be considered for comparisons with
the competing charts at ARL0p = 250. The chart-
ing constants of this optimal choice are (hc =

2.3487,Le = 2.8556, cs = 3.2691) and (hc = 2.4721,
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TABLE 4. Average run length of the Joint Assortedk,λ chart ARL0= 250.

Le = 2.9700, cs = 3.3567) with sensitivity parameter
k = 1.25 and λ = 0.05. (cf. Table 2).

VI. COMPARATIVE ANALYSIS
We provide comparative analysis of JAk,λ chart with
Max-EWMA, Max-CUSUM, Combination of (X̄ , S),
MDEWMA, CMEC and CMDEC charts. The comparative
assessment is based on two techniques: firstly, based on
individual measures; secondly, based on overall measures.
The performance indices in the form of ARL, EQL and PCI
of the JAk,λ chart and competing charts are provided in
Table 5. The findings support the following:

� Among all the competing charts, the joint assorted chart
(JAk,λ) has the lowest ARL1 values for monitoring joint
shifts in process location and/or scale parameters. For
example, the ARL1 values of JAk,λ chart are 1.85, 1.86,
1.85, 1.79 and 1 at b = 0.25 and varying choices of
a = 0, 0.25, 0.5, 1, 2 respectively (cf. Table 5).

� The MDEWMA chart is the second-best chart in terms
of detection ability. For instance, the ARL1 values of
MDEWMA chart are 1.90, 1.90, 1.90, 1.80 and 1.00 at
b = 1.5 and different range of a = 0, 0.od25, 0.5, 1, 2
respectively.

� Similarly, the ARL1 values of the JAk,λ chart at b = 1.5
and varying choices of a = 0, 0.25, 0.5, 1, 2 are 4.85,
4.46, 3.59, 2.14 and 1.15 respectively, while the cor-
responding ARL1 values of MDEWMA chart are 5.50,
5.00, 3.90, 2.20 and 1.20.

� The JAk,λ chart with k = 1.25 and λ = 0.05 is regarded
as the benchmark chart because it has minimum EQL
value (i.e. 3.22) as compared to the other competing
charts.

� The JA1.25,0.05 chart has PCI equal to 1, while the
PCI values of existing counterpart charts such as
Max-EWMA, Max-CUSUM, Combination of (X̄ , S),
MDEWMA, CMEC and CMDEC charts are 2.16, 1.86,
2.23, 1.07, 3.35 and 1.37, respectively (cf. Table 5).
It shows that the proposed chart is superior to the other
competing charts for the joint monitoring of location and
scale parameters.

VII. APPLICATION: MONITORING THE
FUEL EFFICIENCY OF TRUCKS
An implementation of the proposed chart is presented for
monitoring fuel efficiency of trucks. Nowadays, global warm-
ing is one of the biggest challenges for us. To overcome this
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TABLE 5. ARL’s, EQL’s and PCI’s comparison of proposed and competing charts at ARL0 = 250.

issue many strategies, workshops, training and researches are
going on. The CO2 emission is one of the key elements in
global warming. The need of the hour is to reduce greenhouse
gas (GHG) emission in logistic industry.

Most of the transporters aremonitoring their fuel consump-
tion manually; only one out of ten are using advanced tech-
nology monitoring system [28]. Cost also plays a significant
role in an organization and through the efficient monitoring
of fuel consumption, an organization can save money, labor
work and time. The objective of the European Union’s (EU’s)
is to reduce GHG logistics by 60% in 30 years. According to
a report [29], heavy-duty trucks discharge 5% of the EU total
GHG emission. The freight industry has very few energy effi-
ciency methods ARL0 = 250ab(X̄S) (cf. Liimatainen [30]).

Fig. 1 presents a pictorial display of fuel trucks in action, their
monitoring system, and some related environmental issues
along with some useful statistics of contributions of various
components.

We have used a real data set related to a supply chain
service provider company, with the aim to monitor the fuel
consumption of its fleet. For the said purpose, we got fuel
consumption information on 135 trucks. 100 of these trucks
were weighing 11 tons, whereas 35 were weighing 30 tons.
Using these 135 observations, 35 subgroups each of size 5 are
created. For the purpose of illustration, we constructed the
joint assorted, the Max-CUSUM and the CC charts respec-
tively, for this real dataset. The control chart factors and
limits of these charts are computed considering information
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FIGURE 1. Fuel trucks, their monitoring system, and environmental issues
with some useful statistics of contributions of various components:
(a) ICGET 2018: [31]; (b) https://inhabitat.com/japan-tests-driverless-
trucks-report-shows-15-less-fuel-consumption;(c).
https://www.picswe.com/pics/fuel-monitoring-system-8d.html.

on 11 ton trucks as the in-control data. Specifically, we have
considered the following:

� For the proposed Assorted A1.25,0.05 chart, we used k =
1.25, λ = 0.05, hc = 2.4721, Le = 2.9700 and cs =
3.3567 and UCL = 1;

� For the Max-CUSUM chart, we used k = 1.25, and
UCL = 1.245.

� For the CC chart, we used k = 0.5, and the lower
and upper control limits are set as -2.685 and 2.685,
respectively.

These control chart factors and limits are selected to get the
ARL0 = 370 for all the charts, after standardization. From the
control chart displays in Fig. 2 (a), we can observe that there is
a big shift in the last 7 samples and all three charts are equally
efficient for the detection of such shift level.

Further, to investigate these charts for the detection of
other shift levels, the control limits were computed using
the first 20 samples, and 10 new samples were simulated
with different shift levels (small to moderate). Specifically,
we considered three cases.

� A shift with magnitude a = 0.5 in the process location
parameter (Fig. 2(b)).

FIGURE 2. Control charts to monitor the fuel consumption of trucks for
various amounts of shifts in location and dispersion.

� A shift with magnitude b = 1.8 in the process dispersion
parameter (Fig. 2(c)).

� The joint shift of magnitudes a = 0.3 and b = 1.3 in the
process location and dispersion, respectively (Fig. 2(d)).
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Fig. 2(b) indicates that to detect 0.5 sigma shifts in the process
location, the joint assorted chart, the Max-CUSUM chart and
the CC chart respectively detect 6, 4 and 3 out-of-control
points. CUSUMand the CC charts respectively detect 7, 5 and
2 out-of-control points.

Fig. 2(d) indicates that to detect joint shift, 0.3 sigma
in mean and 1.8 sigma shift in the process dispersion
parameter, the joint assorted, the Max-CUSUM and the
CC charts respectively detect 7, 5 and 3 out-of-control
points.

This superiority of the joint assorted chart is indicative
of the fact that our newly proposed JAk,λ chart is efficient
to detect different amounts of shifts (small to large) in the
process mean and/or variance parameters. This finding is
consistent with the results in Section VI.

VIII. SUMMARY, CONCLUSIONS
AND RECOMMENDATIONS
The study presents a joint assorted control chart for joint
monitoring of mean and/or variance parameters. By using
various performance measures such as ARL,EQL,RARAL
and PCI , the joint assorted control chart is compared with
the existing charts (Max-EWMA, MDEWMA, a combina-
tion of X̄ and S, CMEC, CMDEC charts). The comparative
assessment showed that the JAk,λ chart efficiently detects
different amounts of shifts in process location and/or scale,
and it outperforms all the competitor charts. An application
of the proposed chart related to the fuel consumption of
trucks (environmental/financial impacts and optimum fuel
consumption) highlights the significance of our proposal for
the monitoring of real processes.

The scope of the present research may be extended to
multivariate monitoring of multiple quality characteristics of
interest. Moreover, nonparametric charts under assorted setup
is another interesting direction to be explored.
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