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ABSTRACT In order to promote traffic safety at freeway off-ramps, this paper designed a hybrid model
to identify a lane-changing with vision technology. The unmanned aerial vehicle was used to collect video
stream data at five off-ramps for Xi’an Raocheng freeway during weekdays. The positional information-
of-an individual vehicle is recorded at a frequency of 5 Hz. Each trajectory is composed of 30 positional
records and all trajectories are divided into lane-changing and lane-keeping units. Features such as lateral
driving speed, lane departure, and the lane deviation angle extracted from trajectory records are related to the
lane-changing behaviors. We develop a hybrid model of the Gaussian Mixture Model and the Continuous
Hidden Markov Model to identify lane-changing behaviors at off-ramps with these features. Basing on test
set, we conduct a test for the hybrid model and the result shows that the prediction accuracy of the proposed
model is as high as 94.4% for lane-changing behavior and 93.6% for lane-keeping behavior.

INDEX TERMS Continuous Hidden Markov Model, freeway off-ramps, hybrid model, lane-changing,
naturalistic driving trajectories.

I. INTRODUCTION
Numerous traffic accidents caused by improper driving
behaviors, resulting in casualties and extensive property
losses. More than 70% of road traffic accidents are caused
by unsafe driving behaviors according to the annual road
accidents report in China 2016 [1]. 4% to 7% of road traffic
accidents in China are caused by improper lane-changing
behavior [2]. However, this situation is more exiguous in
the US, with 27% of accidents being the result of faulty
lane-changing [3]. Freeway off-ramps are the sites of more
crashes than other segments, due to the interference of
lane-changing [4], [5].

Therefore, many researchers focus on the research of
lane-changing behavior for various types of road. The
arrangement of off-ramps affects driving behaviors includ-
ing the number of lanes, length of the speed-change lane,
geometry design, signs placement, gaps acceptance and so
on [6]–[9]. Laval et al. proposed a multilane hybrid model
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with the speed difference across lanes [10], [11]. Xuan et al.
proposed a lane-mark extraction algorithm based on com-
puter vision detection technology [12]. Speed, speed differ-
ence and density difference are introduced to address the
safety effect. Psychological indicators such as eyemovement,
head movement and electroencephalogram are also used to
describe the lane-changing behavior. Yuan et al. explored
a new identification method for lane changing intention by
analyzing eye movement behavior [13], [14]. The electroen-
cephalogram is used to estimate the driver’s intention and
lane departure [15]–[17]. The driver’s head motion is also
used to identify the lane changing behaviors [18], [19]. The
driver perception characteristics are used to develop a the-
oretical warning model of lane change [20]. The 3D body
posture of the driver is used to study the lane changing behav-
iors [21], [22]. Vehicle trajectories are collected from vehi-
cles and used to develop the lane-changing behavior [23]. The
Next Generation Simulation (NGSIM) trajectory data sets
are frequently employed to explore lane-changing behavior.
Przybyla et al. employed NGSIM to develop a car-following
model under natural driving data [24]–[27]. Steering features
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are extracted from the trajectories and comparedwithNGSIM
to descript the lane-changing behavior [28]–[30].

Various models are developed to improve identifica-
tion accuracies, such as Hidden Markov Model (HMM),
logistic regression model (LR), support vector machine
(SVM), and Bayesian model. Li et al. built the HMM
to identify lane-changing behavior with different variables
data [31]–[34]. Puan et al. used the support vector machine
to model lane-changing using loop detector data [35]–[37].
Balal et al. used parameters extracted from the vehicle tra-
jectories data to quantify the risk of a lane-changing event
on the freeway [38], [39]. [40], [41] designed an algorithm
to identify the lane-changing intent with a Bayesian learn-
ing methodology, using trajectories. Reference [42] com-
bined physics- and maneuver-based approaches to analyze
the lane-changing scenario, using naturalistic driving data.
Recently, deep learning and neural network are applied to
identify the lane-changing behavior, revealing the effects of
uncertainty factors. Kumar et al. established a deep learn-
ing with steering signal and vehicle speed to simulate the
lane-changing decision process [43], [44]. The improved
deep learning model is used to predict the lane-changing
behavior with traffic features, vehicle parameters and driver
motions [45]. Reference [46] developed the dynamic models
fit actual lane-change trajectories better and can generate
more accurate lane-change trajectories. Morris et al. devel-
oped a fuzzy neural network [47].

The current researches have some inadequacies. Some
inputs of identification model are hard to be recorded during
driving. For example, the collection of visual data and elec-
troencephalogram (EEG) data of driver affects the safety of
driving. Unfortunately, some input parameters of identifica-
tion models are proved to be difficult to quantify, resulting in
the low identification accuracy. Some researchers only used
vehicle operating parameters or driver psychology indicators,
lowering the prediction precision of models. Vehicle trajec-
tories are obtained to model the lane-changing behavior in
certain road scenario. Most of the research of lane-changing
is on the freeway, only focused on ordinary road sections, and
ignore the potentially high risks segments, such as ramps and
intersection. Besides, it is time-consuming and expensive to
collect massive, natural driving data from real vehicles for
lane-changing behavior with these conventional approaches.

It is significantly important to warn the lane-changing of
other vehicles in advance. The objective of this paper is to
explore features which may be able to identify lane-changing
behaviors at off-ramps in the initial stage. This paper col-
lected vehicle trajectories at off-ramps of freeway using an
unmanned aerial vehicle (UAV). A hybrid model, combining
the Gaussian Mixture Model (GMM) and Continues Hid-
den Markov Model (CHMM), is proposed to recognize lane
changing behavior observed at freeway exits. The remaining
part of this paper is organized as follows: Section 2 intro-
duced the video data collection and features extraction pro-
cess; Section 3 is the establishment of the hybrid model;

FIGURE 1. The Xi’an Raocheng freeway.

Section 4 is the model training results for lane-changing and
keeping; Section 5 gives the research conclusions.

II. DATA ANALYSIS
A. DATA COLLECTION
The video data was recorded from Xi’an Raocheng freeway,
which is a six-lane freeway and the lane width is 3.75m. The
total length of the road is 33.852 km. The horizontal radius of
the road is greater than 600m. The design speed is 120km/h.
The speed limit is 120km/h for passenger cars and 80km/h
for trucks, respectively. There are 18 interchanges totally, and
we selected five with heavy traffic flow for investigation.
The road alignment is similar at five sites. The length of the
deceleration lane is 240m. The warning signs are placed at
2km, 1km, and 500m, respectively, before exits. The vehi-
cles are divided into passenger cars and trucks, according
to ‘‘Technical Standard for Highway Engineering 2016’’.
Vehicles, of which the axis distance is greater than 3.8m, are
trucks. Otherwise, the vehicles are defined as passenger cars.

The video of the traffic flow was captured with the DJY
Inspire 2 drone from the manufacturer SZDJI SZ DJI Tech-
nology Co., Ltd., and positioned at the five chosen off-
ramp interchanges. Four batteries were prepared to support
the drone to operate continuously during investigation. The
flying altitude of the drone was 150 meters, and the size of
the area to be surveyed at each off-ramp was 350×190 m2.
On weekdays from November 5th to November 9th, 2018,
we collected video for 20 minutes at each site every day in the
morning peak hours (7:00-9:00 am). During the investigation
period, the air pollution index (API) was less than 100, and the
weather was clear, and visibility was sufficient for HD video.
500 minutes of video was collected. Fig.1 is the investigation
locations at Xi’an Raocheng freeway. Fig.2 is the video image
collected by UAV.

B. VEHICLE TRAJECTORIES EXTRACTION
The off-ramp influence area in this study is 150m past the
ramp and 200m before, and there is no on-ramp in this area.
The slope of the road segment is less than 3%. The vehicle tra-
jectories were extracted from the video images at a frequency
of 5Hz by the Tracker.
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FIGURE 2. The collected video image from UAV.

We used the software Tracker to obtain video trajectories
automatically. Tracker is a free video analysis and modeling
tool based on the Open Source Physics Java framework, and
it consists of a JavaTMruntime environment and Xuggle video
engine. In our study, we can track the individual vehicle
position, velocity, and acceleration speed automatically and
manually.

The vehicle extraction process is as follows.
Step 1: Coordination setting. A coordinate reference sys-

tem is set up in the video image as Fig. 3 to calculate the
vehicle positions. In order to utilize the further analysis pro-
cess, the X-axis is the central line of the outer lane closing
to the exit. The Y-axis is perpendicular to the central line
of the lane. The right direction is the positive direction of
X-axis, and the upward direction is the positive direction of
Y-axis.

FIGURE 3. The coordinate system in the video image.

Step 2: Calibration. The spatial calibration is required to
transform image space proportionately to the ground plane
using a standard length. In this study, the 3.75m of lane width
is used to calibrate the position of vehicles on the ground.

Step 3: A one-second video is composed of 25 frames.
We recorded the positional of vehicles every five frames.
A coordinate reference system is set up in the video to
calculate positions of vehicles at different times. We set the
target vehicle as a template image. The software recorded
the features of the target vehicle and tracked it automatically
as Fig. 4.

FIGURE 4. The traveling trajectory of vehicles.

The red diamond-shaped points represent the trajectories
of the target vehicle in Fig. 4. The section of the vehicle
body in the red circle is the template image we set up and
it is significantly different from the environment around.
Therefore, the vehicle shadow does not affect the extraction
of the vehicle trajectory.

Step 4: We calculated parameters for each vehicle. Param-
eters such as the coordinate’s values of X-axis and Y-axis,
distance to the origin point, the vehicle speed in space, speed
component in X-axis, speed component in Y-axis, accel-
eration speed in space, acceleration component in X-axis,
acceleration component in Y-axis.

Fig. 5 is the position of each vehicle in the longitude
direction. In Fig. 5, t is the sampling time interval, and x is the
value of X-axis in the image, which multiple 100m is the real
distance. The speed component in X-axis is calculated from
the line. In Fig. 6, t is the sampling time and y is the value of
Y-axis in the image, which multiple 100m is the real distance.
The speed component in Y-axis is calculated from the line.

FIGURE 5. The vehicle position at the longitude direction.

FIGURE 6. The vehicle position at the lateral direction.

C. TRAFFIC FLOW COLLECTION
The images of video demonstrate that 17% of the vehicles
enter the off-ramp after a lane-changing behavior. The drone
also flies down 44m to collect the traffic flow features in
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FIGURE 7. The automatic detection of Flux.

this experiment. Four virtual loops have been placed in the
target lanes as Fig. 7. The vehicles with length more than
6m are defined as trucks. The features such as traffic volume,
mean speed and traffic density were calculated automatically
for mainline by software Flux. Then we obtain truck percent-
age manually. Records of any vehicle speeds over 120km/h
are eliminated. The summary of traffic features is as Table. 1.

TABLE 1. Traffic flow statistics at five sites.

Table. 1 is the traffic flow statistics of Xi’an Raocheng
freeway. The traffic flow is between 3500 pcu/h∼4700 pcu/h.
The 85% speed is above 90km/h and the mean speed is
77km/h. The truck percentage is around 20% percentage,
which shows that the prevailing vehicle type is the passenger
car for this freeway.

D. FEATURE EXTRACTION
We divide drivers’ behaviors into lane-changing and lane-
keeping. It is found that the lane-changing behavior lasts
six seconds for analyzing the recorded data. Therefore,
we preferred 6 seconds window to identify lane-changing and
keeping behavior. A one-second record consists of 25 frames
in this study. We recorded parameters of one point every five
frames. Five records of each parameter are extracted, respec-
tively, per second and therefore, we obtained 30 records for
each trajectory sample. Finally, we extracted 205500 records,
consisting of 3410 samples of lane-changing and 3440 keep-
ing samples at freeway exits.

Correctness is a characteristics index, and it is one of
the most important measurements for the quality of data.
The correctness can be measured as (1):

Qc = 1−
The number of incorrect data records
Total number of incorrect data records

, (1)

In order to evaluate the quality of the driving trajectory
data we extracted from the video stream, 50 samples were
randomly selected from all trajectory samples, because the
characteristics of the subsample set can represent the whole.

In this study, Grubbs outlier test is used to distinguish the
outliers of the original data based on the speed of each sample
point of each trajectory as (2). The outliers were treated
as incorrect data records, and replaced by the mean of the
adjacent points. Then correctness is calculated to evaluate the
data based on the number of outliers.

Gj =
|v− v|
S
≥ G(p, n), (2)

where Gj denotes Grubbs’ test statistic. v denotes the speed
of each sample calculated from one trajectory. v denotes
the mean of speed from one trajectory sample. S denotes
the standard deviation of speed from one trajectory sample.
G(p, n) denotes Grubbs’ critical value. p denotes confidence
interval and generally, p is set to 0.95. n denotes the number
of records of each sample and it is 30 in the study. The value
ofG(0.95, 30) is 2.745, found from the table of critical values
for Grubbs’ test.

The correctness of each sample is calculated as (3) :

Qc = 1−
The number of outlier

30
, (3)

Therefore, the correctness of the subsample is calculated
as the following:

Qc =
1
50

50∑
c=1

Qc = 98.47%

The correctness of the total sample is 98.47%. It shows that
the quality of data we extracted is high enough for modeling.

Finally, we collected 205500 records including 3410 tra-
jectory samples of lane-changing (L-C) and 3440 trajectory
samples of lane-keeping (L-K). Features such as lane depar-
ture value, speed, acceleration speed, angle between moving
direction and X-axis, angle between r and Y-axis are summa-
rized as Table. 2. Each parameter is interpreted as Fig. 8.

FIGURE 8. The demonstration of each parameter.

Table. 2 shows that the parameters such as lateral driving
speed, lane departure, and the lane deviation angle can be
used to explain lane-changing behavior at the freeway off-
ramps. Therefore, we use the vector (1y, vy, θv) as a feature
vector to develop identification model of trajectories.
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TABLE 2. The parameters statistics.

The independent T -test is a statistical test, which deter-
mines whether there is a statistically significant difference
between the means in the above two unrelated groups, for
the same continuous and dependent variable. Table. 3 is the
independent test samples results.

TABLE 3. Independent samples test.

Table. 3 shows that there are only three variables signifi-
cant which can represent the driving behaviors including 1
y,vy, and θv.1y in Table. 3 denotes lane departure as (4).
1 yt means lane departure at time t . yt means coordinate of
Y-axis at time t and y0 means coordinate of Y-axis at time 0.

1yt = yt − y0, (4)

In Table. 3, the lateral driving speed of the vehicle, lane
departure, and lane deviation angle are with a statistically
significant difference between the means in lane-changing
and keeping. As shown in Table. 2, the mean values of driving
lateral speed for lane-changing and keeping are 0.54 m/s and
-0.05 m/s respectively. The mean values of lane departure

for lane-changing and keeping are 1.10 m and -0.15 m
respectively. The mean values of lane deviation angle for
lane-changing and keeping are 2.02◦ and 0.36◦ respectively.

III. METHODOLOGY
In this paper we established a hybrid model to identify and
predict lane-changing behavior at the freeway off-ramps. It is
important to recognize driving behavior in the initial stage,
which can be implemented by continuous recognition. There-
fore, CHMM is employed in this study.

A. GAUSSIAN MIXTURE MODEL
GMM is employed to describe the probability distribution
of all continuous variables we extracted and describe the
correlation between every two different variables. The GMM
consists of K Gaussian models as (5).

G (x) =
∑K

k=1
Ckg (x;µk , 6k) , (5)

where g(x; µk , 6k ) indicates the k th sub-Gaussian model.
The probability density function of the Gaussian model is
shown as (6). x is the lane-changing samples for training and
it consists of d continuous variables. The value of Ck denotes
the weight of the k th sub-Gaussianmodel, and they are related
to the composition of x. µk and 6k are the mean matrix
and covariance matrix of all the continuous variables in the
k th sub-Gaussian model, respectively.

g (x;µ,6)=
1√

(2π)d |6|
exp

[
−
1
2
(x−µ)T 6−1 (x − µ)

]
,

(6)

In order to get all the parameters of GMM from lane-
changing samples, the Maximum Likelihood Estimation
and the Expectation-Maximization algorithm (E-M) can be
combined.

Because the probability of each sample generated byGMM
is very small, we use the log-likelihood function as (7).

p (x|Ck , µk , 6k) =
∑N

i=1
log

{∑K

k=1
Ckg(xi;µk ,6k )

}
,

(7)

p(x|Ck , µk ,6k ) denotes the probability of all the sample
points generated by the GMM. Generally, we get the last
parameters when p(x|Ck , µk ,6k ) reaches a maximum.

The Expectation-Maximization (E-M) algorithm consists
of an E-step and an M-step. Expectation step is to calculate
the expectation ϕ(i, k) as (8).

ϕ (i, k) =
Ckg (x;µk , 6k)∑K
k=1 Ckg (x;µk , 6k)

, (8)

where ϕ(i, k) denotes the probability of the k th sub-Gaussian
model generating the ith lane-changing sample point.

The M step is to recalculate Ck , µk and 6k based on
ϕ(i, k). The iterating E and M step stop until the
log-likelihood converges.
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B. CONTINUOUS HIDDEN MARKOV MODEL
A Hidden Markov Model is a stochastic model consisting
of a Markov chain and stochastic process for hidden state
prediction. In this study, the hidden states are lane-changing
and lane-keeping. Each hidden state cannot be observed, but
it can generate observation vectors, consisting of several vari-
ables. In this study, these variables are lateral driving speed,
lane departure, and the lane deviation angle. Fig. 9 shows the
Markov process.

FIGURE 9. Markov process.

In Fig. 9, s(t−1),s(t) and s(t+1) denotes the hidden state at
time t−1, t and t+1, respectively. The probability of a hidden
state in current moment only depends on the previous hidden
state: p(s(t)|s(t − 1) . . . s(1)) = p(s(t)|s(t − 1)).x(t − 1), x(t)
and x(t+1) denotes the observation vector at time t−1, t and
t+1, respectively and the probability of an observation vector
only depends on the hidden state generated by p(x(t)|s(t −
1) . . . s(1), x(t − 1) . . . x(1) = p(x(t)|s(t)).
Because of the variables extracted from images are contin-

uous numerical variables, the common basic HMM is suitable
for discrete variables. Then we choose the Continuous Hid-
den Markov Model (CHMM) to identify driver behaviors.
A basic HMM consists of three parameters: π , A, B. π is

the hidden state probability distribution at the initial time.A is
the state transition probability matrix, which is made up of the
transition probability between different hidden states, such as
the lane-changing state and lane-keeping state.B is the obser-
vation probability matrix, which is made up of the probability
that the observation vector observed at each hidden state. In a
CHMM, parameterB has some changes thatB is divided into
three parts, and they are C, µ, and 6. They are generated by
GMM as (9)∼(10). Therefore the general model of CHMM
is λ = (π , A, C, µ, 6).

bj (Ot)

=

∑K

k=1
Cjkg

(
Ot ;µjk , 6jk

)
=

∑K

k=1
Cjkbjk (Ot) , (9)

g
(
Ot ;µjk , 6jk

)
=

1√
(2π)d |6jk |

exp
[
−
1
2

(
Ot − µjk

)T
6−1jk

(
Ot − µjk

)]
,

(10)

where bj(Ot ) denotes the probability of the observation vec-
tor Ot generated by state j. g is the k th sub Gaussian model
of GMM. The GMM is used to describe the probability

distribution of three continuous variables and we can get the
probability of any observation vector made up of these three
continuous variables by putting them into GMM. Cjk is the
weight value of the k th sub-Gaussian model at hidden state j.
µjk is the mean matrix of the k th sub Gaussian model at
hidden state j, 6jk is the covariance matrix of the k th sub-
Gaussian model at hidden state j.

In order to estimate the parameters π , A, C, µ, and 6,
the Baum-Welch algorithm has been applied. It combines the
Forward algorithm, Backward algorithm and the E-M algo-
rithm together. The Forward algorithm is used to calculate the
forward variable that is indicated by αt (i) as (11)∼(12) and
it is the joint probability of the partial observation sequence
(Oτ , τ = 1, 2 . . . t), consisting of t observation vectors,
besides given that the hidden state is i at time t .

αt (i) = p{(O1 . . .Ot , st = i)|λ = (π,A,C, µ,6)}, (11)

αt (i) =
[∑N

j=1
αt−1 (j) aij

]
bi (ot) , (12)

The Backward algorithm is used to calculate the backward
variable that is indicated by βt (i) as (13)∼(14) and it is the
joint probability of the partial observation sequence (Oτ , τ =
t+1, t+2 . . ., consisting of T -t observation vectors, besides
given that the hidden state is i at time t .

βt (i) = p{(Ot+1 . . .OT , st = i)|λ = (π,A,C, µ,6)}, (13)

βt (i) =
∑N

j=1
aijbj (ot+1) βt+1 (j) , (14)

The E-M algorithm is used to iteratively recalculate the
parameters and we obtain a maximum likelihood estimate of
the CHMM. By dividing likelihood estimate function p(O|λ)
into five parts, we can get the formats of π , A, C, µ, and 6
respectively and p(O|λ) is the conditional probability of the
entire observation sequence OO generated by the model.
The E-M algorithm consists of the Expectation step and the

Maximization step. The E step is used in estimation of two
probability variables γt (i), ξt (i, j) as (14)∼(15) and initialize
the values of π , A, C, µ, and 6. The M step is to re-estimate
them based on γt (i), ξt (i, j), until they all reach convergence.

γt (i) =
αt (i) βt (i)∑N
i=1 αt (i) βt (i)

, (15)

ξt (i, j) =
αt (i) aijbj (ot+1) βt+1 (j)∑N

I=1
∑N

j=1 αt (i) aijbj (ot+1) βt+1 (j)
, (16)

where γt (i) is the probability that the hidden state is i at
time t , besides given the observation sequences O. ξt (i,j) is
the probability that the hidden states are i and j at time t and
t+1, respectively, besides given the observation sequencesO.

IV. LANE-CHANGING MODEL
A. MODEL TRAINING
In our study, lane-changing detection and identification are
achieved in a continuous manner. In a continuous identifier,
each complete maneuver is modeled as a Markov model.
The general model of the CHMM is λ = (π , A, C, µ, 6).
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λC and λK has been trained by a set of trajectory samples
for the complete lane-changing maneuver and lane-keeping
maneuver, respectively.

In this training step, all the trajectories samples
we recorded at freeway off-ramps are classified into
lane-changing and keeping behavior. Each trajectory sample
consists of 30 records and each record is just a feature vector,
consisting of lateral driving speed, lane departure and the
lane deviation angle. Each feature vector may be generated
by the different hidden states, and the hidden states are
the lane-changing and lane-keeping. Each lane-changing or
keeping driving trajectory consists of 30 feature vectors and
each vector is generated by lane-changing or lane-keeping
hidden state.

In order to identify lane-changing behavior, λC and λK are
trained, respectively. We trained λC and λK based on lane-
changing trajectory samples and lane-keeping trajectory sam-
ples respectively. Training λC contains the following three
steps.

Step 1: Initialization. Before iterating to determine all
the parameters of λC , it is necessary to initialize all the
parameters and they are K , π , A, C, µ, and 6. The GMM
is the most classical method to extract the image from the
background and basically 3 to 5 Gaussian models making up
GMM to characterize the features of each pixel in the image.
Therefore, in order to simplify the model, we set the initial
value of K to 3. Because we chose lane-changing trajectory
to train λC , it is logical to consider that the initial hidden
state is the same as the last state and it is a lane-keeping
state. Therefore, the initial lane-changing state probability is
set to zero and lane-keeping state probability is set to one,
respectively. We gave A, C, µ, and 6 initial values randomly
at the same time.

Step 2: Determining lane-changing trajectory samples as
observation sequence Oτ . Each sequence is a trajectory
sample consisting of 30 feature vectors, and these feature
vectors are in order. We randomly chose 66% of the lane-
changing trajectory samples being set as the model training
set (2251 samples) and the remaining 34% was set as a test
set (1159 samples) based on the Holdout cross-validation
method. Table. 4 presents the partial lane-changing trajectory
sample records.

Step 3: Iterative optimization. The input of iteration is
initial values containing π , A, C, µ, 6 and the observation
sequence Oτ consisting of lateral driving speed of vehicle vy,
lane departure 1y and speed deflection angle θv. The iden-
tification model is the CHMM mixed with the GMM. The
observation probability matrixB consists ofC,µ,6, and they
are generated by the GMM. Two identification models are
lane-changing and lane-keeping. Each identification model
contains six Gaussian models belonging to two GMM and
each GMM has three.

Under the MATLAB 2014Ra platform, we utilized these
steps based on the Baum-Welch algorithm. Finally, the log-
likelihood converges in forty-one iterations as Fig. 10. And
we obtained the lane-changing identification model λC .

TABLE 4. The training set samples.

FIGURE 10. The iterative procedure.

λc is made up of π , A, C, µ, and 6 as follows.

π =

[
1
0

]
,

Matrix π indicates that the probability of the initial hidden
state of lane-changing is zero and lane-keeping is one.

A =
[
0.8632 0.1368
0.1715 0.8285

]
,

Matrix A is the probability transition matrix. The transition
probability from the current lane-changing to the next lane-
changing state is 0.8632. The transition probability from the
current lane-changing to the next lane-keeping is 0.1368.
The transition probability from the current lane-keeping state
to the next lane-keeping is 0.8285. The transition probabil-
ity from the current lane-keeping to the next lane-changing
is 0.1715.

C =
[
0.4785 0.2399 0.2816
0.4871 0.3430 0.1699

]
,
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FIGURE 11. The probability density distribution of lateral speed; (a) is the
probability density distribution of lateral speed; (b) is the probability
cumulative distribution of lateral speed.

The first row of matrixC indicates the weights for the three
Gaussian models in the lane-changing state. The second row
indicates the weights for the three Gaussian models in the
lane-keeping state.

µ(:, :, 1) =

 1.6428 0.5876
0.5640 0.4500
2.5996 0.2351

 ,
µ(:, :, 2) =

 0.8943 0.2015
0.6274 0.3636
2.1501 0.5011

 ,
µ(:, :, 3) =

 1.0449 0.9450
0.4404 0.1671
1.8961 0.6000

 ,
6(:, :, 1, 1) =

 0.0420 −0.0161 0.0116
−0.0161 0.1168 0.0023
0.0116 0.0023 0.0250

 ,
6(:, :, 2, 1) =

 0.1048 −0.0028 0.0024
−0.0028 0.0157 −0.0027
0.0024 −0.0027 0.0123

 ,
6(:, :, 1, 2) =

 0.0733 0.0371 0.0377
0.0371 0.0318 0.0221
0.0377 0.0221 0.0325

 ,

FIGURE 12. The probability density distribution of lane departure; (a) is
the probability density distribution of lane departure; (b) is the
probability cumulative distribution of lane departure.

6(:, :, 2, 2) =

 0.0419 0.0271 0.0819
0.0271 0.0380 0.0660
0.0819 0.0660 0.3411

 ,
6(:, :, 1, 3) =

 0.0870 0.0514 −0.1651
0.0514 0.0450 −0.1133
−0.1651 −0.1133 0.3858

 ,
6(:, :, 2, 3) =

 0.0100 0.0001 0.0001
0.0001 0.0126 −0.0001
0.0001 −0.0001 0.0100

 ,
The first column of µ(:,:,m) indicates the mean value

of vector (1y, vy, θv) of the mth Gaussian model in the
lane-changing state. The second column of µ(:,:,m) indicates
the mean value of vector (1y, vy, θv) of the mth Gaussian
model in the lane-keeping state.

B. THE DISTRIBUTION FEATURE OF VARIABLES
According to the lane-changing model λC we trained, we can
extract the probability density and probability distribution of
every continuous variable in lane-changing hidden state and
in the lane-keeping state. They show the individual features
of lane-changing behavior different from lane-keeping as
Fig. 11-13.

VOLUME 7, 2019 103723



T. Xu et al.: Hybrid Model for Lane-Changing Detection at Freeway Off-Ramps Using Naturalistic Driving Trajectories

FIGURE 13. The probability density and distribution of lane deviation
angle; (a) is the probability density for the lane deviation angle;(b) is the
cumulative probability distribution of lane deviation angle.

Fig. 11 shows that the lateral speed of lane-changing
mainly distributes in the range of (1, 2), and distributes in
the range of (0,1) of lane-keeping.

Fig.12 shows that the lane departure of lane-changing
mainly distributes in the range of (0.5, 1). And it mainly
distributes in the range of (0, 0.5) of lane keeping.

Fig. 13 shows that the lane deviation angle of lane-
changing mainly distributes in the range of (1, 2.6), and
mainly distributes in the range of (0, 1) of lane keeping.

They show that there are obvious distinctions in the dis-
tribution of lateral driving speed, lane departure, and speed
deflection angle between lane-changing and lane-keeping
behavior. It proves that it is reasonable to set these three
variables as the feature of lane-changing behavior.

C. LANE CHANGE PREDICTION
The workflow of predicting lane-changing and lane-keeping
is shown in Fig. 14. The trajectory samples extracted from the
traffic flow is processed and set as an observation sequence
Oτ . Oτ is the input of λC and λK . Then p(Oτ | λC ) and p(Oτ |
λK ) is calculated for prediction.
In order to test the accuracy of predicting the driving

behavior of λC and λK we trained, 34% trajectory samples
we collected were considered as a test set based on the Hold-
out cross-validation method. 1159 lane-changing trajectory

FIGURE 14. The workflow of prediction.

TABLE 5. Lane change prediction.

TABLE 6. The accuracy of testing.

samples and 1170 lane-keeping trajectory samples are set as
a test set to validate the driving state of each sample. Table. 5
presents the partial test results.

Table. 6 shows the accuracy of predicting lane-changing
and lane-keeping behavior at the freeway off-ramps, by the
proposed model. The accuracy of predicting the lane-
changing behavior is 94.4%. The accuracy of predicting the
lane-keeping behavior is 93.6%.

V. CONCLUSIONS
The paper presents a hybrid model for the lane-changing pre-
diction at freeway off-ramps. We collected 205500 trajectory
records at five investigation sites. The experiment draws the
following conclusions.

(1) The parameters such as lateral driving speed, lane
departure and the lane deviation angle obtained from the driv-
ing trajectories can be applied to explain the lane-changing
behavior at freeway off-ramps.

(2) The identification models can achieve 94.4% accuracy
for lane-changing and 93.6% for lane-keeping.

(3) The trained models can predict driving behaviors with-
out additional sensors on the vehicle. It can be integrated into
traffic cameras to detect the unsafe driving behavior and give
warning to drivers.
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