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ABSTRACT Our main objective is to reduce power consumption by responding to the instantaneous
bit rate demand by the user for 4th Generation (4G) and 5th Generation (5G) Massive MIMO network
configurations. Moreover, we present and address the problem of designing green LTE networks with the
Internet of Things (IoT) nodes. We consider the new NarrowBand-IoT (NB-IoT) wireless technology that
will emerge in current and future access networks. In this context, we apply emerging evolutionary algorithms
in the context of green network design. We investigate three different cases to show the performance of
the new proposed algorithm, namely the 4G, 5G Massive MIMO, and the NB-IoT technologies. More
specifically, we investigate the Teaching-Learning-Optimization (TLBO), the Jaya algorithm, the self-
adaptive differential evolution jDE algorithm, and other hybrid algorithms. We introduce a new hybrid
algorithm named Jaya-jDE that uses concepts from both Jaya and jDE algorithms in an effective way. The
results show that 5GMassive MIMO networks require about 50% less power consumption than the 4G ones,
and the NB-IoT in-band deployment requires about 10% less power than guard-band deployment. Moreover,
Jaya-jDE emerges as the best algorithm based on the results.

INDEX TERMS Massive MIMO, 4G, 5G, NB-IoT, network planning, network design, hybrid networks,
power consumption, green networks, evolutionary algorithms.

I. INTRODUCTION
The fifth generation (5G) of cellular networks is expected to
offer extremely wide spectrum and multi-Gigabit-per-second
(Gbps) data rates for mobile users. Massive multiple-input
multiple-output (MIMO) [1], [2] is one of the primary tech-
nologies to be incorporated into the fifth generation (5G)
framework of cellular systems. In Massive MIMO sys-
tems each base station (BS) is equipped with several active
antenna elements that communicate with user equipment
that have single or multi antenna over the same time and
frequency band. Moreover, future wireless access networks
will require green networking as essential part for they
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deployment [3]–[6]. It is expected that the power consump-
tion will increase in the 5G access networks as these will need
to expand and become denser. However, Massive MIMOBSs
will have a lower power consumption than conventional 4G
BSs [7].

Moreover, 3GPP released the first recommendation of
the NarrowBand-IoT (NB-IoT) [8]–[10] in 2016. NB-IoT
is an emerging new wireless access technology, which will
exist together with the other current cellular networks like
Global System for Mobile communications (GSM), Uni-
versal Mobile Telecommunications System (UMTS) and
Long-Term Evolution (LTE). The basic idea from 3GPP
standards is the integration of NB-IoT to current mobile 4G
networks. NB-IoT devices are low cost and allow massive
deployments with reduced data rates [11]. The subcarrier
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bandwidth is 180kHz in case of co-existence with current
LTE networks. According to a prediction from Ericsson the
number of IoT connected devices will reach 1.5 billion by
2022 [12]. Thus, the massive NB-IoT deployment will gener-
ate new optimization problems from the access network point
of view. That of optimal coverage and power consumption.

At the same time, machine learning techniques play
an important role towards future wireless networks and
services [13]. Among others, evolutionary algorithms (EAs)
belong to the core of machine learning paradigms. Addi-
tionally, the application of EAs to LTE network optimiza-
tion is also addressed in previous works [14]–[18]. In this
work, we consider 4G networks, and 5G-Massive MIMO
networks with a minimal power consumption. The optimiza-
tion framework requires first the selection of the suitable
BS locations from a set of given locations, and second the
fine tuning of each BS antenna’s input power, in order to
obtain an energy-efficient network. Moreover, we also con-
sider LTE networks with massive deployment of NB-IoT
devices. We also optimize the LTE NB-IoT network towards
both optimal coverage and power consumption.

The above-described combinatorial optimization problem
can be addressed using suitable EAs. Our goal is to design
a wireless network optimized towards power consumption,
while preserving QoS (Quality of Service). A capacity-based
heuristic, meaning that it will respond to the instantaneous bit
rate demand of the user in order to develop an energy-efficient
network, was introduced in [6]. Herein, we will use a modi-
fied algorithm that combines an EA optimization algorithm
with concepts taken from the capacity tool. The applica-
tion area of all the algorithms is Ghent, Belgium. We com-
pare the obtained results in terms of both the energy and
the network performance of all algorithms. We examine
six different algorithms in order to compare performance
of 4G networks, Massive MIMO future 5G networks and
emerging NB-IoT networks. We will use state-of-the-art
algorithms that have been recently applied to a wireless
sensor network (WSN) optimization problem [19]. Namely,
we consider the Teaching-Learning Based Optimization
(TLBO) [20], the Jaya algorithm, [21] and the recently pro-
posed hybrid TLBO-Jaya [19]. Moreover, we also apply a
self-adaptive differential evolution algorithm (jDE) and a
hybrid TLBO-DE algorithm resulting in the improved TLBO
(ITLBO) [22]. Additionally, we introduce a new hybrid algo-
rithm that combines Jaya and the jDE algorithms, which
we call Jaya-jDE. The main characteristic of all these algo-
rithms is the fact that they are low complexity algorithms.
All of them they do not have any control parameters, and
the only user selection is the population size and iteration
number. It must be pointed out that in [19] the TLBO, Jaya,
and TLBO-Jaya algorithms were applied in real-valued opti-
mization problems, while in our case they are applied in a
discrete-valued problem. We expect them to perform well
regardless of the problem type.

The novelty in our work lies in the fact that (i) we per-
form such a comparison regarding power consumption in 4G,

and 5G/Massive MIMO and NB-IoT networks and (ii) we
introduce a novel hybrid algorithm the Jaya-jDE algorithm.
Additionally, (iii) the whole optimization framework is mod-
ified from the previous heuristic algorithm using a novel
meta-heuristic approach and performance is compared for six
different algorithms.

The rest of this paper is organized as follows. Section II
provides a brief description of related work. The problem
description is provided in Section III. We describe the algo-
rithms details in Section IV. Section V, presents the numeri-
cal results. Finally, we give the conclusion in Section VI.

II. RELATED WORK
The authors in [23] present an architecture vision for 5G
mobile networks. Their proposal uses a two-layer archi-
tecture having a radio network and a network cloud.
Additionally, [24] uses cooperative distributed radio resource
management algorithms for carrier selection, power control
and time synchronization. The network planning applies to
hyper-dense small cell networks for 5G communications.

The problem of energy efficiency (EE) maximization for
5G mobile networks is addressed in [25]. The authors per-
form an review of state-of-the-art EE-maximization tech-
niques for hybrid Massive MIMO systems and identify the
open research problems.

The authors in [26] propose a novel method for the cell
planning problem for LTE networks usingmetaheuristic algo-
rithms. The authors try to satisfy both cell coverage and
capacity constraints simultaneously by formulating an opti-
mization problem that captures practical planning aspects.

In the same context, in [27] the optimization problem is
to choose a subset of sites from a candidate list to deploy
macro or small cells in order to minimize the total cost
of ownership (TCO) or the energy consumption subject to
practical constraints. For this reason the authors introduce
approximation algorithms to solve two different cell planning
cases which are NP-hard.

Moreover, the authors in [28] study advanced energy-
efficient wireless systems in orthogonal frequency-division
multiple access (OFDMA) downlink networks using coor-
dinated multipoint (CoMP) transmissions between the base
stations (BSs) in a heterogeneous network (HetNet). The
optimization problem addressed by the authors is transformed
into a convex optimization problem and it’s solved using an
efficient iterative resource allocation algorithm.

The problem of ultra-dense small cell planning using cog-
nitive radio network is studied in [29]. The authors provide an
overview of reconfigurable radio and small cell technologies
and introduce the tentative network architecture for 5G. They
consider two different planning approaches; genetic-based
and graphbased. The main purpose is to improve user
throughput by eliminating communication interference.

The topic of green cell planning for small cell networks in
smart cities is discussed in [30]. The authors model various
traffic patterns using a stochastic geometry approach and
propose an energy-efficient scheme for small cell planning
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and deployment in accordance with the selected traffic
pattern.

Additionally, the authors in [31] use a genetic algorithm
combined with a location intelligence method for energy
optimization in 5G Wireless Networks. The authors in [32]
propose a newBioinspired Self-Organizing Solution for auto-
mated and efficient Physical Cell Identifier (PCID) configu-
ration in 5G ultra dense networks.

Finally, a review paper that studies the problem of planning
future cellular networks is given in [33]. The authors briefly
give a tutorial on the cell planning process and they review the
more important findings from recent works in the literature
that have attempted to address the challenges in planning
emerging networks.

III. PROBLEM FORMULATION
Two types of optimization problems are considered in this
work: the maximum area coverage problem and the maxi-
mum user coverage problem. The details of these problems
are presented below. We assume that we have a mobile net-
work that consists of K BSs and N users. The sets of BSs
and users are K = {1, 2, · · · ,K } and N = {1, 2, · · · ,N },
respectively. Moreover, we define the set of power values of
each BS. This is denoted with P = {p1, p2, · · · , pK }. We
consider the binary variable, xkn that describes the association
of the k-th BS with the n-th user and can be formulated as

xkn =

{
1, if n-th user is associated with the k-th BS
0, otherwise.

(1)

Moreover, we define the binary variable yk that describes the
operation or not of the k-th BS and can be formulated as

yk =

{
1, if BS k is turned on
0, otherwise.

(2)

Additionally, we can define the discrete variable, pk that
describes the transmission power value of the k-th BS as
pk ∈ {0, 1, 2, · · · , pt },∀k ∈ K. where pt is maximum
allowable transmission power for a BS according to 3GPP
recommendations. Thus, we define the solution vector to an
integer vector that contains both the active or not BSs and the
operating power in dBm. All the chosen EAs generate this
vector.

A. GREEN NETWORK PLANNING FOR MAXIMUM
AREA COVERAGE
The first case is a network optimization problem without
taking into account users. Our objective is to derive an opti-
mized network that has the smallest possible number of BSs,
while maximizing the coverage area, and having a minimal
BS transmission power. Therefore, there are two optimization
objectives: the power consumptionminimization and the cov-
erage area maximization. We can formulae the first objective

as [3, Section 5]:

P1a : Fp = min
{y,p}

100

1−

∑
k∈K

Pcalc (ykpk)

Pmax


s.t. C1 : yk ∈ {0, 1}, ∀k ∈ K,

C2 : pk ∈ {0, 1, 2, · · · , pt }, ∀k ∈ K

where Pcalc( ) is the calculated power consumption in Watts
for a given solution vector, Pmax = K × Pcalc (pt) is the max-
imum power consumption of the network, i.e. when all BSs
operate and their input power is set to themaximum allowable
value. The constraint C1, denotes the operation or not of the
k-th BS. Similarly, the constraintC2 denotes the transmission
power level of k-th BS. More details for this power consump-
tion expression are given in [3]. Moreover, we can define
the second optimization objective as the maximum coverage
area percentage. This is the percentage of the desired area that
the network can cover ny using fewer BS with less power.
In case of a Massive MIMO (MaMi) BS it has been found
that this is approximately it is [7]

PMaMi
calc =

P4Gcalc
7

(3)

where PMaMi
calc , P4Gcalc is the power consumed by a Massive

MIMO and an 4G BS, respectively. The coverage function
Fc is specified by:

P1b : Fc = min
{y,p}

100

Atarget
⋂ ∑

k∈K
Acalc (ykpk)

Atarget
s.t. C1 : yk ∈ {0, 1}, ∀k ∈ K,

C2 : pk ∈ {0, 1, 2, · · · , pt }, ∀k ∈ K

where Atarget is the target area to be covered (in km2), and
Acalc (ykpk) is the area covered by the k-BS station (in km2).
The calculation of the Acalc (ykpk) requires first the calcu-
lation of the maximum allowable path loss, PLmax (in dB),
for each operating BS. This is accomplished using the link
budget parameters for the 4G and Massive MIMO network
of Table 2. We can find the maximum range R (in meters)
covered by each BS [3]. Thus, we may define the total area
covered by a given solution vector as the union of all BSs
coverage areas, which are derived by each maximum range R.
From the above we can formulate the complete optimization
problem as [3, Section 5]:

P1c : F1 = min
{y,p}

(
Fc + αFp

)
,

s.t. C1 : yk ∈ {0, 1}, ∀k ∈ K,
C2 : pk ∈ {0, 1, 2, · · · , pt }, ∀k ∈ K,

where

α =


0 if Fc < 90
(Fc − 90)2

5
if 90 ≤ Fc ≥ 95

5 otherwise

(4)
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The above objective problem has a minimum value of
−600 that is obtained when both Fc and Fp are equal to 100.

B. GREEN NETWORK PLANNING FOR MAXIMUM
USER COVERAGE
We present a modified meta-heuristic approach to find the
list of BSs covering a given set of users and reduce the total
network power consumption [3]. This approach is based on a
fitness function and uses concepts from the capacity tool. In
this way a global optimizer can be set using any EA.

The solution vector is the input to another algorithm that
calculates an objective function based on the number of cov-
ered users and the power consumption of the current solution.

In this case, we formulate this objective function as

P2 : F2 = min
{y,x,p}

∑
k∈K

Pcalc (ykpk)

Pmax

+ 4 ·

1−

∑
k∈K,n∈N

xknyk

N

 ,
s.t. C1 : yk ∈ {0, 1}, ∀k ∈ K,

C2 : pk ∈ {0, 1, 2, · · · , pt }, ∀k ∈ K,
C3 : xkn ∈ {0, 1}, ∀n ∈ N , ∀k ∈ K,

C4 :
∑K

k=1
xkn = 1, ∀n ∈ N

where 4 is a very large number. The constraint C3, denotes
the association or not between user n and BS k . Moreover, the
constraint C4 expresses the unique association between one
user nwith BS k at the same time. Thus, if a possible solution
vector is used as input, the algorithm first finds the number
of users covered by this solution, and then it calculates the
objective function value.

IV. ALGORITHM DESCRIPTION
In this section, we present the details of the algorithms.

A. JAYA ALGORITHM
The Jaya algorithm was created by Rao in [21]. It is a pop-
ulation based stochastic algorithm. The basic idea in Jaya is
for each member of the population or possible solution yi to
be modified using the information of the best solution and
moving away from the worst solution found at each iteration.
The name Jaya means victory in Sanskrit. Jaya does not
have any control parameters. The user has to set only the
population size and the maximum number of iterations. The
Jaya concept is expressed mathematically by

ynewi = yoldi + rnd1
(
ybest − yoldi

)
− rnd2

(
yworst − yoldi

)
(5)

where rnd1 and rnd2 are uniformly distributed random num-
bers within the range [0, 1]. In Jaya the new found child vector
replaces the old one only in case that the new one obtains a
better objective function value than the old.

B. JDE ALGORITHM
Storn suggested in [34] to select the differential evolu-
tion (DE) control parameters M and Cr from the intervals
[0.5,1] and [0.8,1], respectively, and to set population size
Np = 10D, where D is the problem dimension. The param-
eter M is the mutation control parameter that is used for
mutant vector generation, while Cr is the crossover control
parameter that is applied for trial vector generation [34]. The
proper selection of the control parameter values is, usually
problem-dependent. Thus, additional running is required for
finding the optimal control parameter values. In this context,
in [35] a self-adaptive DE algorithm is proposed, which they
call jDE. In this algorithm the same mutation operator as in
DE/rand/1/bin is applied. In jDE each member of the popu-
lation has its own M and Cr parameters. Thus, each vector
is extended with two additional variables. These parameters
evolve with the population and the new generated vectors use
these values of the control parameters. Then the algorithm
selects the vectors with the improvedM andCr values, which
are more likely to survive and to generate new child vectors
for the next generation. Thus, the newly found vectors use the
obtainedM andCr values to the next generation. The way the
algorithm self-adjusts the M and Cr parameters is given by
the following expressions:

MG+1,i =

{
Ml + rand1[0,1] ×Mu if rand2[0,1] < p1
MG,i, otherwise

Cr
G+1,i =

{
rand3[0,1] if rand4[0,1] < p2
Cr

G,i, , otherwise
(6)

where randi[0,1], i = 1, 2, 3, 4 are uniform random numbers
∈ [0, 1], Ml,Mu are the lower and the upper limits of M set
to 0.1 and 0.9, respectively, and p1 and p2 the probabilities of
adjusting the control parameters. In [35] it is recommended
to use the value 0.1 for these probabilities. As it is reported
in [35] when we use the jDE strategy, the time complexity
does not increase. In fact, the time complexity of the jDE
algorithm at each iteration is O(NpD + NpF) [36], where F
is the time complexity of the objective function. This is the
same as the original DE.

C. HYBRID JAYA-jDE ALGORITHM
Algorithm 1 describes the hybrid Jaya-jDE algorithm. The
new hybrid algorithm presented here combines concepts from
both Jaya and jDE algorithms. The basic idea is to prob-
abilistically select the way to generate a new vector using
the Jaya or the jDE algorithms. The probability of selection
psel is initially set to 0.5, thus both algorithms have equal
probabilities. At each iteration the algorithm loops in the
entire population and selects to use the Jaya or the jDE algo-
rithms based on the previous successful vector replacements.
Thus, the best algorithm for a given optimization problem
is more probable to be selected. Additionally, a stagnation
avoidance mechanism has been integrated into the new algo-
rithm. In case of stagnation, the algorithm selects with equal
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FIGURE 1. Distribution of users for a) 100 Voice/Data users at 1Mpbs-10Mbps b) 224 Voice/Data users+300 IoT Nodes at
10kbps c) 224 Voice/Data users+ 1000 IoT Nodes at 25kbps. The green triangles denote the IoT nodes, while the blue ones
represent the Voice/Data users.

probabilities the way to generate new vectors using the Jaya
or the jDE algorithms. Also, it must be pointed out that the
new algorithm is control parameter free and requires only the
setting of the population size Np and the maximum number
of iterations Gmax.

For this case, we have introduced a new variable to the orig-
inal Jaya algorithm, this is denoted as cntjaya in algorithm 1.
This parameter is increased by one if the newly found vector
is better than the old one. Thus, this parameter represents
the number of successful vector replacements in the Jaya
algorithm. Moreover, just like in the Jaya algorithm, the new
variable cntjDE represents the number of successful old vector
replacements by the new one when the jDE is executed. The
time complexity of the proposed Jaya-jDE algorithm at each
iteration is the same as that of the original jDE algorithm.
Table 1 lists the complexity of each algorithm and computa-
tion time for calculating the Sphere function at 30 dimensions
for 100,000 function evaluations. The simulations results are
for a PC with i5− 3470 CPU at 3.2GHz with 8GB RAM and
Windows 7 operating system.

V. NUMERICAL RESULTS
We address the network planning optimization for all network
types given 75 possible BS locations in the city of Ghent,

TABLE 1. Comparison of algorithms in terms of complexity and
computation ime for the Sphere function.

Belgium. The total area to cover is about 6.85 km2 (Fig. 1).
The BS can be either active (binary one) or not (binary zero).
For active base stations the range of the input power of the BS
antenna is between 0 to 43 dBm for the 4G cases, and between
0 to 46 dBm for the 5G, NB-IoT cases. In all cases the power
step is 1dB. In case of aMassiveMIMOBS, the input power is
divided over all the antennas of the BSs. We consider macro-
cell BSs for all cases here. The total number of unknowns
is 2 × 75. We apply six different algorithms in each case
and compare the results. These are the TLBO, Jaya, TLBO-
Jaya, jDE, Jaya-jDE and the ITLBO. The TLBO-Jaya and the
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Algorithm 1 Hybrid Jaya-jDE Algorithm
1: Set Jaya-jDE initial parameters, population size Np,

maximum iterations Gmax and cntjaya = 0, cntjDE =
0, psel = 0.5, stagnation = false

2: Generate a uniformly distributed random population of
size Np, set G = 1

3: while G ≤ Gmax do
4: if not (cntjaya = 0 or cntjDE = 0) then
5: if cntjDE > cntjaya then
6: psel =

cntjaya
cntjDE

7: else
8: psel =

cntjDE
cntjaya

9: end if
10: psel =

psel
2

11: end if
12: for i = 1 to Np do
13: if not stagnation then
14: if cntjDE > cntjaya then
15: if rand < psel then
16: generate new vector according to Jaya algo-

rithm
17: else
18: generate new vector according to jDE algo-

rithm
19: end if
20: else
21: if rand < psel then
22: generate new vector according to jDE algo-

rithm
23: else
24: generate new vector according to Jaya algo-

rithm
25: end if
26: end if
27: else
28: if rand < 0.5 then
29: in case of stagnation give equal selection prob-

ability
30: generate new vector according to Jaya or jDE

algorithm with equal probability
31: end if
32: end if
33: end for
34: if best vector does not improve in current generation

then
35: stagnation = true
36: else
37: stagnation = false
38: end if
39: G = G+ 1
40: end while

ITLBO are hybrid algorithms, as well as the new Jaya-jDE.
We run all algorithms for 20 times [6]. In all cases, except for
the Massive MIMO extended set, we select the population

TABLE 2. Link budget parameters for the 4G/LTE and the 5G Massive
MIMO network.

size to be 20 and the maximum number of generations is
also 20. Therefore, the total number of objective function
evaluations is 400.

A. LTE AND 5G MASSIVE MIMO CASE
Several papers and reported testbeds use cm-Wave frequen-
cies for Massive MIMO. The authors in [37]–[39] present
a Massive MIMO testbed designed for a carrier frequency
of 3.7 GHz. Moreover, the authors in a recent study [2]
claim that the research on Massive MIMO has been focused
on cellular frequencies below 6 GHz, where the transceiver
hardware is very mature. Taking the above into account,
we assume a carrier frequency of 3.7 GHz for all the sim-
ulations using Massive MIMO. Table 2 lists the link budget
parameters for the 4G and the Massive MIMO network.
We use the Walfisch-Ikegami propagation model for all path
loss calculations in the 4G/LTE network, while we apply
the propagation model suggested in [7] for Massive MIMO.
Fig. 2 compares the range for 4G and Massive MIMO BS for
1Mbps (receiver SNR −1.5dB) and 10Mbps (receiver SNR
19dB) date rates, respectively. The BS is placed on a building
with 27.2 m height and the antenna height is considered to
be 1.5m. The results are for non-Line-Of-Sight (nLOS) prop-
agation and have been obtained using the above-mentioned
propagation models. We notice that as expected the Massive
MIMO BS has a significantly lower range, thus more BS
are required in this case. We consider different optimization
cases.
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FIGURE 2. Comparison of BS range for 4G and Massive MIMO networks.

TABLE 3. Maximum area coverage case. Algorithms comparative results
for all cases in terms of objective function value. The smallest values are
in bold font.

1) CASE 1: MAXIMUM AREA COVERAGE CASE
First, we consider the maximum area coverage case, without
taking into account users for both 4G/LTE and 5G Massive
MIMO cases. Before we can actually start designing the
network, inputs are required: the considered area, which is
the city of Ghent as described earlier and the list of possible
base station locations. The input to the optimization algo-
rithm is the list of all BSs in the city of Ghent. Addition-
ally, we consider an imaginary extended BS set that consists
of 2450 BS distributed all over the city center. Thus, in order
to obtain full coverage in case of a 5G network, we run also
all algorithms for this extended BS set. The total number of
unknowns is 4900 for this case and the problem becomes high
dimensional. In order to test the algorithm’s performance we
set the population size to 100 and the number of generations
to 500 for this case.

TABLE 4. Maximum area coverage case.Best-obtained results
comparison using different algorithms. The best values are in bold font.

TABLE 5. Power consumption reduction using optimization.

Table 3 holds the algorithms comparative results in terms
of objective function values. We notice that for both 4G and
5G networks Jaya-jDE is the superior algorithm in terms of
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FIGURE 3. Case 1: Maximum area coverage case. Box plots of the
algorithms results. a) 4G b) 5G Massive MIMO.

mean, worst and standard deviation of the objective function
objective function. For the 4G case the jDE results is the
best, while for the 5G case Jaya-jDE obtains the best result.
Table 4 reports the comparative results for each technology
case. In Table 4 the ‘‘BS No’’ column denotes the number
of active BS required for the solution. We notice that the
75 BSs are not enough to cover the whole area with Massive
MIMO technology and a lower coverage percentage of about
67% is obtained. This can be expected as the 5G network
operates at a higher frequency than 4G. An indication that
more BS are required using Massive MIMO technology is
also evident by viewing the more than double number of BSs
required for theMassiveMIMO network. In the 4G LTE case,
all algorithms succeed in obtaining 95% coverage. However,
the results regarding power consumption and the number of
required BSs vary. For the Massive MIMO case the number
of required BSs increases compared with 4G, which creates
the need for a new extended BS set.

Moreover, it is also evident that for the 5G extended BS
set case Jaya-jDE obtains the best result with 1740 BS that

TABLE 6. Best-obtained results by the capacity tool.

achieves coverage close to 95%. ITLBO obtains a result with
fewer BS (1210) but with smaller coverage percentage (92%).
The other algorithms could not find a solution with coverage
percentage close to 90%. As it can be expected the power
consumption is very high for this case due to the large BS
number. Thus, Jaya-jDE is capable of producing a solution
for high-dimensional problems with a small population size.
It must be also noted that the first 5G implementations will
co-exist with current 4G networks, thus it will be heteroge-
neous networks. Thus 5G coverage will not be provided for
the whole city but for specific parts. The 5G network will
provide coverage first at points with large concentration of
people like stadiums, shopping centers e.t.c.

The benefit of controlling the BS locations as well as the
BS power to achieve energy efficiency is proven from the
data listed in Table 5. We notice that the percentage of power
reduction using an optimization algorithm and by using the
worst obtained results ranges from about 37% to 57%. More-
over, Figs. 3a-3b show the boxplots of the algorithms results.
It is clear that Jaya-jDE obtained the results with the smaller
distribution of values in both case cases.

2) CASE 2: MAXIMUM USER COVERAGE CASE
As mentioned previously, next we consider a capacity-based
heuristic, which will respond to the instantaneous bit rate
demand of the users in the considered area.More details about
the capacity tool can be found in [6].

The input to the optimization algorithm for this case is the
list of all BSs in the city of Ghent and the list of different types
of users (voice/data).

For the LTE and the 5G Massive MIMO networks we
consider a randomly generated list of 100 users with their
required bit rate: this list contains the location of all the
users active in the considered area together with the bit rate
they require. The users are uniformly distributed over the
considered area i.e., each location in the area has the same
chance to be chosen as a user location. Four bit rates are
considered: 1 Mbps (66 users), 2 Mbps (20 users), 4 Mbps
(11 users) and 10 Mbps (3 users). Fig. 1a shows a randomly
generated user distribution in the city of Ghent for the LTE
and 5G-Massive MIMO cases.

We apply first the capacity based heuristic. The results
are listed in Table 6. The capacity column refers to the
total capacity in Mbps offered by each network configuration
regardless of user coverage. We notice that although the Mas-
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TABLE 7. Maximum user coverage case. Best-obtained results
comparison using different algorithms. The best values are in bold font.

sive MIMO BS number is higher than the 4G one, the 26 BSs
cannot cover all the users but 93% of them due to shorter
range. We notice that when the goal is user coverage and not
area coverage the 5G network has the ability to cover the users
with small increase in BS number due to the higher capacity
rates offered. The capacity in Mbps offered by both networks
is also quite different with Massive MIMO network offering
about two orders of a magnitude more. This means that more
users that will be close to the BS will be covered. The power
consumption of the 4G network is about three times higher
than that of the Massive MIMO network.

Next, we optimize both networks using the meta-heuristic
approach to address the same problem. We apply again all
algorithms. Table 7 shows the best obtained results. For
4G/LTE all algorithms obtained solutions that cover 100%
of the users. We notice that for the 4G case the smallest
number of 12 BSs is obtained by three algorithms: TLBO-
Jaya, Jaya, and jDE. However TLBO-Jaya obtained the best
results in terms of power consumption. Thus, the meta-
heuristic approach obtained results that require about 14%
lower number of BS and about 28% less power consump-
tion for the 4G/LTE case. For the 5G Massive MIMO case
the BS number is 8% lower and the power consumption
about 6% less than the results obtained by the capacity tool
for the same user coverage percentage. The capacity based
heuristic obtained results with higher input power and smaller
dispersion of values, while the hybrid algorithm obtained
results with smaller average input power at about 14 dB.

FIGURE 4. Case 2: Maximum user coverage case. Box plots of the
algorithms results for a) 4G b) 5G Massive MIMO.

Figs. 4a-4b show the box plots of the algorithms results
for both network cases. We notice that for the 4G network,
the TLBO-Jaya obtained the smallest dispersion of values,
namely the standard deviation is about 1.2. For the Massive
MIMO case Jaya-jDE obtained the best result. Jaya obtained
the best result in terms of value dispersion.

The presented results show that future 5G networks
using the Massive MIMO technology will need to be more
denser than current 4G networks, even if they operate in
the cm-Wave frequencies. The main advantage of such 5G
networks will be the significantly lower power consump-
tion and the higher bit rates offered. To reduce further the
power consumption heuristic or meta-heuristic approaches
can be applied. The heuristic approach is generally faster.
The meta-heuristic approach could require more time, but it
is considered to be a global optimizer.

B. NB-IoT CASE
Finally, we address the network planning optimization prob-
lem for 4GNB-IoT networks.We consider a carrier frequency
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TABLE 8. Link budget parameters for the NB-IoT network.

FIGURE 5. NB-IoT modes of operation.

of 2.1 GHz for all the simulations, which is one of the possible
frequency bands for NB-IoT (Table 8) operation [8]. There
are three possible ways of deploying NB-IoT [40], [41].
These are the stand-alone as a dedicated carrier, in-band
within the occupied bandwidth of a wideband LTE car-
rier, and within the guardband of an existing LTE carrier
(see Fig. 5). In stand-alone deployment NB-IoT uses one
GSM channel of 200kHz, while for in-band and guard-band

TABLE 9. NB-IoT 300 nodes case. Best-obtained results comparison using
different algorithms. The best values are in bold font.

TABLE 10. Best obtained solutions for different IoT nodes number.

operation, it uses 180kHz. The latter is equal to bandwidth
used by LTE for each physical resource block (PRB). The
number of PRBs in an LTE network depends on the total
LTE bandwidth, for 10 MHz bandwidth there are 50 PRBs.
In guard-band operation theNB-IoT occupies one LTE guard-
band, thus the total number of PRBs increases by one. In all
NB-IoT simulations we assume the maximumBS transmitted
power to be equal to 46dBm and 2×2MIMOoperation for the
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FIGURE 6. NB-IoT case. Box plots of the algorithms results. For
224 Voice/Data users and 300 IoT Nodes at 25 kbps a) in-band b) guard
band.

BS. We consider also as described by 3GPP that the NB-IoT
band is boosted by 6dB. Thus, the maximum BS transmit
power for NB-IoT is 35dBm and 34.9dBm for in-band and
guard-band operation respectively.

The input to the optimization algorithm for this case is
the list of all BSs in the city of Ghent as well as the list of
different types of users (voice/data/IoT nodes). As a result
of the reduced bandwidth NB-IoT nodes use low data rates.
We set the maximum data rate to 25kbps. The link budget
parameters for the LTE NB-IoT network are listed in Table 8.
Additionally, as in previous cases, the propagation model
used is the Walfisch-Ikegami.

Moreover, different user distribution cases for the NB-IoT
network are considered. The number of total users is a con-
stant number of regular voice/data users plus a larger number
of low rate IoT nodes. Here, we have 224 voice/data users
with rates of 64kbps/1Mbps respectively [3]. In each case,
there is also a large number of NB-IoT nodes spread in the
city center. The IoT nodes is a specific data user type with
low bit rate and low power requirements. The first case is

FIGURE 7. NB-IoT case. Distribution of BS input power of the best
obtained solutions. For 224 Voice/Data users and 300 IoT Nodes at
25 kbps a) in-band b) guard band.

that of 300 IoT nodes having a low bit rate of 25kbps. This
is in agrement with a typical number of nodes for smart city
applications as it is considered by the authors in [42].We con-
sider both in-band and guard-band cases. Different network
sizes are also considered starting from 1000 IoT nodes to
10000 IoT nodes. Figs 1b-1c depict the user distribution in
the city of Ghent for 300 and 1000 IoT nodes. The IoT nodes
are depicted by the green triangles, while the voice/data users
are presented by the blue squares.

Table 9 lists the best obtained values for network con-
figurations having 300 IoT nodes. One may notice that
for the in-band case Jaya-jDE obtained a solution with
12 BS, while the other algorithms obtained best solutions
with more BSs (13-16). Moreover, it is evident that a large
difference in the power consumption among the algorithms
(21.31-26.89kW) exists, where Jaya-jDE obtained the lowest
power consumption. In general, as expected, the guard-band
operation requires more BSs than in-band since it uses an
extra PRB with 12 more subcarriers. For the guard-band case
again Jaya-jDE finds a solution with fewer active BSs than
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TABLE 11. Average rankings achieved by friedman test.

the other algorithms (2-4 less BSs than the others). In both
cases ITLBO is the second best algorithm.

Figs. 6a-6b show the box plots of all the algorithms runs.
In the in-band case, we notice that the TLBO results have the
narrower distribution of values, however the smaller values
are obtained by Jaya-jDE. For the guard band case Jaya-jDE
obtained the best results, while Jaya obtained the larger dis-
tribution of values. The distribution of BS input power of the
best obtained solution by the three best algorithms is shown
in Figs. 7a-7b. We notice that there is a variation of the BS
input power, which differs in most of the cases from the
maximum power.

Finally, we compute the network configuration using only
Jaya-jDE with an increasing number of IoT nodes for both
modes of operations. Again, in each case there are also
224 voice/data users as in previous example. We notice that
the network can support up to 10000 IoT nodes with cov-
ering about 99% of the users. As it can be expected power
consumption increases as the number of IoT nodes increases.
It is interesting to notice that for the in-band case the number
of BS increases from 17 to 51, while the power consumption
increases from 27.14 to 85.53 kW. Moreover, for the guard
band case the BS number rises from 19 to 42, while the power
consumption increases from 32.45 to 54.65 kW.

C. NON-PARAMETRIC STATISTICAL TESTS
Moreover, in order to validate the algorithms performance
we have conducted a non-parametric statistical test. Namely,
the Friedman test, which has been used as a metric for the per-
formance evaluation of EAs [43]–[45].We used the data from
the obtained results. Table 11 lists the ranking results. We can
see that Jaya-jDE algorithm ranks first and outperforms the
other algorithms.

VI. CONCLUSION
In this paper, we have presented and addressed the prob-
lem of designing emerging cellular networks like Massive
MIMO and LTE NB-IoT for the best possible coverage and
optimal power consumption. We have compared results for
different networks using different heuristic and metaheuristic
approaches. The results show that the Massive MIMO access
networks will be denser than current 4G technology and
will offer a greater capacity. Moreover, in-band operation
in NB-IoT requires less power than guard-band operation
(about 10% less in average). We have also proposed a novel

algorithm that combines both an EA and heuristic concepts
to address the network design problem. Moreover, we have
applied and introduced a new and simple algorithm to this
problem, the Jaya-jDE algorithm. Jaya-jDE is a hybrid Jaya
and differential evolution algorithm that combines concepts
from both algorithms and includes a probabilistic selection
mechanism and a stagnation avoidance mechanism. The pro-
posed algorithm was compared with others in different cel-
lular network design cases. The results indicate that in most
cases it obtained a better performance than other emerging
algorithms and achieved the best result in the Friedman test.
The Jaya-jDE algorithm allows to achieve a good trade-off
even when it does not have the best performance. Future
work can consist of the analysis of distributedMassiveMIMO
networks.

ACKNOWLEDGMENTS
M. Deruyck is a Post-Doctoral Fellow of the FWO-V
(Research Foundation - Flanders).

REFERENCES
[1] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, ‘‘Massive

MIMO for next generation wireless systems,’’ IEEE Commun. Mag.,
vol. 52, no. 2, pp. 186–195, Feb. 2014.

[2] E. Björnson, E. G. Larsson, and T. L. Marzetta, ‘‘Massive MIMO: Ten
myths and one critical question,’’ IEEE Commun. Mag., vol. 54, no. 2,
pp. 114–123, Feb. 2016.

[3] M. Deruyck, E. Tanghe, W. Joseph, and L. Martens, ‘‘Modelling and
optimization of power consumption in wireless access networks,’’Comput.
Commun., vol. 34, no. 17, pp. 2036–2046, 2011.

[4] M. Deruyck, W. Vereecken, W. Joseph, B. Lannoo, M. Pickavet, and L.
Martens, ‘‘Reducing the power consumption in wireless access networks:
Overview and recommendations,’’ Prog. Electromagn. Res., Vol. 132,
pp. 255–274, 2012. doi: 10.2528/PIER12061301.

[5] M. Deruyck, W. Joseph, and L. Martens, ‘‘Power consumption model
for macrocell and microcell base stations,’’ Trans. Emerg. Telecommun.
Technol., vol. 25, no. 3, pp. 320–333, Mar. 2014.

[6] M. Deruyck, W. Joseph, E. Tanghe, and L. Martens, ‘‘Reducing the power
consumption in LTE-Advanced wireless access networks by a capacity
based deployment tool,’’ Radio Sci., vol. 49, no. 9, pp. 777–787, Sep. 2014.

[7] System Scenarios and Requirements Specifications, MAMMOET Project,
document ICT-619086-D1.1, 3GPP, 2014.

[8] Cellular System Support for Ultra-Low Complexity and Low Throughput
Internet of Things (CIOT), Relase 13, document TR 45.820, 3GPP, 2015.

[9] Evolved Universal Terrestrial Radio Access (E-UTRA); NB-IoT; Technical
Report for BS and UE Radio Transmission and Reception (Release 13),
document TS 36.802,, 3GPP, 2016.

[10] R. Ratasuk, N. Mangalvedhe, Y. Zhang, M. Robert, and J.-P. Koskinen,
‘‘Overview of narrowband IoT in LTE Rel-13,’’ in Proc. IEEE Conf.
Standards Commun. Netw. (CSCN), Nov. 2016, pp. 1–7.

[11] A. D. Zayas and P. Merino, ‘‘The 3GPP NB-IoT system architecture for
the Internet of Things,’’ in Proc. IEEE Int. Conf. Commun. Workshops.,
May 2017, pp. 277–282.

[12] Ericsson. (2017).EricssonMobility Report June 2017. [Online]. Available:
https://www.ericsson.com/en/mobility-report

[13] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, ‘‘Machine
learning paradigms for next-generation wireless networks,’’ IEEEWireless
Commun., vol. 24, no. 2, pp. 98–105, Apr. 2017.

[14] M. Deruyck, D. Plets, L. Martens, W. Joseph, and S. K. Goudos, ‘‘Opti-
mizing wireless access networks towards power consumption: Influence
of the optimization algorithm,’’ in Proc. Int. Conf. High Perform. Comput.
Simulation (HPCS), Jul. 2016, pp. 261–265.

[15] S. K. Goudos, M. Deruyck, D. Plets, L. Martens, and W. Joseph, ‘‘Opti-
mization of power consumption in 4G LTE networks using a novel bare-
bones self-adaptive differential evolution algorithm,’’ Telecommun. Syst.,
vol. 66, no. 1, pp. 109–120, 2017.

105698 VOLUME 7, 2019

http://dx.doi.org/10.2528/PIER12061301


S. K. Goudos et al.: Novel Design Approach for 5G Massive MIMO and NB-IoT Green Networks

[16] S. K. Goudos, M. Deruyck, D. Plets, L. Martens, and W. Joseph,
‘‘Application of opposition-based learning concepts in reducing the power
consumption in wireless access networks,’’ in Proc. 23rd Int. Conf.
Telecommun. (ICT), May 2016, pp. 1–5.

[17] S. K. Goudos, M. Deruyck, D. Plets, L. Martens, and W. Joseph, ‘‘Opti-
mization of power consumption in wireless access networks using differ-
ential evolution with eigenvector based crossover operator,’’ in Proc. 10th
Eur. Conf. Antennas Propag. (EuCAP), Apr. 2016, pp. 1–4.

[18] S. K. Goudos, M. Deruyck, D. Plets, L. Martens, and W. Joseph, ‘‘A novel
design approach for NB-IoT networks using hybrid teaching-learning opti-
mization,’’ in Proc. 12th Eur. Conf. Antennas Propag. (EuCAP), Apr. 2018,
pp. 1–5.

[19] A. Tsiflikiotis, S. K. Goudos, and G. K. Karagiannidis, ‘‘Hybrid teaching-
learning optimization of wireless sensor networks,’’ Trans. Emerg.
Telecommun. Technol., vol. 28, no. 11, 2017, Art. no. e3194.

[20] R. V. Rao, V. J. Savsani, and D. P. Vakharia, ‘‘Teaching-learning-based
optimization: A novel method for constrained mechanical design opti-
mization problems,’’ Comput.-Aided Des., vol. 43, no. 3, pp. 303–315,
Mar. 2011.

[21] R. V. Rao, ‘‘Jaya : A simple and new optimization algorithm for solving
constrained and unconstrained optimization problems,’’ Int. J. Ind. Eng.
Comput., vol. 7, no. 1, pp. 19–34, 2016.

[22] K. Yu, X.Wang, and Z.Wang, ‘‘An improved teaching-learning-based opti-
mization algorithm for numerical and engineering optimization problems,’’
J. Intell. Manuf., vol. 27, no. 4, pp. 831–843, Aug. 2016.

[23] P. K. Agyapong, M. Iwamura, D. Staehle, W. Kiess, and A. Benjebbour,
‘‘Design considerations for a 5G network architecture,’’ IEEE Commun.
Mag., vol. 52, no. 11, pp. 65–75, Nov. 2014.

[24] J. Xu, J. Wang, Y. Zhu, Y. Yang, X. Zheng, S. Wang, L. Liu, K. Horneman,
and Y. Teng, ‘‘Cooperative distributed optimization for the hyper-dense
small cell deployment,’’ IEEE Commun. Mag., vol. 52, no. 5, pp. 61–67,
May 2014.

[25] K. N. R. S. V. Prasad, E. Hossain, and V. K. Bhargava, ‘‘Energy efficiency
in massive MIMO-based 5G networks: Opportunities and challenges,’’
IEEE Wireless Commun., vol. 24, no. 3, pp. 86–94, Jun. 2017.

[26] H. Ghazzai, E. Yaacoub, M.-S. Alouini, Z. Dawy, and A. Abu-Dayya,
‘‘Optimized LTE cell planning with varying spatial and temporal user
densities,’’ IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1575–1589,
Mar. 2016.

[27] W. Zhao, S. Wang, C. Wang, and X. Wu, ‘‘Approximation algorithms
for cell planning in heterogeneous networks,’’ IEEE Trans. Veh. Technol.,
vol. 66, no. 2, pp. 1561–1572, Feb. 2017.

[28] K. M. S. Huq, S. Mumtaz, J. Bachmatiuk, J. Rodriguez, X. Wang, and
R. L. Aguiar, ‘‘Green HetNet CoMP: Energy efficiency analysis and
optimization,’’ IEEE Trans. Veh. Technol., vol. 64, no. 10, pp. 4670–4683,
Oct. 2015.

[29] F.-H. Tseng, L.-D. Chou, H.-C. Chao, and J. Wang, ‘‘Ultra-dense small
cell planning using cognitive radio network toward 5G,’’ IEEE Wireless
Commun., vol. 22, no. 6, pp. 76–83, Dec. 2015.

[30] L. Zhou, Z. Sheng, L. Wei, X. Hu, H. Zhao, J. Wei, and V. C. M. Leung,
‘‘Green cell planning and deployment for small cell networks in smart
cities,’’ Ad Hoc Netw., vol. 43, pp. 30–42, Jun. 2016.

[31] R. Sachan, T. J. Choi, and C. W. Ahn, ‘‘A genetic algorithm with
location intelligence method for energy optimization in 5G wire-
less networks,’’ Discrete Dyn. Nature Soc., vol. 2016, May 2016,
Art. no. 5348203.

[32] A. Roy, N. Saxena, B. J. R. Sahu, and S. Singh, ‘‘BISON: A bioin-
spired self-organizing network for dynamic auto-configuration in 5G
wireless,’’ Wireless Commun. Mobile Comput., vol. 2018, Nov. 2018,
Art. no. 2632754.

[33] A. Taufique, M. Jaber, A. Imran, Z. Dawy, and E. Yacoub, ‘‘Planning wire-
less cellular networks of future: Outlook, challenges and opportunities,’’
IEEE Access, vol. 5, pp. 4821–4845, 2017.

[34] R. Storn and K. Price, ‘‘Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,’’ J. Global
Optim., vol. 11, no. 4, pp. 341–359, 1997.

[35] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, ‘‘Self-
adapting control parameters in differential evolution: A comparative study
on numerical benchmark problems,’’ IEEE Trans. Evol. Comput., vol. 10,
no. 6, pp. 646–657, Dec. 2006.

[36] S. Das, A. Abraham, U. K. Chakraborty, and A. Konar, ‘‘Differential
evolution using a neighborhood-based mutation operator,’’ IEEE Trans.
Evol. Comput., vol. 13, no. 3, pp. 526–553, Jun. 2009.

[37] J. Vieira, S. Malkowsky, K. Nieman, Z. Miers, N. Kundargi, L. Liu,
I. Wong, V. Öwall, O. Edfors, and F. Tufvesson, ‘‘A flexible 100-antenna
testbed for Massive MIMO,’’ in Proc. IEEE Globecom Workshops (GC
Wkshps), Dec. 2014, pp. 287–293.

[38] M. Matalatala, M. Deruyck, E. Tanghe, L. Martens, and W. Joseph, ‘‘Per-
formance evaluation of 5Gmillimeter-wave cellular access networks using
a capacity-based network deployment tool,’’ Mobile Inf. Syst., vol. 2017,
p. 11, Jan. 2017.

[39] M. Matalatala, M. Deruyck, E. Tanghe, L. Martens, and W. Joseph, ‘‘Opti-
mal low-power design of a multicell multiuser massive MIMO system
at 3.7 GHz for 5G wireless networks,’’ Wireless Commun.and Mobile
Computing, vol. 2018, p. 17, Oct. 2018.

[40] R. Ratasuk, J. Tan, N.Mangalvedhe,M. H. Ng, and A. Ghosh, ‘‘Analysis of
NB-Iot deployment in LTE guard-band,’’ in Proc. IEEE 85th Veh. Technol.
Conf., Jun. 2017, pp. 1–5.

[41] I. Z. Kovács, P. Mogensen, M. Lauridsen, T. Jacobsen, K. Bakowski,
P. Larsen, N. Mangalvedhe, and R. Ratasuk, ‘‘LTE IoT link budget and
coverage performance in practical deployments,’’ inProc. IEEE 28th Annu.
Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC), Oct. 2017,
pp. 1–6.

[42] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, ‘‘Internet of
Things for smart cities,’’ IEEE Internet Things J., vol. 1, no. 1, pp. 22–32,
Feb. 2014.

[43] J. Derrac, S. García, D. Molina, and F. Herrera, ‘‘A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms,’’ Swarm Evol. Comput.,
vol. 1, no. 1, pp. 3–18, Mar. 2011.

[44] S. García, A. Fernández, J. Luengo, and F. Herrera, ‘‘Advanced non-
parametric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: Experimental analysis of
power,’’ Inf. Sci., vol. 180, no. 10, pp. 2044–2064, 2010.

[45] S. García, D. Molina, M. Lozano, and F. Herrera, ‘‘A study on the use of
non-parametric tests for analyzing the evolutionary algorithms’ behaviour:
A case study on the CEC’2005 special session on real parameter optimiza-
tion,’’ J. Heuristics, vol. 15, no. 6, pp. 617–644, 2009.

SOTIRIOS K. GOUDOS received the B.Sc. degree
in physics and the M.Sc. degree of postgraduate
studies in electronics from the Aristotle University
of Thessaloniki, in 1991 and 1994, respectively,
the Ph.D. degree in physics from the Aristotle
University of Thessaloniki, in 2001, the mas-
ter’s degree in information systems from the Uni-
versity of Macedonia, Greece, in 2005, and the
Diploma degree in electrical and computer engi-
neering from the Aristotle University of Thessa-

loniki, in 2011. He joined the Department of Physics, Aristotle University
of Thessaloniki, in 2013, where he is currently an Assistant Professor. His
research interests include antenna and microwave structures design, evolu-
tionary algorithms, wireless communications, and semantic web technolo-
gies. He is a member of the IEICE, the Greek Physics Society, the Technical
Chamber of Greece, and the Greek Computer Society. He was the Editor of
the book named theMicrowave Systems and Applications (InTech publishers,
2017). He has served as the Technical Program Chair at the International
Conference on Modern Circuits and Systems Technologies (MOCAST).
He was the Sub-Committee Chair in the Asian-Pacific Microwave Confer-
ence (APMC 2017) in the track of Smart and reconfigurable antennas. He has
also served as a member of the Technical Program Committees in several
IEEE and non-IEEE conferences. He is currently serving as an Associate
Editor for the IEEEACCESS. He is also a member of the Editorial Board of the
International Journal of Antennas and Propagation (IJAP), the International
Journal of Energy Optimization and Engineering, the EURASIP Journal on
Wireless Communications and Networking, and the International Journal
on Advances on Intelligent Systems. He was the Lead Guest Editor in the
2016 and 2017 Special Issues of the IJAP with the topic ‘‘Evolutionary
Algorithms Applied to Antennas and Propagation: Emerging Trends and
Applications.’’ He was also the Lead Guest Editor of the 2018 Special Issue
of the EURASIP Journal on Wireless Communications and Networking with
the topic ‘‘Optimization methods for Key Enabling Technologies: 5G, the
IoT, and Big Data.’’

VOLUME 7, 2019 105699



S. K. Goudos et al.: Novel Design Approach for 5G Massive MIMO and NB-IoT Green Networks

MARGOT DERUYCK was born in Kortrijk,
Belgium, in 1985. She received the M.Sc.
degree in computer science engineering and the
Ph.D. degree from Ghent University, Ghent,
Belgium, in 2009 and 2015, respectively. From
2009 to 2015, she was a Research Assistant
with IMEC—WAVES (Wireless, Acoustics, Envi-
ronment, and Expert Systems), Department of
Information Technology), Ghent University. Her
scientific work is focused on green wireless

access networks with minimal power consumption and minimal exposure
from human beings. This work led to the Ph.D. degree. She has been
a Postdoctoral Researcher with Ghent University, since January 2015,
where she continues her work in the green wireless access network. Since
October 2016, she has been a Postdoctoral Fellow of the FWO-V (Research
Foundation—Flanders).

DAVID PLETS was born in Torhout, Belgium,
in 1983. He received the M.Sc. degree in
electrotechnical engineering and the Ph.D.
degree from Ghent University, Ghent, Belgium,
in 2006 and 2011, respectively. His research inter-
ests include localization techniques and the IoT
for both industrial and health-related applications.
He is also involved in research on optimization
of (cognitive) wireless communication networks,
with a focus on coverage, interference, and expo-

sure. In October 2016, he became a part-time professor in exposure to
multiple physical agents in smart buildings.

LUC MARTENS was born in Ghent, Belgium,
in 1963. He received the M.Sc. degree in elec-
trical engineering and the Ph.D. degree in the
development of a multi-channel hyperthermia sys-
tem: electromagnetic modeling of applicators,
generator design, and estimation algorithms for
thermometry from Ghent University, Belgium,
in July 1986 and December 1990, respectively.
From September 1986 to December 1990, he was
a Research Assistant with the Department of Infor-

mation Technology (INTEC), Ghent University. Since January 1991, he has
been amember of the permanent staff of the InteruniversityMicroElectronics
Center (IMEC), Ghent, and is responsible for the research on experimen-
tal characterization of the physical layer of telecommunication systems at
INTEC. Since April 1993, he has been a Professor of electrical applications
of electromagnetism with Ghent University.

KOSTAS E. PSANNIS was born in Thessaloniki,
Greece. He received the degree in physics from the
Aristotle University of Thessaloniki, Greece, and
the Ph.D. degree from the Department of Electron-
ics and Computer Engineering, Brunel University,
U.K. From 2001 to 2002, he was awarded the
British Chevening Scholarship sponsored by the
Foreign and Commonwealth Office (FCO), British
Government. Since 2004, he has been a (Visiting)
Assistant Professor with the Department of Ap-

plied Informatics, University of Macedonia, Greece, where he is currently

an Associate Professor. He is also the joint Researcher with the Department
of Scientific and Engineering Simulation, Graduate School of Engineer-
ing, Nagoya Institute of Technology, Japan. He has several publications
in international conferences, books chapters, and peer-reviewed journals.
His professional interests include multimodal data communications sys-
tems, haptic communication between humans and robots, cloud transmis-
sion/streaming/synchronization, futuremedia-internet of things, experiments
on international connections (E-ICONS) over TEIN3 (Pan-Asian), Science
Information Network (SINET, Japan), GRNET (Greece)-Okeanos Cloud,
and GEANT (European Union) dedicated high capacity connectivity. He is
also a member of the European Commission (EC) EURAXESS Links
JAPAN and a member of the EU-JAPAN Centre for Industrial Cooperation.
Since 2017, he has been serving as an Associate Editor of IEEE ACCESS and
the IEEE COMMUNICATIONS LETTERS.

PANAGIOTIS SARIGIANNIDIS received the
B.Sc. and Ph.D. degrees in computer science
from the Aristotle University of Thessaloniki,
Thessaloniki, Greece, in 2001 and 2007, respec-
tively. He is currently an Assistant Professor
with the Department of Informatics and Telecom-
munications, Department of University of West-
ern Macedonia, Kozani, Greece, since 2016.
He has published over 130 papers in inter-
national journals, conferences, and book chap-

ters. He has been involved in several national, EU, and international
projects. He is currently the Project Coordinator of the H2020 project
SPEAR: Secure and PrivatE smArt gRid (H2020-DS-SC7-2017) and the
Operational Program MARS: sMart fArming with dRoneS (Competitive-
ness, Entrepreneurship, and Innovation), while he serves as a Principal Inves-
tigator in the H2020 project SDN-microSENSE: SDN-microgrid reSilient
Electrical eNergy SystEm (H2020-SU-DS-2018) and in the Erasmus+
KA2 ARRANGE-ICT: pArtneRship foR AddressiNG mEgatrends in ICT
(Cooperation for Innovation and the Exchange of Good Practices). His
research interests include telecommunication networks, the Internet of
Things, and network security. He is an IEEE member and participates in the
Editorial Boards of various journals.

WOUT JOSEPH was born in Ostend, Belgium,
in 1977. He received the M.Sc. degree in elec-
trical engineering from Ghent University, Bel-
gium, in July 2000. From September 2000 to
March 2005, he was a Research Assistant with the
Department of Information Technology (INTEC),
Ghent University. During this period, his scientific
work was focused on electromagnetic exposure
assessment. His research work dealt with measur-
ing and modeling of electromagnetic fields around

base stations for mobile communications related to the health effects of the
exposure to electromagnetic radiation. This work led to a Ph.D. degree in
March 2005. From April 2005 to 2009, he was a Postdoctoral Researcher
with iMinds-UGent/INTEC. From October 2007 to October 2013, he was
a Postdoctoral Fellow of the FWO-V (Research Foundation—Flanders).
Since October 2009, he has been a Professor in the domain of Experimental
Characterization of wireless communication systems. He has been the IMEC
PI, since 2017. He is elected council board lid of the European Bioelec-
tromagnetics Association (EBEA) (2015–2018), and re-elected as a Board
Member-at-Large, in 2019. His professional interests are electromagnetic
field exposure assessment, in-body electromagnetic field modeling, elec-
tromagnetic medical applications, propagation for wireless communication
systems, the IoT, antennas, and calibration. Furthermore, he specializes in
wireless performance analysis and Quality of Experience. His research is
ranked first in a number of dosimetric peer-reviewed studies for the radiofre-
quency range, and ranked second for studies covering the entire frequency
range (Bodewein et al. BioEM 2016 www.emf-portal.org).

105700 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	PROBLEM FORMULATION
	GREEN NETWORK PLANNING FOR MAXIMUM AREA COVERAGE
	GREEN NETWORK PLANNING FOR MAXIMUM USER COVERAGE

	ALGORITHM DESCRIPTION
	JAYA ALGORITHM
	JDE ALGORITHM
	HYBRID JAYA-jDE ALGORITHM

	NUMERICAL RESULTS
	LTE AND 5G MASSIVE MIMO CASE
	CASE 1: MAXIMUM AREA COVERAGE CASE
	CASE 2: MAXIMUM USER COVERAGE CASE

	NB-IoT CASE
	NON-PARAMETRIC STATISTICAL TESTS

	CONCLUSION
	REFERENCES
	Biographies
	SOTIRIOS K. GOUDOS
	MARGOT DERUYCK
	DAVID PLETS
	LUC MARTENS
	KOSTAS E. PSANNIS
	an
	PANAGIOTIS SARIGIANNIDIS
	WOUT JOSEPH


