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ABSTRACT Cognitive radio (CR) and massive multiple-input multiple-output (MIMO) have attracted much
interest recently due to the amazing ability to accommodate more users and improve spectrum utilization.
This paper investigates the QoS-aware user selection approach for massive MIMO underlay cognitive radio.
Two main CR scenarios are considered: 1) the channel state information (CSI) of the cross channels are
available at the secondary base station (SBS), and 2) any CSI of cross-network is unavailable at SBS.
For the former, we develop the low-complexity increase-user-with-minimum-power algorithm (IUMP)
and decrease-user-with-maximum-power algorithm (DUMP) which both can address the problem of user
selection with power allocation. However, the CSI is typically not available in practice. To address the
intractable issue, we propose a deep reinforcement learning-based approach, which can enable the SBS
to realize efficient and intelligent user selection. The simulation results show that the [IUMP and DUMP
algorithms have obvious performance advantages over traditional user selection methods. In addition, results
also verify that our constructed neural network can efficiently learn the optimal user selection policy in the
unknown dynamic environment with fast convergence and high success rate.

INDEX TERMS Cognitive radio, massive MIMO, power allocation, deep reinforcement learning, user

selection.

I. INTRODUCTION

With the increasing number of communication devices and
the growing demand for the spectrum resource in 5G & B5G
network, improving the utilization efficiency of spectrum
resource is urgent for the scarce available spectrum resources
[1], [2]. Cognitive radio (CR) and massive multiple-input
multiple-output (MIMO) have been widely envisaged as the
major candidates for future wireless network to accommo-
date more users with the limited spectrum [3]. As an intel-
ligent wireless communication system [4]-[7], CR allows
secondary user (SU) to share the spectrum with licensed pri-
mary user (PU) when collisions or harmful interference can
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be avoided. The massive MIMO system has been employed
hotly in cognitive radio network (CRN) recently, since its
powerful precoding potential, which can ensure more users
achieve reliable downlink transmission concurrently [8].
In addition, large-scale antenna array can provide huge spec-
tral efficiency and energy efficiency gain for CRN [3], [9].
User selection is always an important issue in CRN, which
can improve various system performance, such as reduc-
ing excessive overhead and computational complexity for
cooperative spectrum sensing (CSS) [10]-[13], improving the
performance of PU [14]-[16], maximizing the sum rate of the
SUs [17], [18]. With the huge number of devices and scarce
spectrum resources in SG communications, some literatures
have begun to study the issue of accommodating more SUs
to participate in communications by user selection [19]-[21].
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For admitting more SUs to participate in communications,
[19] studied the SUs selection scheme for the massive MIMO
underlay CRN, which consisted of a secondary base sta-
tion (SBS), K SUs and L primary transmitter-receiver pairs,
the authors proposed a QoS aware power allocation and
user selection algorithm with available global channel state
information (CSI). The algorithm starts by selecting all SUs
and then deletes the SU with maximum power per iteration.
[20] considered a CRN wherein the SUs want to share a
number of frequency bands licensed to PUs. For enhancing
the spectrum utilization and maintaining user fairness, the
author presented a mixed-integer programming framework
and proposed an optimal algorithm based on branch and
bound method for the joint resource allocation, user maxi-
mization and beamforming problem. In [21], multiple com-
putationally efficient user selection strategies were proposed
based on channel correlation, orthogonality, and water-filling
for the downlink MIMO CRN.

The algorithms mentioned above can achieve efficient
user selection and improve system performance. However,
the algorithms in [19], [20] are only applicable to the CRN
that each primary transmitter is equipped with a signal
antenna. The scheme in [21] can only be applied to the
CRN containing one PU, which both lead to the limita-
tion of algorithm application. In addition, the CSI of the
cross channels (the channels between SBS and each PU)
is always needed [19], [20] which may result in additional
feedback overhead to the PUs. Furthermore, the states of PUs
in [19]-[21] are fixed to ON, which means that the PUs are
always in communication. However, instead of keeping the
deterministic states, the PU is idle when there is no commu-
nication task in practice [22].

According to the above analysis, we will study the QoS
aware user selection algorithms for the massive MIMO under-
lay CRN wherein the SBS and primary base station (PBS)
are both equipped with massive antennas, besides, the active
states of the PUs are dynamical. Specifically, we consider two
main scenarios: 1) The SBS has the CSI of cross channels,
and 2) the SBS has absolutely no CSI of cross channels.
Obviously, user selection is particularly difficult to achieve
for the second scenario. Besides, with the advent of the
5G & B5G standards, the communication with faster rate,
higher QoS and intelligent requirements increase dramati-
cally [3], [23]. Both these lead to a new opportunity to the
introduction of deep learning into the study of massive MIMO
underlay CRN [7]. Reinforcement learning (RL) [24], [25]
is one of the most powerful machine learning tools for intel-
ligent decision making since RL can be invoked to find an
optimal action policy for any given Markov decision process,
especially when the system model is dynamic [26], [27].
Formulating the selection problem as a Markov Decision
Process and using RL tools to solve has been a popular
approach [28], [29].

In recent years, RL has been explored for CR systems in
some literatures. [28], [30], [31] used ideas from Thompson
sampling to propose an algorithm for channel selection in
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CR. In [32], three route selection schemes were proposed
to enhance the networks performance of CRN. A two-stage
RL algorithm was proposed in [28], in which a channel was
selected from N for SU based on RL algorithm, then Bayesian
approach was adopted to shorten the sensing time. Q learn-
ing [33], as a classical reinforcement learning algorithm,
is also widely used in CRN [29], [34], [35]. A form of real-
time multi-agent Q learning RL was proposed to manage
the aggregated interference generated by multiple WRAN
systems [34]. In [35], a new Q earning-based transmission
scheduling mechanism with deep learning for the cognitive
radio-based Internet of Things (IoT) was proposed to maxi-
mize the system throughput. In [29], a deep Q learning-based
method was developed to conduct power control.

It can be seen that the introduction of RL can effectively
improve the performance of CRN, by overcoming the uncer-
tainty of the system, and facilitating the system intellectu-
alization. However, the problem of user selection with RL
in massive MIMO underlay CRN has not been studied in
existing literatures. In this paper, for the scenario without
CSI of cross channels at SBS, we develop a user selection
algorithm based on deep RL for massive MIMO underlay
CRN. The main contributions of our work can be summarized
as follow:

(1) When the CSI of cross channels is available at SBS,
we propose two low-complexity QoS aware user selection
approaches: Decrease-User-with-Maximum-Power (DUMP)
algorithm and Increase-user-with-minimum-power (IUMP)
algorithm, which address the problem of joint user maximiza-
tion and power allocation for the massive MIMO underlay
CRN. Besides, the two algorithms are different from the
algorithms in [19]-[21] which are only applicable to CRN
with one PU or the primary transmitter can be only equipped
with a single antenna.

(2) When the CSI of cross channels is unavailable at SBS,
we introduce RL into massive MIMO underlay CRN to
address the problem of user selection. In addition, we develop
a deep Q learning network (DQN)-based user selection algo-
rithm by which the SBS can learn an efficient policy to select
as many appropriate SUs as possible.

(3) We evaluate and analyze the performance of our pro-
posed SUs selection algorithms, the algorithm IUMP and
DUMP are compared with some traditional classical user
selection schemes. In addition, the DQN-based approach is
evaluated from the perspectives of the loss function of the
deep neural network (DNN), success rate, average transition
step and average number of selected SUs. Simulation results
prove that our proposed algorithms can efficiently deploy
QoS aware user selection for the massive MIMO underlay
CRN regardless of whether CSI of cross channels is avail-
able or not.

The following notations are used in this paper. We use
the upper case boldface letters for matrices and lower case
boldface letters for vectors. [A],, stands for the n-th column
of matrix A, AT and A" respectively represent the transpose
and conjugate transpose of A, F <« {F — {n}} denotes
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removing {n} from {F}, F <« {F + {n}} stands for adding
{n} to {F}, @ is empty set, |F| stands for the cardinality of
set F, % represent the remainder operation.

Il. SYSTEM MODEL AND PROBLEM FORMULATION

A. SYSTEM MODEL

In our formulation, we consider a generic massive MIMO
downlink underlay CRN, wherein the primary network con-
sists of a PBS and K PUs and the secondary network consists
of one SBS and N SUs. SBS and PBS are both equipped
with a large-scale antenna, and the number of antennas is M.
All PUs and SUs are configured with a single antenna. Let
N ={1,2,--- ,N}bethesetof SUsand K = {1,2,--- , K}
be the set of PUs. All users are randomly distributed around
own base station, the distance between the PBS and SBS is dj.
SUs aim to share the spectrum resource belongs to PUs. The
system model is depicted in Fig. 1.

FIGURE 1. System model.

In our setup, similar to the existed works [36], [37],
we assume that the activity states of each PU are modeled by
Discrete-Time Markov Chain (DTMC), i.e., each PU decides
whether to communicate based on DTMC model, where the
transfer probability is shown in Fig. 2. There are generally
two states, idle shows OFF state, i.e., spectrum is not occu-
pied by the PU, and busy shows ON state, i.e., spectrum is
occupied by the PU.

1P .
P( (BUSY <>:; IDLE © )9
1-q
FIGURE 2. The Markov chain model for PU activity.

We set hgn = ﬂgnﬁgn € CM g5 the channel gain
from SBS to the n-th SU, where hy, ~ CN(O, D), B3, =

Tnd is the path loss of the h:gn, where A is the signal
o4

wavelength, d presents the distance between transmitter and
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receiver. hgn = ﬁgnhgn € CY*M stands for the channel gain

between PBS to the n-th SU and hy ~ CA(0, I). Similarly,
W = \JBhBk € COM and b, = B3R5, € CVM
respectively denote the channel gain from PBS and SBS to the
k-th PU. As precoding vector can improve system rates while
reducing user interference [38], [39]. we design the unit-norm
Zero-forcing (ZF) precoding vectors v,, € CMX1 (e N)
and wy € CM*1 (k e K) for the n-th SU and k-th PU.
In addition, binary variable Upy (i), (k € K) and Us,,, (n € N)
are used to represent the state indicator of the k-th PU and the
n-th SU at time frame i.

B. PROBLEM OPTIMIZATION

Our objective is to maximize the number of selected SUs
while guaranteeing the QoS requirements of all communi-
cation users. In this paper, QoS is measured in terms of the
specific rate and interference. In particular, the instantaneous
rate of the each selected SU has to be greater than Ry and the
interference towards each communication PU must below /.
The instantaneous rate of the n-th SU and the interference
received by the k-th PU at time frame i can be respectively
expressed as follow

| PSn gnvn |2
P /- S /s . ’ ( )
I, (i) + I, (i) + Nsp(i)
Ipe(i) = Th (i) + g (D), 2

where / Sf;l(i) and gn (7)) represent the interference from primary
network and secondary network to the n-th SU respectively.
Similarly, I3, (i) and I}, (i) stand for the interference from
secondary network and primary network to the k-th PU
respectively. ps, stands for the transmit power of the n-th SU,
which must satisfy the power constraint Zizv: 1 Usu(Dpsn <
PS, and Ns,(i), a Gaussian random variable with zero mean
and variance 0»%» is used to characterize the random variation
caused by shadow effects and noise. Then the QoS aware user
selection optimization problem can be formulated as

Rsn(i) = logs (1 +

N
Usi (@) Usn(i) ; Esa( &
S.t.: Usy(i), Up(i)€f0, 1}, neN, kek), (4)
N
> Usuliypsn < P5. (ne N, )
n=1
Rsu(i) = Ro, (iff Usp() =1,neN), (6)

Ipk() <o, (f Up()=1,keK). (7)
IIl. USER SELECTION FOR UNDERLAY MASSIVE

MIMO CRN

Obviously, the optimization problem of user selection
in (3)-(7) is difficult to solve as it is a non-convex combination
and NP-hard problem. Here, the problem of user selection is
studied for the following two cases: 1) CSI of cross channels
is available at SBS; and 2) CSI of cross channels is unavail-
able at SBS.
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A. USER SELECTION WITH CROSS CHANNELS CSI

We first assume that the CSI of the cross channels is available
at SBS. For this scenario, we design unit-norm ZF precoding
vectors v,, and wy as follow

[w” (\wf’)‘l]n [cb” (cbch)‘l]

_ _ k

Ul e @en T
n k

(8

s\T s \T s\T s T

where W = [(b$,)", -+ (b$)". (05)" .+ (05)]

T
and & = [(hﬁl)T,-n,(hﬁK)T] . Obviously, the pre-

coding vectors v,, (n € N) can eliminate the interference
of the n-th SU on primary network and secondary network.
However, wg, (k € K) can only eliminate the interference
among the PUs, since in practical applications, the PU does
not actively acquire the CSI of cross channels from PBS to
SUs. Hence, for this case, various interference in equation
(1)-(2) can be calculated as follow

K

15, = pP|Up(ihG, wi |2, )
k=1

G0 =0, IhG)=I50)=0, (10)

where p” denotes the transmit power of each PU. According
to equation (2) and (10), we can see that the PUs will not
receive any interference due to the design of the ZF precod-
ing vectors. In addition, instantaneous rate of the n-th SU
(Usn(i) = 1) can be expressed as

psnlhs, val? an
YK pPIUpk(DhE Wil 4Ny (i)

Then the optimization problem (3)-(7) can be simplified as

Rsu(i)=1log> (1 +

N
max Z Usn(i), (12)

Us1(i),++ , Usn(i) 1
S.t.: Usy(i), Upk (i) € {0, 1}, (n e N, k € K), (13)

N
Z USn(i)pSn < PS, (14)
n=1
h$ v,|?
loga 1+ - Psnl .SnPn| ) =R
Y i1 PP1Upk (DD, Wi |>+ N, (i)
(15)

Obviously, in order to achieve the specific threshold rate R,
the power assigned to the n-th SU must satisfy the following
inequality

2R _ 1) (Z,’le PPl Up(DRE Wi + NSn(i))

16
[hg,va|? (1o

Psn=

In order to select more SUs that meet the rate requirements (6)

and power constrain nyzl Usn(Dpsn < PS5, we perform the
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following power allocation

(R0 _ 1) (ZkK=1 PP IUpk()hE wi|? + NSn(i)>

S
|hsnvn|2

Psn= a7
Let F denotes the set of selected users, F stands for the set
of unselected users, and F* is one of the optimal sets. The
easiest way to find the optimal set F* is to list all possible sets
in incrementing or descending order. For the incrementing
order, we need one-by-one list all possible sets of cardinalities
1,2---,|F*|. For each set F, we need to check whether the
constraints (13)-(15) are satisfied, and then find the one of the
optimal sets with biggest cardinality. However, the total num-
ber of all sets is ZL]:l‘ Cy» which increases exponentially
with N. Therefore, it is necessary to design low-complexity
user selection schemes.

Firstly, we design a low-complexity user selection algo-
rithm called Increase-User-with-Minimum-Power (IUMP).
The algorithm is initialized by 7 = #, i.e., none of the SUs
are selected. Then the ZF precoding vector and power alloca-
tion are carried out for all SUs by (8) and (17), respectively.
The user with minimum power allocation will be selected
per iteration if the power constraint (14) is satisfied. For
clarity, the [IUMP-based user selection scheme is summarized
in Algorithm 1.

Algorithm 1 [UMP-Based SUs Selection Algorithm
Initialize: All SUs are not selected,
e, Us,(i)=0,(VneN), F=oand F =N ;
Compute the unit-norm ZF precoding vectors v,, and wy by
formula (8);
Perform power allocation for all SUs according (17).
while F # ¢ do
find the SU with minimum power in F,ie, n =
arg min, _ 7 psa;
it Y| Usu(i)psn + psw < PS then
Increase the SU with minimum power to F, i.e., set
Usw(i) =1, F < {F = {0}, F < {F+{n'}};
else
F*=F
Stop
end if
end while

Contrary to the principle of user selection in the IUMP
algorithm, Decrease-User-with-Maximum-Power (DUMP)
based user selection algorithm is to find the user with
the largest allocated power in each iteration. Furthermore,
the algorithm is different form the user selection scheme
in [19] which is not applicable to the CRN in this paper,
because it assumes that PBS is configured with a single
antenna, and the interference among PUs is not taken into
account.

Specifically, algorithm DUMP is initialized by selecting
all SUs, i,e., F = N and F = §. The ZF precoding vectors
and power allocation are also carried out for all SUs by (8)
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and (17), respectively. Then the user with maximum power
allocation will be found and decreased from F if the power
constraint (14) cannot be satisfied. The algorithm steps are
summarized in Algorithm 2.

Algorithm 2 DUMP-Based SUs Selection Algorithm
Initialize: Selected all SUs,
ie,Up()=1,(YneN),F=Nand F=0;

Compute the unit-norm ZF precoding vectors v, and wy by
formula (8);
Perform power allocation for all SUs according (17).
while F # () do
it YN Usu(i)ps, > PS then
find the SU with maximum power in F, i.e., n’ =
arg maxue F Psn;
Decrease the SU with maximum power from F,
ie, set Ugy() = 0, F « {F—{n'}}, F <
{F+n}s
else
F*=F
Stop
end if
end while

Algorithm 1 and algorithm 2 achieve joint power allocation
and user selection with low complexity. Those SUs who
meet the system QoS requirements are selected as many as
possible. However, both of the algorithms are based on the
premise that the CSI of cross channels is available at SBS.

B. USER SELECTION WITHOUT CROSS CHANNELS CSI
The worst case is that the CSI of cross channels is abso-
lutely unknown, i.e., the primary network and the secondary
network work in non-cooperative mode, we cannot get any
informations about h;ik, (k € K) at SBS. However, this
case is more common in practical applications. Because the
primary network usually does not actively open the interface
to exchange with the secondary network, nor does it actively
provide own CSI to the secondary network in reality. For
this case, the ZF precoding vectors v, and wi can only be
designed to eliminate the interference of internal network,
which can be expressed as

-1 1
v (wor)™] [ (@0)™"]
Vy= Wk= b
e e @en),
(13)
where ¥ = [(hgl)r,-n ,(th)T]T, and the ® =
[(hgl)T e (th)T]T. Obviously, each user will receive

external interference. In addition, due to the lack of the CSI of
cross channels, the interference of external network cannot be
calculated. So we cannot get the instantaneous rate of SUs and
the interference of PUs. This makes it impossible to solve the
QoS aware user selection problem in conventional methods.
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In addition, as an intelligent wireless communication sys-
tem, the massive MIMO underlay CRN needs an intelligent
user selection algorithm to enable the SBS to intelligently
make decision. Hence, a DQN-based user selection algorithm
is proposed in this section, where the specific rate require-
ment of selected SUs and interference requirement of PUs can
both be directly addressed. Before presenting the proposed
algorithm, the main parts of the RL based Markov Decision
Processes (MDP) [24] are given with a new proposed reward
function, and a Q learning framework is adopted to address
the SUs selection problem.

1) MARKOV DECISION PROCESS FOR SUS SELECTION

RL is an important branch of machine learning, which can
be used in the CRN to search the optimal policy. Similar to
the existing literatures [29], [34], [35], we apply the MDP to
model the user selection process in this paper.

In this paper, we model the user selection problem as
(S, A, r(i), y), where S is the environment state space set,
A denotes the action space set, r(i) represents the immedi-
ate reward at the current time frame i, and y is a discount
factor. When the agent takes action a(i) € A, the current
environment state S(i) € S will be transformed into state
S + 1) € S, while the corresponding reward r(i) will be
obtained. The interaction between the agent (SBS) and the
CR environment is depicted in Fig. 3.

State: Received power of each Decision making:
| Select some SUs to

communicate

$(0) =[50 (s Y52 (Ds-es Y5 ()]

Action a(i)

Environment

FIGURE 3. The interaction between the agent and the environment.

Agent: SBS
State space S: The environment state information can be
depicted by all SUs. We use

s()) = [ys1(), ys2(d) - - - ysn (D] (19)

to denote the environment state in time frame i, where the
ysu(i),n € N is the received power at the n-th SU in time
frame i, which can be expressed as

N
2
ysuli) = ZPS ‘USn(i)hgnvn

n=1

K
2
+ 30" | U, wi| 4+ Nsut. 20)
k=1
To simplify the algorithm, we assume that each SU has the
same transmit power p°. Obviously, the environment state
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s(i + 1) is only related to state s(i), and completely irrelevant
to other previous states.

Action space A: The action is considered for SBS to
select the SUs intelligently in RL framework. The size of
A increases exponentially with the number of SUs. Note
that each action selection of the agent must satisfy the
constraints (5)-(7).

Reward function r(i): The search process of the optimal
user selection strategy is driven by the reward function since
the action is selected with the maximum reward. Considering
the purpose of learning is to maximize the number of selected
SUs, we propose a new reward function for the RL algo-
rithm, when the QoS of communicating users are satisfied,
the reward function can be expressed as

N
ri) =ro+ Y Usa(i) * pt, 1)

n=1

where 22121 Usy(i) represents the number of selected SUs
at time frame i, ro is the basic reward, 4 means reward
multiplier. Obviously, the reward function enables the
agent to select as many SUs as possible to participate in
communication.

The main objective of MDP is to learn the optimal user
selection policy for agent: Let v” (s(i), a(i)) denote the state
action function, which is the discount cumulative reward for
the action a(i) at current state s(i) with the policy 7, which
can be expressed as

T
Vi(s(i), ad) = Yy (D), (22)

t=i

where T presents the number of time frame required to reach
the goal state. The goal state of this paper is that some appro-
priate SUs are selected which can meet the QoS requirements
of the system. Then the task becomes learning an optimal
policy 7* that maximizes v”, i.e.,

7 = argmax v” (s(i), a(i)). (23)
s
Obviously, it is not straightforward to address the problem.

2) THE DQN-BASED SUS SELECTION ALGORITHM
Instead of computing the problem (23) directly, we adopt the
RL tools to learn the optimal policy, which contain Q learn-
ing, policy gradient, actor critic and so on [40]. Unlike the
one-step update in the Q learning approach, the parameters
in policy gradient scheme are rounded up after each explo-
ration, which results in lower learning efficiency. In addition,
the policy gradient and actor critic algorithms are more
suitable for systems with continuous action. Hence, for the
system with continuous-value states and discontinuous-value
actions in this paper, deep Q learning algorithm is applied to
obtain the optimal policy for the intelligent user selection.
To achieve a better understanding, the classic Q learn-
ing algorithm is briefly introduced firstly. In Q learning,
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a Q value function is invoked to evaluate the discount cumu-
lative reward of taking action a(i) at state s(i). The Q value
can be iteratively updated by Bellman equation [40].

Q(s(), a(®) = r(i) +y max Q(s(i + 1), a), (24)

where the s(i + 1) is the next state led by taking action a(i)
at the state s(i), y is the discount factor. It has been proved
that the Q value will be updated to converge [40]. All the
convergent values will form a final Q table, that is, for any
state, each action has a corresponding Q value in the table.
Hence, after the Q table converges, we merely need to search
the Q table and select the action with largest Q value for any
given states.

Obviously, with the number of states and actions increas-
ing, the scale of Q table will be large, which results in a long
search time. Unfortunately, in this paper, the value of states
is continuous due to the random variation of the environ-
ment. To overcome this difficulty, we introduce DQN [41],
in which each Q value can be calculated through a DNN,
i.e., O(s, a, 0), where 6 indicates the network parameter. For a
given input (a certain state), the DNN will output the Q values
of all actions in the state. In this paper, the input of DNN is an
N-dimensional vector represented by signals power received
by the N SUs, and the network output is a 2V -dimensional
vector which includes all Q values for each SUs selection
strategy.

For training the DNN with initialized parameter, we need
an experience replay memory with capacity D to store suf-
ficient transitions (s(), a(l), r(1), s(I + 1)), where a(l) is the
action taken in state s(/), r(l) is the immediate reward
obtained, and s(/ + 1) is the next state, where the action in
the /-th iteration is selected by

arg max, Q(s(/), a; 6;); with probability &,

a(l) = .
Randomly action;

. (25)
otherwise,

where e-greedy policy [40] is introduced to fully explore the
environment, we set it to & = 0.8(1 — [/I), where [ is the
total number of iterations. When the number of iteration / is
greater than sampling threshold 7, a minibatch of transitions
set 2; from D will be randomly selected for network training
in iteration /. Fig. 4 shows the specific training principle
and DNN network structure. The loss function of the neural
network in iteration / can be defined as

2

L@y =Y (O (s, alt); 67) = Q). al: 1))

ey

(26)

Output layer
QGs(0).a(1):0)
O

|

FIGURE 4. Training principle and DNN network structure.

Hidden layer
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where the Q (s(l), a(l); 6;) denotes the output of the DNN,
€ is the training transitions set used at iteration /. It should be
noted that, in this paper, we use another network to compute
the target value Q (s(l ), a(l); 91_), which means we create two
networks: the online network with parameter 6 and target
network with parameter 6. The target network is the same
as the online network except that its parameter is copied from
online network every C step. The target network is designed
to avoid iterative volatility due to differences and correlations
between sample data [42], which makes it difficult to stabilize
the network parameter. Hence, we update parameter 6 in each
step to calculate Q (s(!), a(l); 6;) and update target network
parameter every C step. The target value can be defined as

Q (s(). al: 67 ) =r(D+y max Q (s + 1), a: 6;) . (27)

Differentiating the loss function, we can get the gradient as
follows

VoL@ = Y (r)+y max Qs + 1), a; ;)
i€

=0 (s(D), a(l); ) Ve, Q (s(D), a(l); Or) . (28)

In each iteration, we update the online network parameter at
learning rate 8

Or+1 =61 + BV, L(6)). (29)

For clarity, the proposed DQN-based user selection scheme
is summarized in Algorithm 3, in which the agent (SBS) is
assumed to know whether the SUs and the PUs transmitted
successfully (QoS requirements were met). In practice, this
can be achieved by listening the acknowledgement signal of
all communication users. Note that the DQN-based algorithm
can also applied to the situation where all available CSI is
perfect.

After training, the SBS can select the action which yields
the largest estimated value Q(S(i), a(i); 6). In other words,
we realize the SUs intelligent selection in the CRN under
the non-cooperative mode by using a deep reinforcement
learning algorithm.

IV. SIMULATION EXPERIMENT AND ANALYSIS

In this section, simulation results are conducted to eval-
uate the performance of our proposed IUMP, DUMP and
DQN-based algorithms in the underlay massive MIMO CRN.
First, the performance of the DNN we built is verified. Then,
we examine the performance of three algorithms for selecting
users. Several conventional user selection schemes are com-
pared.

A. SIMULATION SETUP
In this paper, we evaluate the constructed DNN via three
metrics, namely:

1) Loss function of the DNN, which can be calculated by
equation (26).

2) Success rate: it is computed as the ratio of the number
of successful trials to the total number of independent runs.
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Algorithm 3 DQN-Based SUs Selection Algorithm

Initialize: Initialize an experience replay memory with
capacity D; Initialize the online network and target network
with random weights 6 = 6~ = 6;
Initialize the activity state of all SUs;
for episode [ = 1,1 do
Update each PU activity state based on Markov chain
model;
Obtain s(/) versus the random observation model (19);
Choose an action a(/) by the formula (25), where ¢; =
0.8(1 —1/I);
Obtain the next state s(/ + 1) and observe reward r(/) by
function (21);
Store transition d; = {s(I), a(l), r(I), s(I + 1)} in the
replay memorys;
if [ > 7 then
Sample a random minibatch €2; from replay memory;

Update 6 by equation (29) where the gradient
Vg, L(6;) and the loss function L(¢;) are given by
equation (28) and equation (26) ;

end if

if /%C = 0 then
Update the weights of target network by 6~ = 6;

end if

if s(/) is the goal state then
Initialize the activity state of the SUs and PUs;
obtains(l + 1) .

end if

end for

A trial is considered successful if the current state can move
to the goal state (reward > 10) within 5 transition steps.

3) Average transition step: the average time frames
required to achieve the goal state if the exploration is
successful.

The Loss function is used to characterize the convergence
of neural networks; Success rate and average transition step
can be used to evaluate how well the networks is trained.

We create the DNN model with four fully-connected feed-
forward hidden layers, and the number of neurons in each
hidden layer is 256, 256, 512, and 512 respectively. The DQN
with many hidden layers cannot be fully trained when the data
quantity is small. The number of hidden layers is selected
according to the simulation comparison. Rectified linear units
(ReLUs) are employed as the activation function for the first
three hidden layers, and the tanh function for the last hidden
layer. Unless otherwise specified, the simulation parameters
are considered as table 1.

B. PERFORMANCE VERIFICATION
Specifically, in this section we verify the neural networks
performance with different PUs number K, SUs number N,
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TABLE 1. Simulation parameter setting.

Parameters Value(Description)
The probability q 1/5
The probability p 4/5
Transmit power of PU pF (W) 1
The signal wavelengt A (m) 0.1
Distance dp (m) 200
The user distribution range (m) (50 — 150)
Variances of the noise 62, (ABW) -97
The capacity of replay memory D 1000
Sampling threshold 7 800
size of 600
Basic reward 10
Reward multiplier 5
Discount factor ~ 0.8
Update time C' 200
Learning rate of DQN 107°
Exploring probability &; 0.8(1 —3/I)
The total number of iterations 1 10 x 10*
Total number of PUs K 5,10,---,30
Total number of SUs N 2,4,---,12
rate threshold Ro (bps) 1.5,2,---,4
rate threshold Iy (ABW) —-70,-72,---,—80

rate threshold Ry and interference threshold 1. Next, we will

analyze the simulation results in detail.

1) IMPACT OF TOTAL NUMBER OF PUS

Firstly, we examine the neural networks performance versus
—72 dBW and

different K with M

VOLUME 7, 2019

64,N = 8,1

Ry = 3 bps/Hz. Fig. 5(a) show that, the loss function con-
verges quickly for different K. In addition, as can be observed
in Fig. 5(b) and Fig. 5(c), the smaller the K, the faster
the network converges, all the success rate and the average
transition step converges after 3 x 10° iterations. Especially,
the average transition step will converge to 0.5 when K =5,
that is because some original states are the goal state when the
number of PUs is small. Furthermore, even if K = 30, after
2 x 103 iterations, the average transition step converges to one
with 100% success rate, which means that the agent can select
the appropriate SUs efficiently in one step for different K.

2) IMPACT OF TOTAL NUMBER OF SUS

We further demonstrate the DNN performance at different N
with M = 64, K = 20,y = —72 dBW and Ry = 3 bps/Hz.
As depicted in Fig. 6(a), after about 800 iterations, the loss
function decrease to zero under N = 2, however, the loss
function becomes larger and converges more slowly when
we increase the number of SUs. This is due to the fact that
the loss function increase with the number of output node of
DNN. In addition, we can see from Fig. 6(b) and Fig. 6(c)
that, the success rate and the average transition step converge
quickly for different N. In addition, the number of iterations
required for convergence increases slowly with increasing N.
Nevertheless, even if N 12, an efficient SUs selection
policy can be learned in 4 x 103 iterations with one transition
step with 100% success rate.

3) IMPACT OF Ry

In order to study the influence of rate threshold, we conduct
experiments with different Ry when M = 64, K =20,N =8
and Iy —72 dBW. As Fig. 7 present, all loss functions
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fall at a similar rate. In addition, as depicted in Fig. 7(b) and
Fig. 7(c), the smaller Ry is, the less iterations are required.
Nevertheless, even Ry = 4 bps/Hz, after about 7 x 103
iterations, 100% success rate is achieved, and the average
transition step converges to one after about 1.5 x 104, i.e., the
efficient selection policy can also be learned.

4) IMPACT OF I,
We further explore the impact of the interference threshold
of PUs with M = 64, K = 20, N = 8 and Ry = 3 bit/Hz.
As shown in Fig. 8(a), the loss function can be reduced to zero
before 1.5 x 10* iterations. Fig. 8(b) and Fig. 8(c) present
that, even Iy = —80 dBW, after about 1.5 x 10% iterations,
the agent can select the appropriate SUs within one step with
100% success rate. In addition, we can notice that the lower
the interference threshold, the longer training time it takes.
Through numerous simulation experiments, it is apparent
that our constructed neural networks can be quickly trained
under various environmental factors. 100% success rate and
small transfer step can be quickly obtained, which means
that the agent can quickly and efficiently learn the appro-
priate user selection strategy by our constructed neural net-
works. In addition, these experimental results prove that our
proposed DQN-based user selection scheme can make intel-
ligent decisions efficiently and find the optimal strategy
quickly in the face of dynamic changing environment and
various system configurations.

C. PERFORMANCE COMPARISON
In this section, we examine the ability of selecting users
for the proposed SUs selection algorithms, operating with
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different system parameters in the massive MIMO underlay
CRN.

In Fig. 9 and Fig. 10, the channel similarity-based user
selection (CSUS) scheme and precoder-based group user
selection (PGUS) algorithm in [21] are compared, in which

—-@- CSUS, M=64

-~ —&— PCUS, M=64
—»— DUMP, M=64

s —4— UMP, M=64
- CsUs, M=128
- PCUS, M=128
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60 65 70 75 80 85 9.0 95
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FIGURE 9. Algorithm comparison via Ry.
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—
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FIGURE 10. Algorithm comparison via N.
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the system model can only contain one PU. In particular,
Fig. 9 depicts the number of selected SUs of four algo-
rithms versus Ry when PS = 4W,N = 12and K = 1.
Fig. 10 displays the number of selected SUs versus N when
PS = 4W, Ry = 7 bivHz and K = 1. In addition,
the performance of four algorithms is demonstrated with
two different antenna configurations. As can be observed
that the number of selected SUs of all algorithms decrease
as Rp increase, and increase as N increase. The algorithm
IUMP and DUMP have similar performance and obvious
performance advantages over other algorithms. Since the
same precoding design and power allocation are carried out
in the two algorithms. Furthermore, the number of selected
users increases with the number of antennas, which verifies
the theory that large-scale antenna can admit more users to
participate in communication.

Fig. 11 presents the impact of N, Ry, K on the algorithm
IUMP and DUMP with multiple PUs. We can observe that
the number of selected users increases as N increases, and
decreases as Ry and K increase, since a larger N means
more alternative users, whereas a larger Ry or K means the
QoS requirement is harder to satisfy. Besides, as mentioned
above, the two algorithms have the same performance, and
the increase of the number of antennas has obvious perfor-
mance improvement, compared with M = 64, the number
of selected users increased faster with the increase of N,
and decreased slower with the decrease of K and Ry when
M = 128, which further demonstrates the necessity of
applying large-scale antenna in the underlay CRN.
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N =12.

Finally, the performance of proposed DQN-based SUs
algorithm was verified for the case that SBS could not acquire
the CSI of cross channels. In Fig. 12, the performance of
number of selected users was studied versus N, Ry, K with
psn = 1W and Iy = —72dBW. As illustrated by Fig. 12,
similar to algorithms TUMP and DUMP, the number of
SUs selected by algorithm DQN increases as N increases,
decreases as K and Ry increases. Furthermore, even K = 30
or Ry = 4bit/Hz, more than average 8 SUs can be selected
with M = 64. In other words, DQN-base user selection algo-
rithm can efficiently select user for the CRN with different
system parameters.

V. CONCLUSION

In this paper, we studied the user selection strategy for mas-
sive MIMO underlay CR system, three selection algorithms
were presented for two scenarios, i.e., the CSI of cross chan-
nels is available and unavailable at SBS. The proposed algo-
rithm ITUMP and DUMP for the perfect cross channels CSI
scenario are based on ZF precoding and power allocation that
satisfies specific interference requirement of PUs and rate
requirement of SUs. For the scenario with unavailable CSI of
cross channel, we developed a deep reinforcement learning-
based algorithm for the SBS to learn how to intelligently
select suitable SUs such that both the PUs and SUs are able to
transmit their respective data successful with required QoS.
Furthermore, sufficient experiments show that the algorithms
proposed in this paper can effectively select as many SUs as
possible, regardless of whether the CSI of the cross channel is
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available at SBS or not. For future work, power allocation will
be considered to further improve the performance of DQN
algorithm.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless net-
works: A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 18,
no. 3, pp. 1617-1655, 3rd Quart., 2016.

Y. Wang, M. Liu, J. Yang, and G. Gui, “Data-driven deep learning for
automatic modulation recognition in cognitive radios,” IEEE Trans. Veh.
Technol., vol. 68, no. 4, pp. 4074-4077, Apr. 2019.

A. Gupta and E. R. K. Jha, “A survey of 5G network: Architecture and
emerging technologies,” IEEE Access, vol. 3, pp. 1206-1232, Jul. 2015.
S. Haykin, “Cognitive radio: Brain-empowered wireless communica-
tions,” IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201-220, Feb. 2005.
A. He, K. K. Bae, T. R. Newman, J. Gaeddert, K. Kim, R. Menon,
L. Morales-Tirado, and J. J. Neel, “A survey of artificial intelligence for
cognitive radios,” IEEE Trans. Veh. Technol., vol. 59, no. 4, pp. 1578-1592,
May 2010.

M. Bkassiny, Y. Li, and S. K. Jayaweera, “A survey on machine-learning
techniques in cognitive radios,” IEEE Commun. Surveys Tuts., vol. 15,
no. 3, pp. 1136-1159, Jul. 2013.

M. Liu, J. Yang, T. Song, J. Hu, and G. Gui, “Deep learning-inspired
message passing algorithm for efficient resource allocation in cognitive
radio networks,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 641-653,
Jan. 2019.

N. Fatema, G. Hua, Y. Xiang, D. Peng, and I. Natgunanathan, “Mas-
sive MIMO linear precoding: A survey,” IEEE Syst. J., vol. 12, no. 1,
pp. 3920-3931, Dec. 2017.

H. Yang and T. L. Marzetta, “Performance of conjugate and zero-
forcing beamforming in large-scale antenna systems,” IEEE J. Sel. Areas
Commun., vol. 31, no. 2, pp. 172-179, Feb. 2013.

A. S. Cacciapuoti, I. F. Akyildiz, and L. Paura, “Correlation-aware user
selection for cooperative spectrum sensing in cognitive radio ad hoc
networks,” IEEE J. Sel. Areas Commun., vol. 30, no. 2, pp. 297-306,
Feb. 2012.

X. Li, W. Li, and Y. Hei, “Joint spectrum sensing and user selection
strategy for cognitive radio networks,” in Proc. IEEE WCSP, Oct. 2012,
pp. 1-6.

M. Monemian and M. Mahdavi, “Sensing user selection based on energy
constraints in cognitive radio networks,” in Proc. IEEE WCNC, Istanbul,
Turkey, Apr. 2014, pp. 3379-3384.

Q.-T. Vien, H. X. Nguyen, and A. Nallanathan, “Cooperative spectrum
sensing with secondary user selection for cognitive radio networks over
Nakagami-m fading channels,” IET Commun., vol. 10, no. 1, pp. 91-97,
Jan. 2016.

M. Qin, S. Yang, H. Deng, and M. H. Lee, “Enhancing security of primary
user in underlay cognitive radio networks with secondary user selection,”
IEEE Access, vol. 6, pp. 32624-32636, 2018.

C. Zhai, J. Liu, L. Zheng, and X. Wang, “Wireless power transfer based
spectrum leasing with user selection in cognitive radio networks,” in
Proc. IEEE 27th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun.
(PIMRC), Valencia, Spain, Sep. 2016, pp. 1-6.

M. Zhang, P. Si, and Y. Zhang, “‘Optimal secondary user selection scheme
for primary users in cognitive radio networks,” in Proc. 2nd Int. Conf.
Consum. Electron. Commun. Netw. (CECNet), Apr. 2012, pp. 1166-1170.
S. Dadallage, C. Yi, and J. Cai, “Joint beamforming, power, and channel
allocation in multiuser and multichannel underlay MISO cognitive radio
networks,” IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 3349-3359,
May 2016.

R. Xie, F. R. Yu, and H. Ji, “Joint power allocation and beamforming
with users selection for cognitive radio networks via discrete stochastic
optimization,” Wireless Netw., vol. 18, no. 5, pp. 481-493, Jul. 2012.

S. Chaudhari and D. Cabric, “QoS aware power allocation and user selec-
tion in massive MIMO underlay cognitive radio networks,” IEEE Trans.
Cogn. Commun. Netw., vol. 4, no. 2, pp. 220-231, Jun. 2018.

K. Cumanan, R. Krishna, L. Musavian, and S. Lambotharan, *“Joint beam-
forming and user maximization techniques for cognitive radio networks
based on branch and bound method,” IEEE Trans. Wireless Commun.,
vol. 9, no. 10, pp. 3082-3092, Oct. 2010.

110894

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(391

[40]

(41]

(42]

W. Xiong, A. Mukherjee, and H. M. Kwon, “MIMO cognitive radio
user selection with and without primary channel state information,” IEEE
Trans. Veh. Technol., vol. 65, no. 2, pp. 985-991, Feb. 2016.

I. F. Akyildiz, B. F. Lo, and R. Balakrishnan, “Cooperative spectrum
sensing in cognitive radio networks: A survey,” Phys. Commun., vol. 4,
no. 1, pp. 40-62, Mar. 2011.

H. Huang, S. Guo, G. Gui, Z. Yang, J. Zhang, H. Sari, and F. Adachi,
“Deep learning for physical-layer 5G wireless techniques: Opportunities,
challenges and solutions,” 2019, arXiv:1904.09673. [Online]. Available:
https://arxiv.org/abs/1904.09673

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic
programming for feedback control,” IEEE Circuits Syst. Mag., vol. 9, no. 3,
pp- 32-50, Aug. 2009.

C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, ‘““Machine
learning paradigms for next-generation wireless networks,” IEEE Wireless
Commun., vol. 24, no. 2, pp. 98-105, Apr. 2017.

R. Li, Z. Zhao, X. Zhou, G. Ding, Y. Chen, Z. Wang, and
H. Zhang, “Intelligent 5G: When cellular networks meet artificial
intelligence,” IEEE Wireless Commun., vol. 24, no. 5, pp. 175-183,
Oct. 2017.

V. Raj, I. Dias, T. Tholeti, and S. Kalyani, “Spectrum access in cognitive
radio using a two-stage reinforcement learning approach,” IEEE J. Sel.
Topics Signal Process., vol. 12, no. 1, pp. 20-34, Feb. 2018.

X. Li, J. Fang, W. Cheng, H. Duan, Z. Chen, and H. Li, “Intelligent
power control for spectrum sharing in cognitive radios: A deep rein-
forcement learning approach,” IEEE Access, vol. 6, pp. 25463-25473,
Apr. 2018.

Y. Gwon, S. Dastangoo, and H. T. Kung, “Optimizing media access
strategy for competing cognitive radio networks,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2013, pp. 1215-1220.

X. Zhang, L. Jiao, O.-C. Granmo, and B. J. Oommen, ‘“Channel selection
in cognitive radio networks: A switchable Bayesian learning automata
approach,” in Proc. IEEE 24th Annu. Int. Symp. Pers. Indoor, Mobile Radio
Commun. (PIMRC), Sep. 2013, pp. 2362-2367.

A. R. Syed, K.-L. A. Yau, J. Qadir, H. Mohamad, N. Ramli, and
S. L. Keoh, “Route selection for multi-hop cognitive radio networks using
reinforcement learning: An experimental study,” IEEE Access, vol. 4,
pp. 6304-6324, 2016.

C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
nos. 3—4, pp. 279-292, 1992.

A. Galindo-Serrano and L. Giupponi, “Distributed Q-learning for aggre-
gated interference control in cognitive radio networks,” IEEE Trans. Veh.
Technol., vol. 59, no. 4, pp. 1823-1834, May 2010.

J. Zhu, Y. Song, D. Jiang, and H. Song, “A new deep-Q-learning-based
transmission scheduling mechanism for the cognitive Internet of Things,”
IEEE Internet Things J., vol. 5, no. 4, pp. 2375-2385, Aug. 2018.

Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized cognitive
MAC for opportunistic spectrum access in ad hoc networks: A POMDP
framework,” IEEE J. Sel. Areas Commun., vol. 25, no. 3, pp. 589-600,
Apr. 2007.

S. Filippi, O. Cappe, and A. Garivier, “Optimally sensing a single
channel without prior information: The tiling algorithm and regret
bounds,” IEEE J. Sel. Topics Signal Process., vol. 5, no. 1, pp. 68-76,
Feb. 2011.

H. Huang, W. Xia, J. Xiong, J. Yang, G. Zheng, and X. Zhu, “Unsuper-
vised learning-based fast beamforming design for downlink MIMO,” IEEE
Access, vol. 7, pp. 7599-7605, Dec. 2018.

H. Huang, Y. Song, J. Yang, G. Gui, and F. Adachi, ‘“Deep-learning-based
millimeter-wave massive MIMO for hybrid precoding,” IEEE Trans. Veh.
Technol., vol. 68, no. 3, pp. 3027-3032, Mar. 2019.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, ““Human-level control
through deep reinforcement learning,” Nature, vol. 518, pp. 529-533,
Feb. 2015.

H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learn-
ing with double Q-learning,” in Proc. AAAI Conf. Artif. Intell., 2016,
pp. 2094-2100.

VOLUME 7, 2019



	INTRODUCTION
	SYSTEM MODEL AND PROBLEM FORMULATION
	SYSTEM MODEL
	PROBLEM OPTIMIZATION

	USER SELECTION FOR UNDERLAY MASSIVE MIMO CRN
	USER SELECTION WITH CROSS CHANNELS CSI 
	USER SELECTION WITHOUT CROSS CHANNELS CSI
	MARKOV DECISION PROCESS FOR SUS SELECTION
	THE DQN-BASED SUS SELECTION ALGORITHM


	SIMULATION EXPERIMENT AND ANALYSIS
	SIMULATION SETUP
	PERFORMANCE VERIFICATION
	IMPACT OF TOTAL NUMBER OF PUS 
	 IMPACT OF TOTAL NUMBER OF SUS
	 IMPACT OF R0
	 IMPACT OF I0 

	 PERFORMANCE COMPARISON

	CONCLUSION
	REFERENCES

