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ABSTRACT Traffic flow prediction is a key step to the efficient operation in the intelligent transportation
systems. This paper proposes a hybrid method combing clustering methods and spatiotemporal correlation
to predict future traffic trends based on artificial neural network. First, for the traffic flow collected from
different loop detectors, a spatio-temporal correlation of data samples is evaluated by considering time cor-
relation and spatial equivalent distance. Second, in order to improve classifying performance and reliability to
anomalous data samples, a type-2 fuzzy c-means (FCM) is adopted to make fuzzification of the membership
function. Then, a hybrid prediction model combined classification algorithm and neural network is designed
to predict various patterns or trends in traffic flow data. Furthermore, the results from the predictionmodel are
modified according to quantized spatio-temporal correlation. Finally, traffic volume data collected from the
highway is used to optimize the parameter in the prediction model combination. Several traditional models
are used as candidates in comparison, and the higher prediction accuracy demonstrates the effectiveness and
feasibility of the hybrid prediction model.

INDEX TERMS Traffic flow prediction, spatio-temporal correlation, type-2 fuzzy c-means, artificial neural
network.

I. INTRODUCTION
With the development of social economy and the acceleration
of urbanization, the range of travel in urban city has been
greatly expanded. Although the urban transportation system
has continuously developed, and its supply capability is also
improved largely through the construction of transportation
infrastructure, it still cannot meet the demand of travel which
causes problems such as traffic congestion, accidents and
pollution. Furthermore, these issues could result in negative
impacts on the quality of city living environment. The emer-
gence of Intelligent Transportation Systems (ITS) provides
a new way to solve these problems. Traffic guidance and
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traffic control systems are two very important components
of ITS, in which collecting real-time and accurate traffic flow
information is the key factor to impact the performance of
guidance and control, and high accurate traffic flow predic-
tion is one of most important steps to achieve the application
of ITS.

Historical data reflect the changing characteristics or pat-
terns of traffic flow, which is an important basis for short-
term traffic flow prediction model. A good prediction model
has great advantages in historical data analysis and feature
recognition. Recently, traffic prediction has been a direction
concerned by scholars in the field of transportation [1], which
can be generally divided into the following three parts: statis-
tical models [2]–[6], artificial intelligence models [7]–[27],
hybrid models [28]–[35].
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(1) Because the statistical model (SM) is easy to
capture the periodicity and repeatability of traffic flow,
and the model performance is relatively stable, it has
been widely used in the field of traffic flow prediction.
Cetin and Comert [2] proposed an adaptive algorithm for
the consideration of emergencies to update the intercept of
the autoregressive comprehensive moving average model [3].
In 2015, Kumar and Vanajakshi [4] proposed a predic-
tion method using seasonal ARIMA (SARIMA) model.
The model changed the input time series into a stationary
one through difference and used the maximum likelihood
method to find the parameters of the model. Considering
the effect of the cross correlation between the upstream and
downstream [5] on the prediction of the target traffic flow
data, Chandra and Al-Deed [6] applied the vector autoregres-
sive model (VAR) to conduct traffic prediction in the case
of highway and found that it had better prediction accuracy
than the traditional ARIMA model. In recent years, some
newmethods have been proposed, such as generalized autore-
gressive conditional heteroscedasticity (GARCH) [2], which
improves the accuracy of the model by optimizing the degree
of consideration of uncertain factors.

(2) Different from SM model, artificial intelligence
technology has attracted attention from the field of
transportation [7]–[10] because of its generalization ability
and efficient learning ability. (a) Neural network is one of the
commonly used prediction methods. Recurrent Neural Net-
work (RNN) introduces the concept of ‘‘memory’’, making
the output dependent on input and memory storage, and this
model is widely used in traffic prediction [11]–[13]. Long
Short-TermMemory Neural Network (LSTM) [14]–[16] and
state-space neural network model [17] also expressed better
performance in traffic flow prediction comparing with some
traditional methods. (b) Yan et al. [18] proposed a prediction
model based on Fuzzy neural network [19], which divided
traffic distribution patterns with similar characteristics, and
utilized the training method of online circulation to improve
the adaptive ability of the model. Dimitriou et al. [20] used
genetic algorithm (GA) to optimize the membership function
of adaptive fuzzy rules offline and online, which has a
beneficial effect in traffic prediction of urban trunk roads.
(c) Compared with neural networks, support vector machines
(SVM) [21] can overcome the overfitting characteristics of
neural networks. Its principle is to use the nonlinear mapping
algorithm to transform the low-dimensional input space into
the high-dimensional feature space, making it possible for
the linear algorithm to perform linear analysis on the input
space. Support for adjacent regression (SVR) [22], [23] is
one kind of SVM, which performs well in time series pre-
diction and analysis. Zhang and Liu [24] proposed a non-
parametric least squares support vector machine (LS-SVM)
prediction method, which has high prediction accuracy and
excellent stability for traffic data with weak regularity.
(d) Kalman filtering is an efficient algorithm that describes
a series of recursive mathematical formulas to optimize
system state estimation, which performs well in traffic

forecasting [25], [26] and denoising. Guo et al. [27] proposed
an adaptive kalman filtering method that can update the
process variance, which has better performance in the case
of unstable data.

(3) A single prediction model may not be applicable for
all scenarios due to different application conditions. The
hybrid model combines different prediction algorithms or
models to make full use of advantages of individual mod-
els and obtain better prediction results. Voort et al. [28]
combined the Kohonen self-organizing classifier with the
ARIMA time series model to create a hybrid forecasting
model. Chang and Tsai [29] introduced a hybrid SVMGM
method combining grey prediction model (GM) and support
vector machine (SVM), which reduced the overshoot effect
in traffic flow prediction. The combination of genetic algo-
rithm and time-delayed neural network [30], the combination
of discrete wavelet transform and neural network [31], [32],
these hybrid models are more conducive to traffic prediction
than the single model [33]–[35].

Most of the previous studies were single-step predictions
based on a small amount of data. One reason why the short-
term traffic flow model did not perform as expected was
that the prediction was regarded as a point process and
ignored the dynamicmobility of traffic flow. Cheng et al. [36]
explored the spatio-temporal autocorrelation of the traffic
flow data on the road network. Furthermore, the interaction
between dynamic traffic flows in adjacent road segment and
time periods is obvious and understanding autocorrelation
of traffic flow form time and space scope will be of great
help to improve short-term prediction accuracy [37]. There-
fore, in recent works, researchers consider to using spatio-
temporal correlation among traffic flow data from target
and surrounding detectors in the road network to improve
prediction performance. Yue and Yeh [38] discussed the sig-
nificance of spatio-temporal relationship for short-term traf-
fic flow prediction and quantified the dependence of traffic
flow. Min and Wynter [39] developed a new way to estimate
spatio-temporal interaction of road traffic and demonstrated
it on the test network. Haworth and Cheng [40] used the
traffic flow condition of upstream and downstream for adja-
cent links to finish prediction using non-parametric spatio-
temporal kernel regression model. Zheng et al. [41] proposed
an online prediction method based on the feature selection
of spatio-temporal traffic patterns of intelligent algorithms
and the optimization of state vectors in the off-line process.
In 2019, a non-linear Granger causality analysis was pro-
posed to detect the spatiotemporal causality between various
roads [42].

From the summaries of current works, researchers have
taken into account the spatio-temporal correlation of traffic
flow in the prediction. However, these works still did not
clearly and effectively quantify the spatio-temporal correla-
tion of traffic flow within the road network. At the same
time, the traffic flow in the road network expresses a variety
of distribution modes or patterns, and the traffic flow under
different patterns behave different characteristics. So, firstly,
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classification method is applied to categorize original traf-
fic flow data into different patterns. Liu et al. (2018) [43]
proposed a preprocessing process for predictive applica-
tions, which uses heuristic feature selection to determine
the best features of the input vector to improve the per-
formance of traffic prediction algorithms. Then, accord-
ing to clustering results, prediction model can be further
modified to reach better prediction results. Some previous
researches have introduced related works based on fuzzy
c-means (FCM) [44], [45], k-means clustering [46] and other
classifiers [28]. The prediction model in this study is
designed to integrate the spatial-temporal distribution char-
acteristics of traffic flow and consider using these character-
istics under different modes to improve prediction accuracy.

Firstly, the spatio-temporal correlation between each
detector is established by using historical data, and it is
quantified by considering correlation between historical data
and topology structure. Secondly, an improved FCM, type-2
FCM algorithm is applied to extract distribution characteris-
tics of different traffic modes. Using the fixed membership
function in traditional FCM [44], [45], when dataset include
abnormal samples, classification results will express devi-
ation. Unlike the traditional type 2 fuzzy set with interval
membership [47], [48], the paper uses a simplified form of
the type-2 FCM algorithm. By adding a degree of member-
ship confirmation, the degree of influence of the anomaly
point on the algorithm is reduced and the computational
efficiency of the algorithm is improved. Type-2 FCM algo-
rithm with degree of confirmation is used for traffic pattern
classification, which can identify abnormal data in samples
and improve the accuracy of classification.

Then, consider the actual impact of spatio-temporal corre-
lation on traffic flow conditions, the paper uses the quantized
spatio-temporal correlation to correct the preliminary results
of the improved model using the weighted average method to
obtain the final prediction results.

Finally, the parameters of the improved model are opti-
mized by the traffic flow data of the highway, and the effec-
tiveness of the improved model is verified. The improved
model still maintains a high level of prediction accuracy
compared to the FCM-NN and NN models.

This paper is organized as follows. Section 2 introduces
methodology and structure of calculation process. Section 3
describes the data sources and model calibration. The predic-
tion result in the case study is provided in Section 4. Section 5
is the conclusion of the study.

II. METHODOLOGY
A. SPATIO-TEMPORAL CORRELATION ANALYSIS
For most traffic flow prediction models, the historical vari-
ation of traffic flow time series is the main basis to achieve
high prediction performance. Although there exists a strong
randomness and uncertainty in traffic system, the traffic flow
on the same road still expresses similar patterns to follow,
which is greatly helpful for the prediction of traffic flow.
Generally, the traffic condition of specific section on the

road will often be affected by the conditions from upstream
and downstream, and will also be impacted by the traffic
states on adjacent lanes. Thus, the spatio-temporal variation
characteristics of traffic flow in surrounding detectors will
definitely provide valuable information to implement traf-
fic flow prediction and modeling. In this study, the spatio-
temporal correlation of traffic flow data in the road network
is considered to implement the traffic flow prediction and
modeling.

Firstly, for the spatial correlation, we define two indexes
to evaluate it: (1) the direct physical distance d , it can
simply represent the spatial position relationship between
various detectors. The spatial distance matrix (SD) is a
common method to express spatial features [49]. In general,
the degree of data impact between different detectors grad-
ually decreases as the physical distance increases. However,
the physical distance d does not accurately reflect the spatial
characteristics of the detector traffic flow in different lanes.
(2) Therefore, we need further define the spatial correlation
level l to estimate topological structure of detectors in the
road network. For the same road, the characteristics of the
detector traffic flow are more likely to spread to the upstream
and downstream of the same lane. The traffic flow relation-
ship between any two adjacent detectors on the same road
can be divided into two cases:1) the two detectors are located
from the upper and lower streams in the same lane, and the
traffic flow data between the two detectors expresses direct
influence. 2) the two detectors are located in parallel positions
of different lanes, and the traffic flow data between them has
indirect influence. Accordingly, the values of spatial corre-
lation level can be estimated using following rules (shown
in Fig.1): 1) for the target detector we focusing on predicting
traffic flow patterns, the value of spatial correlation level is
set as l = 1; 2) for the upstream and downstream detectors
directly adjacent to the target detector in the same lane, the
spatial correlation level is set as l = 2; 3) for the detectors
directly be adjacent to the target detector in different lanes,
the spatial correlation level is set as l = 3; 4) for the other
detectors in the studying area, the spatial correlation level is
set as l = 4;

FIGURE 1. Spatial correlation level of Road detectors.

Then, for the temporal correlation, the correlation coeffi-
cient (R) is used to estimate temporal characteristics of traffic
flow as following., For the traffic flow data collected from
two detectors: {x1, x2, x3, . . . xn} and {y1, y2, y3, . . . yn}, and
N represents the length of the data samples.

R =
Cov(X ,Y )
√
DX ·
√
DY
=

∑N
i=1 (xi − x) (yi − y)√∑N

i=1 (xi − x)
2∑N

i=1 (yi − y)
2

(1)
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Finally, based on the spatial and temporal relation between
detectors aforementioned, a combined indicator to quantify
the traffic flow correlation as following:

λ = (
1
d · l

)
R

(2)

where d is the actual physical distance between the surround-
ing detector and the target detector, l represents the spatial
correlation level, and R indicates the temporal correlation
coefficient.

B. TYPE-2 FCM CLUSTERING ALGORITHM
In order to deeply exploring characteristics of traffic flow,
a clustering method based on Fuzzy C-Means (FCM) is
utilized to categorize the changing patterns implying in the
historical data. Its idea is to maximize the similarity between
objects divided into the same cluster and minimize the simi-
larity between different clusters. The FCM algorithm is gen-
eralized from Hard C-Means clustering algorithm (HCM).
The main difference of FCM to HCM is that the values of
given data point belong to each cluster estimated by fuzzy
membership degree between 0 and 1. Themembership degree
of each data sample to all cluster centers is obtained by
optimizing the objective function.

1) ORIGINAL FCM ALGORITHM
Firstly, in HCM algorithm, the objective function Q is defined
to minimize the total distance as follows:

minQ =
c∑
i=1

N∑
k=1

d2k,i (3)

Accordingly, the objective function is improved by adding
membership degree in the FCM is defined as follows:

minQ =
c∑
i=1

N∑
k=1

umk,id
2
k,i (4)

where d2k,i denotes the distance between the data sample xk to
the cluster center Vi, for the ith cluster, and uk,i denotes the
degree of membership of xk in the ith cluster, m represents
the fuzzy weighted index, and its value will affect the perfor-
mance of the algorithm, and m ≥ 1, c and N respectively
mean the total number of clusters and data samples. After
setting initial values for u and v, the optimal values of these
two key variables can be achieved by following iterative
calculation procedure.

uik =
1∑c

s=1

(
dk,i
dk,s

)− 2
m−1

(5)

vi =

∑N
k u

m
k,ixk∑N

k=1 u
m
k,i

(6)

2) TYPE-2 FCM CLUSTERING ALGORITHM
Type-2 fuzzy set is an extension of traditional fuzzy mem-
bership definition, and it has stronger uncertainty expression
ability. In this study, a new parameter, ρ ranges in [0,1],
is defined as the degree of membership degree and adopted
in Type-2 fuzzy clustering algorithm.

Furthermore, the object functionQ can be further modified
according to Type-2 fuzzy set as follows:

mimQ =
c∑
i=1

N∑
k=1

(
ρ2k u

m
k,id

2
k,i − 2βρk

)
(7)

and
c∑
i=1

uk,i = 1

where the ρk is applied to estimate uncertainty ofmembership
degree, and β is the design parameter, which affects the
effectiveness of the algorithm in identifying abnormal points.
We can see that if ρk = 1, then Equation (7) will be the same
as traditional FCM.

The objective function of Equation (7) is divided into two
parts. The former part can make all ρk values as small as pos-
sible, especially for data points that deviate from the cluster
center (

∑C
i u

m
k,id

2
k,i value is relatively large). The latter part

makes all ρk value data points as large as possible, especially
the data points very close to the cluster center (

∑C
i u

m
k,id

2
k,i

value is relatively small).By the action of these two parts,
the ρ value of the normal data can be close to 1, and the ρ
value of the abnormal point is close to zero.

Then, constructing the Lagrange function for the a given
data sample xk

Qk =
c∑
i=1

(
ρ2k u

m
k,id

2
k,i − 2βρk

)
− λ

(
c∑
i=1

uk,i − 1

)
(8)

Make ∂Qk
∂uk,i
= 0, obtain ∂Qk

∂uk,i
= mum−1k,i ρ

2
k d

2
k,i − λ = 0,

So, uk,i =

(
λ

mρ2k d
2
k,i

) 1
m−1

, consider the condition∑c
i=1 uk,i = 1,

c∑
i=1

uk,i =
c∑
i=1

(
λ

mρ2k d
2
k,i

) 1
m−1

= λ
1

m−1

c∑
i=1

1

m−1
√
mρ2k d

2
k,i

= 1

So, λ = 1(
c∑
i=1

1
m−1

√
mρ2k d

2
k,i

)m−1 ,
Then, we can obtain the iterative value of uk,i

uk,i =

(
λ

mρ2k d
2
k,i

) 1
m−1

=

∑c
i=1

1
m−1
√
mρ2k d

2
k,i

m−1
√
mρ2k d

2
k,i

=

1
m−1
√
mρ2k d

2
k,i∑c

i=1
1

m−1
√
mρ2k d

2
k,i

=

1
m−1
√
d2k,i∑c

i=1
1

m−1
√
d2k,i

(9)
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Next, in order to calculate the clustering center Vi =
(v(1)i , · · · , v(m)i ), the partial derivative tth component v(t)i in
vi and be set to zero as follows:

∂Q

∂v(t)i
=

∑N

k=1
ρ2k u

m
k,i2

(
v(t)i − x

(t)
k

)
= 0,

Get

v(t)i =

(∑N
k=1 ρ

2
k u

m
k,ix

(t)
k∑N

k=1 (ρ
2
k u

m
k,i)

)
.

Let

ωk,i = ρ
2
k u

m
k,i (10)

Then

Vi =

∑N
k=1 ωk,iXk∑N
k=1 ωk,i

(11)

By deriving the Lagrange function of the data xk , the iter-
ation Equation (11) of the cluster center can be obtained.
Different from the traditional FCMderivation in Equation (6),
the derivation formula of type-2 FCM includes the effect of ρ.

The formula v(t)i =
(∑N

k=1 ρ
2
k u

m
k,ix

(t)
k∑N

k=1 (ρ
2
k u

m
k,i)

)
can weaken the effect

of the data samples from all cluster centers (or abnormal data
samples) by the influence of ρ2k .
In the updating procedure of ρk , we can similarly con-

sider the partial derivation in Equation (7), and then obtain
expression as 2ρ2k u

m
k,id

2
k,i − 2β = 0, ρk ∈ [0, 1], it can be

represented as:

ρk = min

(
β∑c

i=1 u
m
k,id

2
k,i

, 1

)
(12)

The Equation (12) indicates that the size of β should be
close to the normal value of umk,id

2
k,i, so that ρ can play a role

in screening abnormal data and normal data.

C. ARTIFICIAL NEURAL NETWORK
After implementing Type-2 FCM clustering algorithm,
we obtain different clusters or variation patterns in origi-
nal traffic flow data. For each cluster or pattern, a learning
mechanism based on Artificial Neural network is designed to
achieve high prediction performance. The BP neural network
is adopting in this study, which is a multi-layer feedforward
neural network trained by error inverse propagation algo-
rithm. Because of its simple structure and strong learning
ability, BP neural network has been widely used in the fields
of function approximation, pattern recognition, information
classification and data compression. The learning rule is that
the steepest descent method is adopted to adjust the weights
and thresholds of the neural network continuously through
reverse retransmission so as to minimize the square error
of the network. Its network model topology includes input
layer, hidden layer and output layer. The activation function is
sigmoid function, whose derivative is related to itself, that is,
f’(x) = f(x) (1 − f(x)).

The process of BP neural network error is calculated as
follows

(1) The generalized error dkt of each unit of the output layer
is defined as difference between target Tk =

(
yk1, y

k
2, . . . , y

k
q

)
and the output Ct of the network:

dkt =
(
ykt − Ct

)
· f =

(
ykt − Ct

)
· Ct (1− Ct) ,

t = 1, 2, . . . , q. (13)

where q is the dimension of the target vector.
(2) The generalized error ekj of each unit of the interme-

diate layer is calculated by using the connection weight vjt ,
the generalized error dt of the output layer, and the output bj
of the intermediate layer.

ekj =

[ q∑
t=1

dt .vjt

]
bj
(
1− bj

)
(14)

(3) The connection weight vjt and the threshold γt are
adjusted by the error dkt and the output bj of each unit of the
intermediate layer.

vjt (N + 1) = vjt (N )+ α.dkt .bj (15)

γt (N + 1) = γt (N )+ α.dkt (16)

t = 1, 2, . . . , q; j = 1, 2, . . . , p; 0 < α < 1

(4) The connection weight wij and the threshold θj are
corrected by using the error ekj , the input Pk = (a1, a2, . . . an)
of each unit of the input layer.

(N + 1) = wij (N )+ εekj a
k
i (17)

θj (N + 1) = θj (N )+ εekj (18)

i = 1, 2, . . . , n; j = 1, 2, . . . , g; 0 < ε < 1

where g is the dimension of the input vector of the middle
layer and n is the dimension of the network input.

(5) Randomly select a set of input and target samples from
learning dataset and repeat above calculation process until the
global error of the network is less than a preset threshold, then
the calculation procedure will end.

After obtaining prediction results from each sub-neural
network based on Type-2 FCM clustering algorithm,
the spatio-temporal characteristics between traffic flow data
collected from different detectors are considered to adjust ini-
tial prediction results. Finally, a weighted average is adopted
to fuse spatio-temporal correlation and prediction results
based on clustering learning method as follows:

Qt =

∑C
i=1 Qiλ̄i∑C
i=1 λ̄i

(19)

where Qt represents the final prediction result, Qi is the
prediction result of each sub neural network, C is the num-
ber of clusters, and λ̄i is the average of the spatio-temporal
correlation coefficient for the data samples in each cluster.
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FIGURE 2. Detector position distribution.

III. CASESTUDY
A. DATA SOURCE DESCRIPTION
As shown in Figure 2, the data used in this study was
derived from the Minnesota Department of Transportation
(Mn/DOT) and the TrafficData Research Laboratory (TDRL)
at Duluth University, Minnesota [50]. It provides traffic flow
data detected from loop detectors in the Minnesota Express-
way network. The collection time is from January 1 to
January 31, 2011, with an interval of five minutes. Each data
sample includes detector tags, recording time, and traffic flow
volume, and the data collecting time lasts 30 days, In the
model evaluation, all data samples are divided into three parts,
1/3 of all data samples are set as training sets, 1/3 of the
sample data is set as the verification data set, and the last
1/3 of the data is used as the testing set.

And we used the Data of the first 12 time steps as input to
make predictions. In order to test the reliability and validity
of the model, two detectors are selected in the cases study,
shown in Fig.2, the loop detector L0010 is located at the edge
of the road section and the loop detector L0008 is located at
the center of the road network.

B. PARAMETERS OPTIMIZATION
In this study, two traditional indicators, Mean Absolute Per-
centage Error (MAPE) and Root Mean Square Error (RMSE)
are used to evaluate the prediction performance of the mode,
which are shown in Equation (20) and (21). MAPE not only
considers the error between the predicted value and the true
value, but also the ratio between the absolute error and the
true value, and the RMSE is very sensitive to the very large
or small error in the results, that is, these two indicators have
good effect to reflect the prediction precision of the model.

MAPE =
1
N

N∑
i=1

∣∣∣Q̃i − Qi∣∣∣
Qi

(20)

RMSE =

√√√√ 1
N

N∑
i=1

(
Q̃i − Qi

)2
(21)

where N is the number of data samples, Q̃i represents the
predicted traffic volume from prediction models, and Qi is
the actual data collected from detectors.

In the calibration, three key parameters need to be deter-
mined in Type-2 FCM algorithm before model validation:
fuzzy weighting index m, cluster number c and β. On the one
hand, the m affects the convexity of the objective function;
on the other hand, it controls the degree of fuzzy cluster-
ing results, that is, the degree of sample sharing in fuzzy

clustering [51]. The number of clustering clusters directly
affects the data recognition accuracy of clustering algorithm.
However, the design parameter β affects the accuracy of
the algorithm in discriminating between normal data and
abnormal data, and its value affects the combination degree
of the algorithm clustering. For these three parameters, over-
or under-values may lead to inaccurate predictions, so we
performed several tests to determine their range based on
changes in prediction accuracy. The value of β ranges from
20 to 40, and the range of c is from 5 to 15, m will be
selected in [1.1, 2.0] in increments of 0.1. Using RMSE as
the evaluation criteria, then the parameter optimization can
be performed by the following steps:
Step.1: According to the value of β ranges from 20 to

40, 21 sub-models Ti(i = 20, 22, . . . , 40) with different β
are established. The corresponding values of m and c in 21
sub-models are then analyzed in optimization.
Step.2: Search the optimal values of m and c for each

sub-model according to the minimal RMSE. The number of
occurrences of the optimal m and c for each sub-model is
counted, and the combination with the highest frequency of
occurrence is labeled Um and Cu as the optimal m and c
values of the total model.
Step.3: According to the combination of optimal values

obtained in step (2), the corresponding RMSE value is found
in the sub-model, and the optimal value of parameter β can
be estimated according to the smallest RMSE.

By implementing the above parameters searching pro-
cess, the optimal vales of three parameters are determined
according to RMSE for two selected detectors under different
prediction step ahead, shown in the Table 1.

TABLE 1. Parameter optimizing results.

C. MODEL PERFORMANCE COMPARISON
In this study, we compared the prediction performance of the
proposed Type-2FCMNN model to two traditional models:
FCMNN and original ANN model. The FCMNN [42] is a
combination of fuzzy c-means and neural networks.

Fig.3 shows prediction results of three prediction mod-
els compared with actual collecting traffic flow data. It can
be found that all three candidate models can produce good
prediction performance and follow the variation of observed
data. We further use error distribution percentage shown in
Fig.4 to compare prediction accuracy of three models. The
x-axis represents the distribution of the error range and the
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FIGURE 3. Comparison of observed data and model predictions (Time
Scale: 5min). (a) Type-2 FCMNN. (b) FCMNN. (c) NN.

TABLE 2. Multi-step prediction error comparison for No. L0008 detector.

y-axis is the percentage of each range. It can be seen that the
Type-2FCMNN model has better prediction performances,
with the percentage of 79.5% in the range of (−6, 6) errors,
higher than other two models with 71.5% for FCMNN and

FIGURE 4. Percentage distribution of RMSE. (a) Type-2FCMNN.
(b) FCMNN. (c) NN.

70.1% for NN. For the smaller error range of (−2, 2),
Type-2FCMNN still has lower error distribution percent-
age compared with other two models. Furthermore, we can
also find that the prediction accuracy of models combing
with classification learning algorithm, Type-2FCMNN and
FCMNN, is higher than that of individual model, NN.

Table 2 shows the prediction performance evaluated by
RMSE and MAPE of the three models under single and
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TABLE 3. Multi-step prediction error comparison for No. L0010 detector.

FIGURE 5. Multi-step prediction error growth rate (a) No. L0008 detector
(b) No. L0010 detector.

multi-step prediction ahead for the No. L0008 detector
located at center lane. For single-step prediction, RMSE of
FCMNNmodel is close to that of Type-2FCMNNmodel, and
their performance are both better than the original NNmodel.
When the prediction step increases, RMSE of NN model
increases rapidly and reaches a maximum of 12.302 when the
number of steps is 10. RMSE of Type-2FCMNN only grows
to 8.558 comparing to 11.373 in the FCMNN model when
prediction step is 10. Therefore, as the number of prediction
step increases, the prediction errors of proposed model in this
study are lower and grows slower than that of two other mod-
els, which demonstrates the superiority of Type-2FCMNN

for its strong classification learning ability. For the MAPE,
we can find similar comparing results. When the prediction
step increases, the improved Type-2FCMNN model can still
maintain higher accuracy than the other two models. The
MAPE of the proposed model was 25% lower than that of NN
model. Table 3 shows the prediction errors of threemodels for
the No. L0010 detector under single andmulti-step prediction
ahead, also shown in the Fig.5.

IV. CONCLUSIONS
This paper introduces an improved traffic flow prediction
model. Firstly, the spatial-temporal correlation is established
by using the spatial position and historical traffic flow data
collected in detectors on road network. Then, an improved
Type-2FCMNN model is established to reasonably classify
the historical data into different traffic flow patterns, and
the clustering results were put into the neural network for
model training. The clustering method adopt in this study
is a simplified type-2 FCM algorithm including the fuzzifi-
cation of membership function. Finally, the final prediction
result is obtained by weighted average calculation of the
preliminary prediction results of the model by the quan-
tized spatiotemporal correlation coefficient. In the case study,
traffic flow data were collected from 21 detectors on the
highway, the MAPE and RMSE were introduced to evaluate
the parameter optimization and prediction performance, and
the proposed model was compared with the FCMNN and NN
models. The following conclusions are drawn:

(1) In the road network, the data between the detectors is
highly correlated. By taking the historical data of the detec-
tors associated with the target detector as part of the input in
prediction model and extracting their spatiotemporal features
into the model correction, higher prediction accurate can be
obtained.

(2) When using clustering method to analyze different
modes of traffic flow, the perdition model combing type-2
FCM algorithm produce higher prediction accuracy than that
combing original FCM clustering algorithm.

(3) Due to the ability of the type-2 FCM algorithm to
distinguish outliers and categorize traffic flow state under
different patterns, the proposed model express better predic-
tion performance and a lower error growth rate than the other
models in single-step and multi-step prediction.
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