
Received July 13, 2019, accepted July 26, 2019, date of publication July 30, 2019, date of current version August 14, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2931953

Automated Refactoring for Stampedlock
YANG ZHANG 1, SHICHENG DONG1, XIANGYU ZHANG2, HUAN LIU1,
AND DONGWEN ZHANG1
1School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
2Department of Computer Science, Purdue University, West Lafayette, IN 47906, USA

Corresponding author: Yang Zhang (zhangyang@hebust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61440012, in part by the Scientific
Research Foundation of Hebei Educational Department under Grant ZD2019093, and in part by the Fundamental Research Foundation of
Hebei Province under Grant 18960106D.

ABSTRACT StampedLock, proposed in JDK 1.8, provides many interesting features, such as optimistic
read locks and upgrading/downgrading locks to improve the design of concurrent programs instead of
employing pure read/write locks. Existing refactorings have proposed algorithms to convert locks, but
there are a few refactorings that use these promising features of StampedLock. To illustrate a possible
refactoring, this paper first shows three code transformations based on StampedLock. Then, this paper
presents CLOCK, an automated refactoring tool that helps developers convert the synchronized lock into
the StampedLock. An algorithm for reentrance analysis is proposed for the precondition validation. The
write lock, read lock, optimistic read lock, and upgrading/downgrading lock are inferred and refactored.
CLOCK is evaluated with the SPECjbb2005 benchmark and two real-world applications, Xalan and FOP.
A total of 66 classes are modified by searching approximately 395KSLOC and applying the refactoring,
achieving an average of 22 classes per benchmark. The experimental results show that CLOCK can help
developers with refactoring for StampedLock and save developer effort.

INDEX TERMS Automated refactoring, StampedLock, reentrance analysis, optimistic read lock, upgrad-
ing/downgrading lock.

I. INTRODUCTION
Lock, as one of the synchronization mechanisms, is used
to ensure the correctness of shared resources access in
concurrent programs. Commonly, a lock provides exclusive
access to a shared resource so that only one thread at a
time can acquire the lock while other threads will have to
wait for the release of the lock. Locks are widely used, but
they suffer from some problems, such as deadlock, livelock,
priority reversion, convoying and lock contention. Among
them, lock contention often leads to poor scalability and low
performance, which comprise as a main challenge in the
multi-core era.

Various synchronization mechanisms, such as software
transactional memory (STM) [1], [2] and the lock-free
algorithm (LFA) [3], also exist for concurrent program-
ming. Similar to locks, they have benefits and draw-
backs. STM and LFA provide non-blocking execution and
seem very suited for concurrent programs running on a

The associate editor coordinating the review of this manuscript and
approving it for publication was Mohammad Anwar Hossain.

multi-core/many-core processor. However, STM is not appli-
cable if I/O or other irreversible operations exist. Further-
more, for those concurrent programs with a frequent data
race, most transactions will have to roll back and start over,
likely resulting in poor performance. Analogous to STM,
programs with the LFA run continuously without block-
ing, making full utilization of multi-core processors. How-
ever, designing a correct and high-performance LFA usually
requires expertise and seems difficult for typical developers.
Although locks are susceptible to lock contention and other
promising techniques for synchronization mechanisms (e.g.,
STM and LFA) have been proposed, it seems that locks will
continue to be used in the future.

Java has provided several locks, such as the synchro-
nized lock, ReentrantLock, ReentrantReadWriteLock, and
StampedLock. Early in JDK1.0, the synchronized lock
was introduced as a synchronized method or a synchro-
nized block. With an implicit monitor object and without
explicit release operations, developers can use and under-
stand this lock easily. Since JDK1.5, Java has introduced
both ReentrantLock and ReentrantReadWriteLock in the

104900 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-8641-2660

Y. Zhang et al.: Automated Refactoring for Stampedlock

java.util.concurrent.locks package to support an explicit
locking mechanism. ReentrantLock has the same behavior
and semantics as the synchronized lock but provides extended
capabilities, such as a fairness strategy, trying to acquire a
lock and interrupting lock acquisition. ReentrantReadWrite-
Lock provides read and write locks. It allows the read lock to
be held simultaneously by multiple reader threads as long as
there are no writers, and the write lock is exclusive. However,
ReentrantReadWriteLock may suffer from severe starvation
if there are a number of reads but very few writes. The
fairness strategy may help improve this problem but may
compromise throughput [4]. With JDK1.8, StampedLock was
introduced and involved many interesting features that were
unsupported by previous Java locks, such as optimistic read,
upgrading/downgrading lock, and acquiring or releasing a
lock with a stamp value. Similar to ReentrantReadWriteLock,
StampedLock also has read and write locks by the methods
asReadLock() and asWriteLock(), but it does not seem to
suffer from severe starvation.

Both academic and industrial sectors have proposed tech-
niques and tools for refactoring among locks in the past few
years. In the academic community, Schäfer et al. [5] proposed
a refactoring tool Relocker with the techniques of converting
the synchronized lock to a ReentrantLock and of converting a
ReentrantLock to a ReentrantReadWriteLock. With Relocker,
developers can easily select a relatively high-performance
lock by tuning the performance among these locks. Tao et al.
[6] proposed an automated refactoring approach for Java
concurrent programs based on synchronization requirement
analysis. Their approach could find refactoring opportunities
for splitting locks and converting locks to atomic operations.
In the industrial setting, some commercial refactoring tools,
such as concurrency-oriented refactoring for JDT [7] and
LockSmith [8], were integrated into the modern integrated
development environment (IDE) IntelliJ IDEA and Eclipse
respectively. Both tools could split and merge locks, convert
among locks, and make the field atomic.

Although many techniques and tools have been proposed
to convert locks, we are not aware of any works that perform
refactoring for StampedLock. The optimistic read lock and
upgrading/downgrading lock provided by StampedLock pro-
vide an alternative for developers to improve the design of
concurrent programs. Therefore, we attempt to work on the
refactoring for StampedLock by taking advantage of these
advanced locking operations.

Refactoring from the synchronized lock to StampedLock is
non-trivial and challenging. First and foremost, the behavior
semantic of StampedLock is different from the synchronized
lock. The synchronized lock is reentrant while StampedLock
is not. Hence, we need to check reentrance and avoid such
refactoring if reentrance occurs. Second, the synchronized
lock only uses the synchronized keyword while Stamped-
Lock owns multiple lock modes, such as the write lock,
read lock and optimistic read lock. Determining how to infer
these locks accurately requires more program analysis. Third,
compared with inferring the read/write lock, inferring the

upgrading/downgrading lock is more difficult. Automated
refactoring tools need to know where and how to upgrade/
downgrade a lock.

To meet these challenges, this paper focuses on refactoring
support for the advanced locking operations, e.g., upgrad-
ing/downgrading locks and optimistic read locks provided by
StampedLock. We present CLOCK, an automated refactoring
tool that helps developers with refactoring the synchronized
lock to StampedLock. We propose an algorithm for reentrance
analysis as the precondition validation and the regulation for
inferring the write lock, read lock, optimistic read lock and
the upgrading/downgrading lock. CLOCK is evaluated with
the SPECjbb2005 benchmark and two real world applica-
tions Xalan and FOP. A total of 66 classes are modified by
searching among approximately 395KSLOC and applying
the refactoring with an average of 22 classes per benchmark.
Experimental results show that CLOCK can help the devel-
oper with refactoring and save developer effort.

This paper makes the following contributions:
• We describe the novel problem of converting the syn-
chronized lock to StampedLock.

• We design a detection algorithm for reentrancy and
inferring regulation for locks.

• A prototype tool, named CLOCK, is implemented as an
extension to Eclipse IDE.

• CLOCK is evaluated on several Java benchmarks
and applications, demonstrating the effectiveness of
CLOCK.

The rest of this paper is organized as follows. Section II
presents three motivating examples. Section III presents our
refactoring framework and some details. Some practical prob-
lems are considered in Section IV, and a screenshot of
CLOCK is shown in Section V. Section VI shows the exper-
imental evaluation of the refactoring. The related works of
literature are examined in Section VII and conclusions are
drawn in Section VIII.

II. MOTIVATING EXAMPLES
This section presents three motivating examples to demon-
strate the rationale. These examples show a variety of possi-
ble improvements of lock usage that may be introduced by
StampedLock

Figure 1 shows three implementations of a method delete()
based on the built-in monitor, ReadWriteLock and Stamped-
Lock. In this method, it first validates if the value key already
exists or not, and then deletes the value key if it exists. This is
a common practice for data structures to remove an element.

Figure 1(a) presents the method delete() based on the built-
in monitor. The synchronized modifier is added to the method
declaration to make it synchronized. If this method is con-
verted to the read-write lock viaRelocker [5], a write lockwill
be inferred as shown in Figure 1(b), because Relocker finds
the side-effect of the method remove(). However, we notice
that the method remove() will be executed only if the node
exists. If the node does not exist, this method is not exe-
cuted at all. Only the method contain() is executed and has

VOLUME 7, 2019 104901

Y. Zhang et al.: Automated Refactoring for Stampedlock

FIGURE 1. Method delete() based on built-in monitor, ReadWriteLock and StampedLock. (c) shows how to
upgrade a read lock to a write lock.

FIGURE 2. Method computeAndGet() based on built-in monitor, ReadWriteLock and StampedLock. (c) shows
how to downgrade a write lock to a read lock.

no side-effect. Therefore, a read lock should be inferred
since it may introduce more concurrency. This situation often
occurs for those data structures in which most of the nodes do
not exist, especially for a newly created data structure. Hence,
for this code segment, we should first use a read lock to test
the existence of the value key, and only when the conditional
statement becomes true will the write lock be used.

Figure 1(c) shows an alternative by taking advantage of
the upgrading lock of StampedLock. It first employs a read
lock (Line 3), and then judges if the value key exists or not.
It upgrades this lock to a write lock if the value key exists
(Lines 7-13). It leverages the method tryConvertToWrite-
Lock() of the class StampedLock to perform the state con-
version of the lock slock. If the conversion succeeds, a valid

stamp ws will be returned and the argument stamp will be
updated (Line 9). Even if the method tryConvertToWrite-
Lock() fails, it may release the read lock (Line 11) and acquire
awrite lock (Line 12) to remove the value key.When releasing
the lock, it uses the method unlock() of the class StampedLock
with the value stamp.

Figure 2 shows three implementations of the method com-
puteAndGet() based on the built-in monitor, ReadWriteLock
and StampedLock. This method first computes the value of
the field length, and then assigns the value length to the local
variant a, b and c.

Figure 2(a) shows the method computeAndGet() based on
the built-in monitor. When this method is refactored to Read-
WriteLock by Relocker [5], as shown in Figure 2(b), a write

104902 VOLUME 7, 2019

Y. Zhang et al.: Automated Refactoring for Stampedlock

FIGURE 3. Method getLength() based on built-in monitor, ReadWriteLock and StampedLock. (c) shows how to
convert a built-in monitor to an optimistic read lock.

lock will be inferred since Relocker finds the side-effect that
the field length will be updated. However, the method com-
puteAndGet() only has an update statement (line 3) followed
by several field-read statements (lines 4-6). It may have a
performance penalty for those read operations when it still
holds a write lock. Developers can attempt to downgrade
a write lock to a read lock after the update operation is
executed.

Figure 2(c) shows the method computeAndGet() based on
StampedLock. It first acquires a write lock (Line 4), and
then attempts to convert to a read lock (Lines 7-13) just
after the update of the field length. To downgrade a lock,
the method tryConvertToReadLock() of the class Stamped-
Lock is leveraged to perform the state conversion of the lock
slock. The variable stamp will be updated if the conversion
succeeds; otherwise, it can release thewrite lock and acquire a
read lock.

Figure 3 shows the method getLength() based on the built-
in monitor, ReadWriteLock and StampedLock. This method
only reads the field length and returns it as the returned value.

Figure 3(a) shows that the method getLength() only returns
the value of the field length with the synchronized declara-
tion. When this method is refactored to ReadWriteLock by
Relocker [5], as shown in Figure 3(b), a read lock will be
inferred since Relocker cannot find any side-effect of this
method. Although a read lock is a good choice and introduces
more concurrency, this method can be further improved to use
an optimistic read lock. We notice that this method has a very
short read-only code segment that meets the StampedLockąŕs
requirement to use the optimistic read lock; this code segment
may continue to reduce contention and improve throughput.

Figure 3(c) shows an alternative of the method getLength()
based on the StampedLock to read the field length. Instead
of acquiring a lock, it first leverages the method tryOpti-
misticRead() to attempt the optimistic read (Line 4), and
then reads the field length directly (Line 5). Since reading
the field in the optimistic mode may be wildly inconsistent,

the method validate() of the class StampedLock is used
to check consistency (Line 6). If the current optimistic
mode is invalidated by a write operation, it enters the read
mode by acquiring a read lock and reads this length again
(Lines 7-12).

III. REFACTORING FOR STAMPEDLOCK
In this section, we first present an overview of refactoring for
StampedLock. Then, we discuss the design of the individual
components in more detail in Section III-B to III-D.

A. REFACTORING FRAMEWORK
The framework of converting a program based on the syn-
chronized lock into one based on StampedLock is presented
in Figure 4. The program analysis tool WALA [9] is used
to perform analysis based on the WALA intermediate rep-
resentation (IR). Precondition validation is used to validate
whether a synchronized lock can be transformed or not.
Reentrance analysis is leveraged to check the reentrance for
a synchronized method or block. Precondition checking also
attempts to find all the thread communication operations to
which StampedLock cannot be applied. All locks are located
by a visitor pattern analysis. They further undergo a side
effect analysis and are converted to write lock, read lock,
optimistic read lock, upgrading lock and downgrading lock.

B. PRECONDITION
CLOCK checks two preconditions before refactoring. These
preconditions are inherent to how StampedLock is used and
are not the limitations of our refactoring tool.

1) CONDITIONAL OPERATIONS
The methods wait(), notify() and notifyAll() are used to
establish the communication between the threads. How-
ever, StampedLock does not support these methods. It is
mainly because it supports the coordinated usage across
multiple lock modes, so it does not directly implement the

VOLUME 7, 2019 104903

Y. Zhang et al.: Automated Refactoring for Stampedlock

FIGURE 4. The refactoring framework.

interface Lock such as ReentrantLock and ReentrantRead-
WriteLock do. Instead, it provides themethods asReadLock(),
asWriteLock() or asReadWriteLock() to be viewed as a read-
write lock. Unfortunately, it does not support a condition
on the lock returned by invoking these methods and if the
Lock.newCondition() method is called, an exception Unsup-
portedOperationException will be thrown. Since Stamped-
Lock does not support conditional operations, CLOCK
checks if a method contains them.

2) REENTRANCE ANALYSIS
Wloka et al. [10] presented a mostly-automated refactor-
ing that makes programs reentrant by replacing the global
state with the thread-local state. They defined the reen-
trance as ‘‘distinct executions of program on distinct inputs
cannot affect each other’’. Different from their work, reen-
trance in our work means that if a synchronized lock is
acquired with a monitor, this lock may be re-acquired with
the samemonitor. Some locks can be acquiredmultiple times.
For example, ReentrantReadWriteLock supports a maximum
of 65,535 recursive write locks and 65,535 read locks. Some
locks are not reentrant, and StampedLock is a typical exam-
ple. If a lock is not reentrant and a thread tries to acquire the
lock held by other threads, the acquisition will not succeed.
In other words, a method (or block) that is protected by the
StampedLock should not call another method (or block) that
may try to re-acquire locks with the same monitor of the
StampedLock.

What if a method body that holds a StampedLock acquires
this lock again? To answer this question, we should try to
understand the nature of the StampedLock. Different from the
previous locks before JDK1.8, StampedLock returns a long
integer value stamp when acquiring a lock and releases the
lock with this stamp. If the invoked method re-acquires this
lock, the value stamp will be updated. As a result, the caller
method will never release the lock by using the updated
stamp. Hence, a deadlock state will occur.

Converting a reentrant lock to a non-reentrant lock will
definitely change the behavior of the original program and
vice versa. Therefore, our refactoring seems to be impractical.
However, we can detect the reentrance and avoid such a
transformation wherever the synchronized lock is reentrant.
CLOCKwill explore the refactoring possibility of those code
segments without reentrance.

Figure 5 presents an algorithm of detecting reentrance
for both a synchronized method and a synchronized block
implemented by isReentrantForMethod and isReentrantf-
ForInstruction methods, respectively. As the synchronized
lock can be used in the declaration of a method or as a block,
this algorithm handles the following four situations: (1) the
synchronized method calls the synchronized method; (2) the
body of the synchronized method involves a synchronized
block; (3) a synchronized method is called in a synchronized
block; and (4) one synchronized block involves another syn-
chronized block.

Alias analysis is used to analyze monitors that have a
different name but actually access the same memory posi-
tion. For a synchronized method, the monitor is this or
A.class where A represents the name of a class. For a syn-
chronized block, the monitor depends on a specific object.
The method isReentrantForMethod is used to handle both
synchronized methods and other non-synchronized meth-
ods that contain synchronized blocks. The monitor object
of the current method is recorded in pointerKey and exam-
ines the may alias (Lines 2-5). This method may call itself
recursively or other methods, and the algorithm checks all
called methods (Lines 6-12). If a method is not synchronized
but involves synchronized blocks, it will invoke the method
isReentrantForInstruction to handle the synchronized blocks
(Lines 13-17). The method isReentrantForInstruction is used
to handle the synchronized block. It obtains the monitor
object of the current synchronized instruction and examines
the may alias (Lines 25-27). For some situations in which
one synchronized block involves another synchronized block,

104904 VOLUME 7, 2019

Y. Zhang et al.: Automated Refactoring for Stampedlock

FIGURE 5. Algorithm of detecting reentrance for locks.

CLOCK handles the nested synchronized block by a stack
(Lines 22 and 29) to ensure that the current pointKey is the
current monitor object. If a synchronized block invokes a syn-
chronized method, CLOCK calls the isReentrantForMethod
method to handle it (Lines 31-36).

Note that CLOCK cannot obtain the pointerKey for a static
synchronized method by WALA [9]. To handle it, CLOCK
converts the static synchronized method to a synchronized
block with an explicit monitor; then, the pointerKey can be
obtained.

C. INFERRING LOCKS
CLOCK uses a side-effect analysis to infer the read/write
lock, optimistic read lock or upgrading/downgrading lock.
Relocker [5] presented a side-effect analysis to infer the
read/write lock for ReentrantReadWriteLock. For each lock,
Relocker just gives the suggestion of using a read/write lock.
Considering our refactoring, StampedLock hasmultiple kinds
of lock modes, and the use of read lock modes relies on the
associated code sections being side-effect-free. Refactoring
for StampedLock needs to infer not only the read/write lock
but also the upgrade/downgrade lock. The side effect anal-
ysis for CLOCK needs to record each read/write operation
to facilitate the following inference. If the critical section
contains multiple read/write operations, the analysis results
will generate a character sequence.

The regular expression is defined for each lock mode to
match the character sequence. CLOCK defines five regular
expressions for inferring lock modes, where R represents
the read operation, W represents the write operation, A � B
represents A matches B, R∗ represents that R repeats for zero
or multiple times, and R+ represents that R repeats once or
multiple times.
Regulation 1: CLOCK infers a write lock WL if WL �
{R|W }∗W {R|W }∗.

Regulation 1 shows that a write lock is inferred if there
is at least one write operation in the character sequence.
The regulation expression of write lock definitely includes
the upgrading/downgrading lock. CLOCK performs a further
definition for the upgrading/downgrading lock.
Regulation 2: CLOCK infers an optimistic read lock OL

if OL � Rfield .
Regulation 2 shows that an optimistic read lock is inferred

if there is a read operation to a field of a class.
Regulation 3: CLOCK infers a read lock RL if

(RL ⊆ ¬OL) ∩ (RL � R+).
Regulation 3 shows that a read lock is inferred if there is

at least one read operation and it is not a read operation to
the field. Here, ¬OL represents that CLOCK excludes the
optimistic read mode out of read mode to avoid the ambiguity
of inferring locks.
Regulation 4: CLOCK infers a downgrading lock DL if

(DL ⊆ WL) ∩ (DL �W+R+).
Regulation 4 shows that a downgrading lock is a subset

of WL, and write operations are usually followed by one or
multiple read operations.
Regulation 5: CLOCK infers an upgrading lock UL if

(UL ⊆ WL) ∩ (UL � R+[{R|W }∗W {R|W }∗]).
Regulation 5 shows that a downgrading lock is the subset of

WL and is inferred if one or multiple read operations follows
multiple read and write operations. The ‘[]’ represents the
scope of an if-statement in the critical section. We should
note that our upgrading lock strategy is only for the situation
in which one or multiple read operations are followed by an
if-statement that contains write operations. Our strategy for
inferring the upgrading lock maybe simple, but most of them
happen around the ‘if’ statement.

D. TRANSFORMATION
CLOCK traverses the abstract syntax tree to locate all
synchronized locks and converts the synchronized lock to

VOLUME 7, 2019 104905

Y. Zhang et al.: Automated Refactoring for Stampedlock

the corresponding StampedLock. In each refactored class,
CLOCK imports the StampedLock package and defines the
StampedLock. AllWLs and RLs are put in to the try...finally...
structure to ensure the release of a lock even if the exception
occurs. For OL, CLOCK handles the transformation of the
optimistic read operation in the same way as the code shown
in Figure 3(c). For DL, CLOCK downgrades a write lock
to a read lock just after the last write operation. For UL,
CLOCK upgrades a read lock to a write lock just after the
‘if’ statement.

IV. HANDLING PRACTICAL ISSUES
This section presents several practical issues that we solved
during the implementation of CLOCK.

A. EARLY RETURNING
Early returning means that the refactored function ends early.
Considering an example similar to Figure 3, if the body of
the getLength() method in Figure 3(a) only contains one
statement ‘return length’, when it is refactored analogous to
the approach in Figure 3(c), this statement will be placed in
Lines 5 and 9. The execution of this methodwill always end in
Line 5 and all the following statements will never be executed.

To handle early returning, we need to create a new local
variable with the same type as the variable in the return
statement. Actually, Figure 3(c) present the possible solution
of early returning.

A similar problem can happen if the method getLength()
contains an output statement as follows.

public synchronized void getLength() {
System.out.println(‘‘length=’’ + length);
}

When refactoring the above code segment, we cannot
replace the statement in Lines 5 and 9 of Figure 3(c) with this
output statement. Otherwise, the value length will be printed
twice if the validation fails. Creating a new local variable can
solve this problem as follows.

public void getLength() {
int temp;
long stamp = slock.tryOptimisticRead();
temp = length;
if(!slock.validate(stamp)){
stamp=slock.readLock();
try{
temp = length;
System.out.println(‘‘length=’’ + temp);
} finally {
slock.unlockRead(stamp);
}

} else {
System.out.println(‘‘length=’’ + temp);
}

}

B. THE CHANGE OF THE VARIABLE SCOPE
For some variables defined in the critical section, CLOCK
may change the variable scope because CLOCK will use the
try...finally... structure and move the original critical section
into the try block. As a result, the variable scope may become
small. To solve this problem, CLOCK checks these defini-
tions of the variable and allows them to be defined out of the
try statement.

C. ESCAPING
Escaping analysis is an approach for determining the dynamic
scope of a pointer. A pointer to a variable that defined in a
thread can escape into other threads. Considering Stamped-
Lock, it returns a stamp value after acquiring the lock, and
leverages this stamp value to release the lock. CLOCK should
make sure that the variable stamp will not escape out of the
scope of the current thread. If the pointer to the variable stamp
escapes to the other threads, its value will likely be changed,
making the lock unreleased and finally leading to deadlock.

When converting from the synchronized lock to the
StampedLock via CLOCK, the stamp is a local variable and
the scope is within a method. The local variable stamp cannot
be returned and passed to another method. Hence, CLOCK
ensures the variable stamp will not escape.

D. AVOIDING SWITCHING BETWEEN UPGRADING AND
DOWNGRADING LOCKS FREQUENTLY
The upgrading/downgrading lock enables concurrent pro-
grams to upgrade a read lock to a write lock or to downgrade
a write lock to a read lock. If a code segment contains more
than one upgrading/downgrading operation, lock mode will
be switched frequently so that acquiring and releasing lock
operations dominate the execution time, which will definitely
decrease the performance. CLOCK uses a write lock instead
of multiple upgrading/downgrading locks to avoid such a
frequent switching.

V. IMPLEMENTATION
We implement our refactoring in a prototype tool called
CLOCK as an extension to Eclipse IDE. The screenshot of the
CLOCK implementation is presented in Figure 6. The left-
hand side of Figure 6 presents a customized class SyncTest
that includes three fields and five methods, while the right-
hand side of Figure 6 shows the refactored results by using
StampedLock.

VI. EVALUATION
This section first introduces the experimental setup and
benchmarks, and then presents the research questions and
illustrates the experimental results.

A. EXPERIMENTAL SETUP AND BENCHMARKS
All experiments are conducted on a MacBook Pro with a
2.5GHz Intel Core i7 CPU, 16GB RAM, and 6MB cache.

104906 VOLUME 7, 2019

Y. Zhang et al.: Automated Refactoring for Stampedlock

FIGURE 6. CLOCK converts synchronized locks (left-hand side) into StampedLocks (right-hand side).

The machine runs OS X EI Capitan and has JDK 1.8.0_25,
Eclipse 4.4.1 and WALA 1.4.2 installed.

To evaluate the usefulness of CLOCK, we run it on
3 projects including the SPECjbb2005 [11] benchmark and
two real-world applications: Xalan [12] and FOP [13].
SPECjbb2005 was developed by the Standard Performance
Evaluation Corporation as a benchmark for evaluating the
performance of server side Java by emulating a 3-tier sys-
tem with an emphasis on the middle tier. It provides an
enhanced workload to reflect realistic applications. Xalan
is the open source software library from the Apache
project that can transform XML documents into HTML,
text or other XML document types using the XSLT stan-
dard stylesheet. We use its Java version 2.7.2. A format-
ting objects processor (FOP) is also part of the Apache
project, reads a formatting object tree and renders the
resulting pages to a specific output. Its version is 2.3. For
each benchmark, we apply CLOCK to all synchronized
methods and blocks. CLOCK checks the preconditions and
makes the transformation when they pass the precondition
validation.

B. RESEARCH QUESTIONS
We evaluate the effectiveness of CLOCK by answering the
following questions:
• RQ1: How applicable is the refactoring? In other words,
how many synchronized methods and blocks can meet
the refactoring precondition?

• RQ2: Are these refactorings correct?
• RQ3: Can CLOCK save developer effort when
refactoring?

We answer RQ1 by counting how many code fragments
meet the refactoring preconditions and thus are refactored
by CLOCK. We also report the number of times that the
precondition failed. RQ2 is answered by inspecting these
changes and reporting the possible inference. To measure
how many efforts a developer would spend on manu-
ally refactoring, RQ3 is answered by reporting the num-
ber of files [14] modified by the refactoring. We also
report the number of modified SLOC. SLOC is generated
using SLOCCount [15]. These numbers approximately esti-
mate the programmer effort that is saved when refactoring
with CLOCK.

VOLUME 7, 2019 104907

Y. Zhang et al.: Automated Refactoring for Stampedlock

FIGURE 7. Experimental results for CLOCK.

C. RESULTS
Figure 7 tabulates the results for CLOCK. For each original
benchmark, it shows the number of synchronized methods
and blocks as well as SLOC. For each refactored benchmark,
we demonstrate how many write locks, read locks, opti-
mistic read locks, upgrading locks and downgrading locks
are inferred and refactored. We also report how many syn-
chronized methods and blocks cannot be refactored.

1) RESULTS FOR RQ1
Column 10 in Figure 7 shows the number of classes that can
be refactored, while column 11 shows the number of classes
that cannot be refactored. The number of synchronized meth-
ods and synchronized blocks that cannot be refactored is
shown in columns 12 and 13. A total of 79 synchronized
methods and 24 synchronized blocks fail the validation of
preconditions. However, these synchronized locks are spread
across a small range of classes.

For SPECjbb2005, the original benchmark contains
168 synchronized methods and 22 synchronized blocks that
are widely spread across 23 files. Moreover, 61% of synchro-
nized methods and blocks meet the refactoring preconditions.
There are 4 classes (including Company, DeliveryTransac-
tion, TimerData, and Warehouse) that are not transformed
because they fail the validation of preconditions. In addition,
57 synchronized methods and 18 synchronized blocks cannot
be refactored. Two reasons lead to the failure.
• The most commonly failed preconditions are caused
by lock reentrance. Both direct reentrance and indi-
rect reentrance are found by CLOCK. For example,
the primeWithDummyData() method of the Company
class called the loadInitialOrders()method in this class.
Both of them are synchronized methods and use the
instance of the Company class as the monitor. It is direct
reentrance. Indirect reentrance also exists. For example,
the process() method of the DeliveryTransaction() class
calls the handleDelivery() method of the DeliveryHan-
dler class, and then the handleDelivery() method calls
the display()method of the DeliveryTransaction() class.
Both process() and display() are synchronized methods
with the same monitor.

• The remainder of failed preconditions is caused by
thread communication operations that are included in
the synchronized blocks. CLOCK cannot convert them
because StampedLock does not support the conditional
operation.

For Xalan, the original project has 51 synchronized
methods and 31 synchronized blocks. Moreover, 68% of
synchronized methods and blocks meet the refactoring pre-
condition. However, there are 20 synchronized methods and
6 synchronized blocks that cannot be refactored. Almost all
failed preconditions for synchronized blocks are caused by
thread communication operations that StampedLock cannot
handle. For synchronized methods that fail the validation of
preconditions, 15 synchronized methods are caused by the
reentrance and 5 of them are caused by thread communication
operations. These synchronized locks that cannot be refac-
tored are spread across only 4 classes.

For FOP, the original project has 25 synchronized methods
and 7 synchronized blocks. Furthermore, 94% of synchro-
nized locks meet the refactoring precondition. Only 2 syn-
chronized methods cannot be refactored because they are
reentrant.

The experimental results show that some synchronized
locks cannot be refactored due to the limitation of Stamped-
Lock. However, we notice that they are only spread across
a small range of 9 classes. When a method in a class fails
the validation due to reentrance, this leads to the failure of
validating other methods in this class. From the perspective
of the number of classes, CLOCK still has a high level of
applicability.

2) RESULTS FOR RQ2
A total of 123 write locks, 27 read locks, 34 optimistic
read locks, 16 upgrading locks and 1 downgrading lock are
inferred by CLOCK.We check each transformation manually
and find that CLOCK transforms all synchronized locks and
does not miss any refactorings. To check if these refactorings
are correct or not, wemanually inspect all the refactored locks
to determine 1) if a correct kind of lock is inferred or not; 2) if
a lock is inserted into a correct position or not; 3) if a lock

104908 VOLUME 7, 2019

Y. Zhang et al.: Automated Refactoring for Stampedlock

structure is used correctly or not; and 4) if the critical section
is protected safely or not.

During the inspection, we find that each critical section
has been inferred with the kind of lock according to the lock
inference strategy (see Section III-C) and almost all of them
are accurate. However, we also find that the inferred locks
for some critical sections can be improved by using other
locks. These cases are reported as follows. We should note
that these cases are related to the kinds of locks that are used
and are not related to the correctness of programs and validity
of CLOCK.
• The critical section that is inferred to use a write lock can
be improved by using an upgrading/downgrading lock.
For example, method removeOldNewOrders() of class
District in the SPECjbb2005 benchmark first contains
a read operation, then a write operation, and finally all
read operations, which may use a downgrading lock.
However, a write lock is inferred according to our infer-
ence strategy.

• The critical section that is inferred to use a read lock
can be improved by using an optimistic read lock.
For example, method display() of class District in the
SPECjbb2005 benchmark reads three fields. According
to our lock inference strategy, reading just one field
recommends to use an optimistic read lock. This method
does not meet the reference strategy for an optimistic
read lock. Therefore, a read lock is inferred for this
method.

We do not find any refactorings that change lock semantics.
More precisely, all locks are inserted into the position where
they should be and thus all critical sections are protected
safely by locks. We also inspect the lock structures and find
that all of them are used correctly. For example, for read/write
lock, all acquire operations are inserted before the critical
sections and all release operations are put into the ‘finally’
blocks. As for optimistic read lock, the direct read operations
are validated. If they fail the validation, a read lock is used to
protect reading again.

To make sure that all benchmarks work well, we run
the refactored programs. For the SPECjbb2005 benchmark,
we run it against the number of threads (1 thread to a max-
imum of 16 threads). It shows the score and heap memory
usage for each run if there is no error. For Xalan and FOP,
we run them by using the samples published with the source
code to transform or render an XML document. We find that
they all run smoothly without reporting any errors.

3) RESULTS FOR RQ3
Measuring the developer effort in terms of a precise eval-
uation is truly difficult. Ideally, we would have observed
developers while they refactor and determined how much
time they spend. However, given the differences in famil-
iarity with concurrent programming for different developers,
the refactoring time may vary. To approximately estimate
the effort of manual refactoring, we select three graduate
students who are familiar with the StampedLock and let them

transform each project manually. As a result, they take 5 hours
on average to accomplish the transformation.

We count the number of synchronized locks together with
the number of code changes. These figures represent that a
developer would have spent time in searching for synchro-
nized locks and transformed the code manually. In total, all
benchmarks have 244 synchronized methods and 60 syn-
chronized blocks that are spread across 395KSLOC. A total
of 66 classes are modified by applying the refactoring, with
an average of 22 classes per project. The refactorings modify
1084 SLOC, with an average of 361 SLOC per project. When
refactoring the SPECjbb2005 benchmark, developers need
to search for synchronized locks in 23 files out of 33 files
in total, and eventually 190 refactorings are found; then,
developers determine which lock should be used and perform
transformations. The synchronized locks are clustered in the
SPECjbb2005 benchmark so that developers can find these
locks quickly. However, the situation is quite different for
the other two benchmarks, in which the refactorings are not
strongly clustered. If developers transform Xalan manually,
they need to search 920 files to find synchronized locks
existed only in 29 files. It is labor-intensive to search in such a
large amount of files to find a small amount of locks and con-
vert them to StampedLock. Eventually, 82 locks are required
to be transformed manually by developers, and 321 SLOC
are modified. For FOP, 32 synchronized locks are spread
across 2004 Java files. If a developer refactored manually,
he/she would have had to jump across many files. Finally,
only 224 SLOC are modified.

By contrast, our tool is fully automatic. For SPECjbb2005,
a total of 19 classes are modified by applying the refac-
toring. CLOCK infers 65 write locks, 14 read locks, and
36 optimistic read locks. For Xalan, CLOCK infers 43 write
locks, 3 read locks, 2 optimistic read locks and 8 upgrad-
ing locks. We check 8 upgrading locks manually and find
that most of them are similar to our proposed motivation
presented in Figure 1. For FOP, CLOCK infers 15 write
locks, 6 read locks, 8 upgrading locks, and 1 downgrading
lock. The downgrading lock occurs in the generateNewID
method of the ActionSet class where a write operation is
followed by several read operations; this pattern is similar to
our proposed motivation in Figure 2. It takes no more than
thirty seconds per project. These results show that CLOCK
can save considerable developer efforts.

VII. RELATED WORKS
In this section, we first investigate programming libraries and
tools that support the upgrading/downgrading lock, and then
present refactoring for locks. Finally, we examine the works
on refactoring for different synchronization mechanisms.

A. PROGRAMMING TOOLS THAT SUPPORT THE
UPGRADING/DOWNGRADING LOCK
Many programming libraries and frameworks have pro-
vided mechanisms to support upgrading/downgrading
lock operations. Early after the JDK 1.5 proposal, the

VOLUME 7, 2019 104909

Y. Zhang et al.: Automated Refactoring for Stampedlock

ReentrantReadWriteLock class allowed downgrading from a
write lock to a read lock. However, upgrading from a read
lock to a write lock is not feasible. Importantly, since JDK
1.8, StampedLock has supported both the upgrading and
downgrading lock. Furthermore, the optimistic read lock is
recommended for all new development of accessing fields.

The .NET Framework provides the ReaderWriterLock-
Slim [16] class to support three modes: read mode, write
mode, and upgradable read mode. ReaderWriterLockSlim
is similar to ReaderWriterLock, but the performance of
ReaderWriterLockSlim is significantly better than that of
ReaderWriterLock. An upgradable mode is intended for cases
where a thread usually reads from the protected resource
but might need to write to it if some condition is met.
ReaderWriterLockSlim has simplified rules for the upgrading
and downgrading lock state. However, the .NET framework
does not support the automated refactoring for these read and
write locks.

Intel Threading Building Blocks(TBB) provide methods
downgrade_to_reader and upgrade_to_writer to support the
downgrading/upgrading lock [17]. However, TBB does not
provide refactoring for these methods.

B. REFACTORING FOR LOCKS
Many previous works of concurrency-oriented refactoring
focused on how to convert locks.

McCloskey et al. [18] presented Autolocker to automati-
cally convert the pessimistic atomic section into lock-based
code. Autolocker retained many of the advantages of opti-
mistic atomic sections and reduced the most burdens of lock-
based programming. In addition, they allowed programmers
to extract more parallelism through fine-grained locking.

Schäfer et al. [5] presented algorithms to convert built-
in monitor locks into ReentrantLocks and ReentrantRead-
WriteLocks. They also claimed that their future works would
involve helping developers to safely downgrade write locks
to read locks. Inspired by their work, our work presented an
algorithm to upgrade read locks to write locks, downgrade
write locks to read locks and use optimistic read locks.

Tao and Qian [6] proposed an automated refactoring
approach for Java concurrent programs based on synchro-
nization requirements. Their work had the ability to find
the refactoring opportunities for splitting locks, splitting the
critical section and converting it to the atomic section. Zhang
et al. [19] presented a refactoring approach for lock based on
bytecode transformation.

Some commercial refactoring tools, such as concurrency-
oriented refactoring for JDT [7] and LockSmith [8], have
been integrated into IntelliJ IDEA and Eclipse respectively.
Both of them can split and merge locks, convert among locks,
and make the field atomic.

Although many refactorings for locks had been performed,
most previous works mainly concentrated on read/write locks
and fewworks focused on the upgrading/downgrading lock or
optimistic read lock.

C. REFACTORING FOR DIFFERENT SYNCHRONIZATION
MECHANISMS
There has been considerable interest in refactoring programs
among different synchronization mechanisms.

Deng et al. [20] proposed a tool SyncGen to automati-
cally synthesize complex synchronization implementations
from formal high-level specifications. SyncGen also pro-
vided checkable redundancy for verifying the correctness of
synthesized implementations, and exploited synchronization
specifications for state-space reduction of general correctness
properties.

The refactoring tool CONCURRENCER of Dig et al. [21]
aims to convert synchronized locks to atomic blocks. Pro-
grammers can replace all int field accesses with calls of
AtomicInteger thread-safe APIs. Regarding the difference
between locks and atomic blocks, CONCURRENCER can
only transform those synchronized blocks that contain one-
field accesses.

Ishizaki et al. [22] proposed a refactoring approach to sup-
port atomic refactoring. Their tool transforms more refactor-
ing cases for the java.util.concurrent.Atomic.AtomicInteger
class.

Zhang [23] proposed an aspect-oriented synchronization
library FlexSync. FlexSync enabled programmers to choose
synchronization control among lock, atomic block and STM
only by adding aspect-oriented annotation. Programmers
could evaluate the performance of Java programs using differ-
ent synchronization control mechanisms. FlexSync supported
complex Java systems simultaneously working with multiple
synchronization mechanisms without any code changes.

VIII. CONCLUSION
StampedLock has been designed to enhance the synchro-
nization control for concurrent programs by providing the
upgrading lock and optimistic read lock, which are Java locks
that were previous unavailable. This paper first illustrates
several motivations that might improve the design by using
StampedLock, and then presents the analysis and algorithms
of refactoring that enable Java developers to convert the syn-
chronized lock to StampedLock. CLOCK is implemented as
the Eclipse plugin and evaluated with three large applications.
The evaluation shows that a total of 66 classes are modified
by searching approximately 395KSLOC and applying the
refactoring, with an average of 22 classes per benchmark.
Experimental results provide confidence that the proposed
algorithms and implementation can help the developer with
refactoring and save developer effort.

A threat to validity of our evaluation is that the bench-
mark programs may not be representative of all programs.
Considering that different kinds of programs have different
characteristics, they may exhibit all kinds of lock behaviors.

Although StampedLock provides promising lock opera-
tions, it introduces some obstacles (e.g. unsupported reen-
trancy and conditional operations) for refactoring. If JDK
were to provide an advanced lock (similar to StampedLock)

104910 VOLUME 7, 2019

Y. Zhang et al.: Automated Refactoring for Stampedlock

together with support of reentrance and condition operations,
CLOCK could achieve a higher refactoring success rate.

Future works include our endeavors to find more refac-
toring patterns for the upgrading/downgrading lock and to
work on how to ensure consistency when converting locks.
Although carefully developed and tested, CLOCK is a proto-
type tool that may contain bugs and still needs more efforts
to make it sufficiently mature. However, our tool can still be
applied in several applications.Wewill continuously improve
our tool to ensure its correctness. Furthermore, we will work
on the recommend approach for locks. Importantly, it will be
constructive if a tool can recommend the best lock in advance
rather than resort to refactoring.

ACKNOWLEDGMENT
The authors would like to thank the insightful comments
and suggestions of the reviewers, which have improved the
presentation.

REFERENCES
[1] E. Silvestri, S. Economo, P. Di Sanzo, A. Pellegrini, and F. Quaglia,

‘‘Preemptive software transactional memory,’’ in Proc. IEEE/ACM Int.
Symp. Cluster Cloud Grid Comput., May 2017, pp. 294–303.

[2] A. Khyzha, H. Attiya, A. Gotsman, and N. Rinetzky, ‘‘Safe privatization
in transactional memory,’’ ACM SIGPLAN Symp. Princ. Pract. Parallel
Program., vol. 53, no. 1, pp. 233–245, 2018.

[3] D. Hendler, N. Shavit, and L. Yerushalmi, ‘‘A scalable lock-free stack
algorithm,’’ J. Parallel Distrib. Comput., vol. 70, no. 1, pp. 1–12, 2010.

[4] H. M. Kabutz. (2008). Starvation With ReadWriteLocks. [Online]. Avail-
able: https://www.javaspecialists.eu/archive/Issue165.html

[5] M. Schafer, M. Sridharan, J. Dolby, and F. Tip, ‘‘Refactoring java programs
for flexible locking,’’ in Proc. 33rd Int. Conf. Softw. Eng., May 2011,
pp. 71–80.

[6] B. Tao and J. Qian, ‘‘Refactoring java concurrent programs based on
synchronization requirement analysis,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance Evol., Sep./Oct. 2014, pp. 361–370.

[7] K. Ahti. (2010). Concurrency-Related-Refactorings-for-JDT. [Online].
Available: https://wiki.eclipse.org/Concurrency-related-refactorings-for-
JDT

[8] Sixth and Red River Software. (2008). LockSmith: Concurrency-Oriented
Refactorings for IntelliJ IDEA. [Online]. Available: https://intellij-support.
jetbrains.com/hc/en-us/community/posts/206761105–Ann-LockSmith-
concurrency-oriented-refactorings-for-IntelliJ-IDEA

[9] (2018). The T. J. Watson Libraries for Analysis. [Online]. Available:
https://github.com/wala/WALA

[10] J. Wloka, M. Sridharan, and F. Tip, ‘‘Refactoring for reentrancy,’’ in Proc.
ACM SIGSOFT Symp. Found. Softw. Eng., 2009, pp. 173–182.

[11] SPEC. (2013). SPEC JBB2005. [Online]. Available: http://www.spec.
org/jbb2005/

[12] A. S. Foundation. (2019). Xalan-Java Version 2.7.2. [Online]. Available:
https://xalan.apache.org/xalan-j/index.html

[13] Apache. (2019). The Apache FOP Project. [Online]. Available: https://
xmlgraphics.apache.org/fop/

[14] A. Gyori, L. Franklin, D. Dig, and J. Lahoda, ‘‘Crossing the gap from
imperative to functional programming through refactoring,’’ in Proc. 9th
Joint Meeting Found. Softw. Eng., 2013, pp. 543–553.

[15] D. A. Wheeler. (2018). SLOCCount. [Online]. Available: https://dwheeler.
com/sloccount/

[16] Microsoft. (2018). ReaderWriterLockSlim Class. [Online]. Available:
https://docs.microsoft.com/en-us/dotnet/api/system.threading.
readerwriterlockslim?view=netframework-4.7.2

[17] Intel. (2018). Intel Threading Building Blocks Documentation. [Online].
Available: https://software.intel.com/en-us/node/506088

[18] B. McCloskey, F. Zhou, D. Gay, and E. Brewer, ‘‘AutoLocker: Synchro-
nization inference for atomic sections,’’ in Proc. 33rd ACM SIGPLAN-
SIGACT Symp. Princ. Program. Lang., 2006, pp. 346–358.

[19] Y. Zhang, S. Shao, H. Liu, J. Qiu, D. Zhang, and G. Zhang, ‘‘Refactoring
java programs for customizable locks based on bytecode transformation,’’
IEEE Access, vol. 7, pp. 66292–66303, 2019.

[20] X. Deng, M. B. Dwyer, J. Hatcliff, and M. Mizuno, ‘‘SyncGen: An aspect-
oriented framework for synchronization,’’ in Proc. Int. Conf. Tools Algo-
rithms Construct. Anal. Syst. (TACAS), 2004, pp. 158–162.

[21] D. Dig, J. Marrero, and M. D. Ernst, ‘‘Refactoring sequential java code for
concurrency via concurrent libraries,’’ in Proc. IEEE 31st Int. Conf. Softw.
Eng., May 2009, pp. 397–407.

[22] K. Ishizaki, S. Daijavad, and T. Nakatani, ‘‘Refactoring java programs
using concurrent libraries,’’ in Proc. Workshop Parallel Distrib. Syst.. Test.,
Anal., Debugging, 2011, pp. 35–44.

[23] C. Zhang, ‘‘FlexSync: An aspect-oriented approach to Java synchroniza-
tion,’’ in Proc. IEEE 31st Int. Conf. Softw. Eng., May 2009, pp. 375–385.

YANG ZHANG received the Ph.D degree from
the School of Computer, Beijing Institute of
Technology. He is currently an Associate Pro-
fessor with the School of Information Science
and Engineering, Hebei University of Science and
Technology. His research interests include parallel
programming model and software refactoring for
parallelism.

SHICHENG DONG is currently pursuing themas-
ter’s degree with the Hebei University of Science
and Technology. His research interests include par-
allel programming and software refactoring for
parallelism.

XIANGYU ZHANG received the Ph.D. degree
from the Computer Science Department, The Uni-
versity of Arizona. He is currently a Professor
with the Department of Computer Science, Purdue
University. His research interests include program
analysis, security, deep learning security, depend-
ability, and interpretability.

HUAN LIU is currently pursuing the master’s
degree with the Hebei University of Science and
Technology. Her research interests include par-
allel programming and software refactoring for
parallelism.

DONGWEN ZHANG received the Ph.D. degree
from the Beijing Institute of Technology. She is
currently a Professor with the School of Informa-
tion Science and Engineering, Hebei University
of Science and Technology. Her research interests
include parallel programming model and software
refactoring for parallelism.

VOLUME 7, 2019 104911

	INTRODUCTION
	MOTIVATING EXAMPLES
	REFACTORING FOR STAMPEDLOCK
	REFACTORING FRAMEWORK
	PRECONDITION
	CONDITIONAL OPERATIONS
	REENTRANCE ANALYSIS

	INFERRING LOCKS
	TRANSFORMATION

	HANDLING PRACTICAL ISSUES
	EARLY RETURNING
	THE CHANGE OF THE VARIABLE SCOPE
	ESCAPING
	AVOIDING SWITCHING BETWEEN UPGRADING AND DOWNGRADING LOCKS FREQUENTLY

	IMPLEMENTATION
	EVALUATION
	EXPERIMENTAL SETUP AND BENCHMARKS
	RESEARCH QUESTIONS
	RESULTS
	RESULTS FOR RQ1
	RESULTS FOR RQ2
	RESULTS FOR RQ3

	RELATED WORKS
	PROGRAMMING TOOLS THAT SUPPORT THE UPGRADING/DOWNGRADING LOCK
	REFACTORING FOR LOCKS
	REFACTORING FOR DIFFERENT SYNCHRONIZATION MECHANISMS

	CONCLUSION
	REFERENCES
	Biographies
	YANG ZHANG
	SHICHENG DONG
	XIANGYU ZHANG
	HUAN LIU
	DONGWEN ZHANG

