
Received July 4, 2019, accepted July 15, 2019, date of publication July 30, 2019, date of current version September 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2932037

Reliable Parkinson’s Disease Detection by
Analyzing Handwritten Drawings: Construction of
an Unbiased Cascaded Learning System Based on
Feature Selection and Adaptive Boosting Model
LIAQAT ALI 1, CE ZHU 1, (Fellow, IEEE), NOORBAKHSH AMIRI GOLILARZ2, ASHIR JAVEED3,
MINGYI ZHOU1, AND YIPENG LIU 1, (Senior Member, IEEE)
1School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
2School of Computer Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
3School of Information and Software Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China

Corresponding authors: Liaqat Ali (engr_liaqat183@yahoo.com) and Ce Zhu (eczhu@uestc.edu.cn)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61602091 and Grant 61571102,
and in part by the Sichuan Science and Technology Program under Grant 2019YFH0008 and Grant 2018JY0035.

ABSTRACT Parkinson’s disease (PD) is the second most common neurodegenerative disease of central
nervous system (CNS). Till now, there is no definitive clinical examination that can diagnose a PD
patient. However, it has been reported that PD patients face deterioration in handwriting. Hence, different
computer vision and machine learning researchers have proposed micrography and computer vision based
methods. But, these methods possess two main problems. The first problem is biasedness in models caused
by imbalanced data i.e. machine learning models show good performance on majority class but poor
performance on minority class. Unfortunately, previous studies neither discussed this problem nor took
any measures to avoid it. In order to highlight the biasedness in the constructed models and practically
demonstrate it, we develop four different machine learning models. To alleviate the problem of biasedness,
we propose to use random undersampling method to balance the training process. The second problem is low
rate of classification accuracy which has limited clinical significance. To improve the PD detection accuracy,
we propose a cascaded learning system that cascades a Chi2model with adaptive boosting (Adaboost) model.
The Chi2 model ranks and selects a subset of relevant features from the feature space while Adaboost model
is used to predict PD based on the subset of features. Experimental results confirm that the proposed cascaded
system shows better performance than other six similar cascaded systems that used six different state of the
art machine learning models. Moreover, it was also observed that the proposed cascaded system improves
the strength of conventional Adaboost model by 3.3% and reduces its complexity. Additionally, the cascaded
system achieved classification accuracy of 76.44%, sensitivity of 70.94% and specificity of 81.94%.

INDEX TERMS Balanced accuracy, machine learning, oversampling, Parkinson’s disease, undersampling.

I. INTRODUCTION
Parkinson’s disease (PD) is reported to be the second most
common neurological syndrome of the central nervous sys-
tem after Alzheimer’s disease (AD) [1]. PD targets elder
people mostly having age of 60 years or above [2]. The most
common symptoms observed in PD patients include bradyki-
nesia (slowness of movement), dysphonia (voice impair-
ments), rigidity, tremor, and poor balance [3]–[7]. Till now,
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the recognition of PD is a clinically challenging task [8]–[10].
However, it is known that PD patients face deterioration in
handwriting. Hence, different computer vision and machine
learning researchers have proposed micrography and vision
based methods to automatically detect PD using handwritten
exams.

Drotar et al. in [11] pointed out that in-air movements
during handwriting have a major impact on the PD detection
accuracy. Rosenblum et al. pointed out that PD patients can
be discriminated from healthy subjects using handwriting
exams [12]. They conducted a study on 20 PD patients and
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20 healthy subjects. Each subject was asked to write his/her
name and address on a piece of paper attached to a digital
table. They used mean pressure and velocity related param-
eters and achieved detection accuracy of 97.5% i.e. they
achieved 100% of specificity and 95% of sensitivity. The
key issue with these methods and datasets is their limited
size. Hence, the results have limited significance. Thus, Dro-
tar et al. in [13] collected data from 37 PD patients and
38 control subjects by performing eight different handwriting
tasks. They developed three different machine learning mod-
els namely k-nearest neighbors (KNN), Adaboost ensemble
model and support vector machine (SVM) and achieved clas-
sification accuracy of 81.3%.

Recently, Pereira et al. developed computer vision and
machine learning based methods to contribute in the process
of PD detection [14]–[18]. Pereira et al. collected data from
55 individuals consisting of 37 PD patients and 18 healthy
subjects [14]. The dataset contained only spiral drawings.
They utilized optimum path forest (OPF), SVM and Naive
Bayes (NB) supervised models for discriminating the hand
written drawings of PD patients from that of healthy sub-
jects. They achieved best accuracy of 78.9% with NB
model. In their future studies, they developed another dataset
which was collected from 18 healthy subjects and 74 PD
patients [15]. The dataset was named HandPD which is so
far the largest publicly available handwritten dataset having
736 samples. The HandPD dataset contains spiral and mean-
der drawings. For the HandPD dataset, features from the hand
written drawings were extracted using computer vision based
methods and for classification same three models i.e. OPF,
SVM and NB were utilized. They achieved classification
accuracy of 67% for HandPD dataset. There are two main
problems in studies conducted on the HandPD dataset. That
is biasedness inmodels and low rate of PD detection accuracy.

In this paper, we consider the two problems in PD detection
based on HandPD data i.e. the problem of biasedness in the
constructed models and the low rate of PD detection accu-
racy. To demonstrate the problem of biasedness in models,
we develop and train four different machine learning mod-
els namely Linear Discriminant Analysis (LDA), K Nearest
Neighbors (KNN), Gaussian Naive Bayes (GNB) and Deci-
sion Tree (DT). To solve this problem, we utilize random
undersampling method. As discussed above, the second prob-
lem in PD detection based on HandPD data is low rate of
PD detection accuracy. To alleviate this problem, we propose
a cascaded learning system that cascades Chi2 model with
adaptive boosting (Adaboost) model. The Chi2 model is used
to rank and select relevant subset of features while Adaboost
is used for classification purposes. Experimental results evi-
dently show that the proposed methods help alleviate both the
problems to some extent.

The rest of the paper is organized as follows: In section II,
details about the dataset are given, section III discusses prob-
lems and proposed solutions. Section IV is about validation
scheme and evaluation methods. Section V is about experi-
ments and discussion and the last section concludes the study.

FIGURE 1. Sample of a form filled by a 56 years old PD patient (a) and
sample of an empty form (b).

II. DESCRIPTION OF THE HANDPD DATASET AND
FEATURE EXTRACTION
In this study, we adopted the HandPD dataset that is available
online [19]. The dataset was collected from 92 subjects at the
Faculty of Medicine of Botucatu, Sao Paulo State University,
Brazil. The dataset was collected from two groups of subjects:
(i) the first group contains 74 subjects which are PD patients;
(ii) the second group contains 18 subjects which are healthy
individuals. The first group is subdivided into 59 male and
15 female subjects while the second group is subdivided
into 6 male and 12 female. Hence, the 19.56% of the whole
dataset is composed of healthy subjects and 80.44% of the
whole dataset is PD patients. Furthermore, the control group
consists of 16 right-handed and 2 left-handed subjects. On the
other hand, the PD patients group consists of 69 right-handed
and 5 left-handed subjects.

During the data collection process each subject was
asked to perform 6 different tasks which are shown in the
FIGURE 1a-f. The figure is a form that was filled by a
56 years old PD patient. Among the six different tasks,
the HandPD dataset records only two tasks i.e. spiral draw-
ings and meander drawings. From each subject, 4 spirals
and 4 meanders were collected. Thus, the dataset con-
tains 92× 8 = 736 drawings. Among these drawings, half
i.e. 368 are spirals and half are meanders.

After the data collection, feature extraction process was
performed. Each image (filled form) was segmented into
8 parts i.e. 4 meanders numbered from 1 to 4 and 4 spi-
rals which were numbered from 5 to 8. From each of the
8 drawings numbered from 1 to 8, nine numeric features were
extracted. The feature extraction process was divided into two
steps. In first step, an automated method was developed to
automatically separate the hand written trace (HT) from the
exam template (ET) for the drawings i.e. spirals andmeanders
as shown in FIGURE 2.

In the second step, 9 statistical features were evaluated by
comparing ET andHT i.e. by calculating the amount of differ-
ence between them. The difference between the two images
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FIGURE 2. (a): Spiral image and its corresponding HT and ET, (b):
meander image and its corresponding HT and ET.

FIGURE 3. Different random points taken on spiral and meander images.
Each arrow or vector is originating from the center point of spiral or
meander and end up at the randomly chosen point.

was evaluated by considering a number of points sampled at
same positions in HT and ET images. Before discussing the
set of extracted features, it is important to discuss the radius
of spiral or meander point. It is the distance of the straight line
that connects the center of a spiral or meander (shown as red
point in FIGURE 3) to a sampled point under consideration
(white points in FIGURE 3 are the sampled points). For more
details on the feature extraction process, readers are referred
to [14], [15]. The extracted features are briefly discussed as
follows:
C1: The first feature denotes the RootMean Square (RMS)

of the difference between HT and ET radius which is calcu-
lated according to the formulation as follows:

RMS =

√√√√1
n

n∑
i=1

(r iHT − r
i
ET )

2 (1)

where n = the number of sampled points, r iHT = HT radius
of i-th sample point and r iET = ET radius considering the i-th
sample point.

C2: The second feature is the maximum difference
between ET and HT radius which is calculated according to
the formulation as follows:

dmax = argmax
i
{|r iHT − r

i
ET |} (2)

C3: The third feature is the minimum difference between ET
and HT radius, it is denoted by dmin in the following equation.

dmin = argmin
i
{|r iHT − r

i
ET |} (3)

C4: The fourth feature is the standard deviation of the differ-
ence between ET and HT radius.
C5: The fifth feature isMean Relative Tremor (MRT). This

feature was proposed by Pereira et al. in [14] to measure the
amount of tremor of a subject’s HT. It is basically the mean
difference between the radius of a given sample point and its
d left-nearest neighbors. This feature is calculated according
the formulation as follows:

MRT =
1

n− d

n∑
i=d

∣∣∣r iET − r i−d+1ET

∣∣∣ (4)

where d is the displacement of the sample points used to
compute the radius difference. The following three features
are computed based on the relative tremor

∣∣∣r iET − r i−d+1ET

∣∣∣
C6: The sixth features denotes the Maximum ET;
C7: The seventh features denotes the Minimum ET;
C8: The eighth features denotes the standard derivation of

ET values;
C9: The ninth feature denotes the number of times the

difference between HT and ET radius changes from negative
to positive, or vice-versa.

III. PROBLEMS AND PROPOSED SOLUTIONS
In this section, we discuss two main problems that are con-
cerned with HandPD dataset. The first problem is the imbal-
ance nature of the data and its impact on the constructed
machine learning models. It has been reported in literature
that when machine learning models are trained using imbal-
anced data, the models show biased performance by ignoring
the minority class and favoring the majority class [20]. It is
due to the fact that the minority class instances occur infre-
quently during training process, hence the predictions about
minority class are also rare, undiscovered or ignored [21].
Consequently, test instances belonging to the minority class
are misclassified more often than those belonging to the
majority class [21]. In case of binary classification like PD
detection, a model will show high rate of sensitivity (if patient
class is majority class, like in case of HandPD data) and
low rate of specificity (when healthy subjects are minority
class). Such performance clearly reflects the biased nature of
a model towards majority class. However, in previous stud-
ies conducted on HandPD, this biased behavior of machine
learningmodels was ignored and nomeasures were taken into
account to alleviate the bias against performance caused by
imbalance data.

In literature, different methods have been used to deal with
imbalanced data [22]. The commonly used method is resam-
pling technique. Further, the resampling method includes two
methods i.e. undersampling and oversampling. In oversam-
pling, the minority class samples are duplicated to balance
the size of each class in training data. In undersampling,
some majority class samples are removed to balance the size
of each class during training process. Hence, when a model
is trained on balanced data, it is supposed to show unbi-
ased behavior. In literature, different types of undersampling
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methods have been proposed. However, it is reported that
random undersampling is the simplest method and has shown
similar performance to other complex methods [22]. Thus,
in this paper, we utilize random undersampling method to
balance the training process and alleviate the baisedness in
the constructed models. In each iteration/fold of a cross
validation experiment, the random undersampling method
randomly removes subjects from the larger class until the
training data is balanced. Thus, optimizing or balancing the
training process. It is important to note, that the resampling
methods are only applied to the training data during each
iteration of cross validation and not to the overall data before
cross validation.

To alleviate the problem of low rate of PD detection accu-
racy, we develop a cascaded learning system. Previous studies
conducted on the hand written drawings dataset for PD detec-
tion discusses only feature extraction and classification meth-
ods. However, in data mining and machine learning, feature
selection methods are usually exploited to improve perfor-
mance of predictive models or to reduce their complexities.
Motivated by this fact, in this paper we develop a cascaded
learning system for PD detection based on hand written draw-
ings data. The proposed system cascades Chi2 model with
Adaboost ensemble model in order to improve performance
of the Adaboost model and to reduce its complexity. The
Chi2 is used for features ranking while the Adaboost model
is used as a predictive model to predict presence or absence
of PD. To understand the working of the cascaded learn-
ing system, we discuss the two basic models i.e. Chi2 and
Adaboost and their cascade as follows:

Boosting is an ensemble learning method that tries to
arrive at a strong learning model by combining the learning
capabilities of weak learners. Adaptive boosting or Adaboost
model is the first practical boosting ensemble model that
was proposed by Freund and Schapire [23]. In other words,
Adaboost model converts a set of weak classifiers or estima-
tors into a strong one. It combines the output of other learning
algorithms (weak learners or estimators) by evaluating their
weighted sum that denotes the final output of the boosting
ensemble model. The final equation of Adaboost model for
classification can be formulated as follows:

G(x) = sign

(
M∑
m=1

βmgm(x)

)
(5)

where gm stands for the m-th weak classifier and βm is its cor-
responding weight. It is evident from (5) that Adaboost model
is the weighted combination of M weak learners or esti-
mators. Details about working and formulation of Adaboost
model can be found in [24], [25]. In this paper, we briefly
discuss the formulation of the Adaboost model as follows:

For a given dataset having n instances and binary labels
(i.e. considering the case of binary classification like the one
considered in this paper), the feature vector x and class label
y can be denoted as xi ∈ Rd , yi ∈ {−1, 1} where −1 denotes
negative class (like absence of PD) and +1 denotes positive

class (like presence of PD). In the first step, weights for each
data point are initialized as follows:

w(xi, yi) =
1
n
, i = 1, 2, 3, . . . . ., n (6)

In next step, we iterate from m = 1 to M and fitting weak
classifiers to the dataset and select the one that yields lowest
weighted classification error.

em = Ewm[1y6=g(x)] (7)

In next step, the weight for the m-th weak classifier or
estimator is calculated as follows:

βm =
1
2
ln
(
1− em
em

)
(8)

Any classifier (weak estimator) having accuracy higher
than 50%, will have positive weight. Additionally, more accu-
rate classifiers will have higher weights. However, classifiers
that have less than 50% accuracy will have negative weights.
Predictions of such classifiers are combined by Adaboost by
flipping their sign. In this way, a classifier with 30% can
be turned to yield 70% owing to the sign flipping of its
prediction. The only unwanted classifiers are those having
exact 50% which contributes nothing to the final prediction.

In next step, the weights of each data point are updated as
follows:

wm+1(xi, yi) =
wm(xi, yi) exp[−βmyigm(xi)]

Zm
(9)

where Zm is a normalization factor that is used to make sum
of all instance weights equal to 1. Furthermore, from (9),
it is clear that the ‘‘exp’’ term will always be larger than
1 if a misclassified case is from a positive weighted classifier
(i.e. βm is positive and y ∗ g is always negative). That is the
misclassified cases will be updated with larger weights after
each iteration. The same idea is applied to negative weighted
classifiers with the only difference that the original correct
classificationswould becomemisclassifications after flipping
the sign. Finally, after M iterations, the Adaboost model will
obtain final prediction by summing up the weighted predic-
tion of each classifier (i.e. weak estimator).

In this paper, we implemented Adaboost ensemble model
in scikit-learn library of Python software package [26]. In the
rest of the paper, the hyperparameter of the Adaboost model
i.e. the number of estimators used to construct the final
ensemble model will be denoted by Nest . Additionally,
the base estimator used is decision tree classifier.

In this study, to find out the most relevant features in the
feature space, we rank the features through Chi2 statistical
test. Chi2 test basically measures the dependency between a
feature and a class, thus, successfully finds out features that
are more relevant for a given dataset. Hence, we can eliminate
those features from the feature space that are irrelevant for
classification. The first step in the process of Chi2 test is the
construction of TABLE 1.

In the table, ω represents the number of instances (both
positive and negative) that accommodate feature F while
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TABLE 1. Table for calculating Chi2 score.

σ −ω represents the number of instances that do not contain
featureF . Similarly, ρ shows the number of positive instances
and σ − ρ denotes the number of negative instance.

In order to evaluate that how much the expected count i.e.
X and the observed count i.e. D derivate from each other,
we use Chi2 test. Let α, β, ν and γ denote the observed
values, and Xα , Xβ , Xν and Xα express the expected values
then the expected values based on the null hypothesis that the
two events are sovereign can be calculated as

Xα = (α + β)
α + β

σ
(10)

Similar to (10), Xβ , Xν and Xα can also be calculated. From
general formulation of Chi2 test, we have

χ2
=

1
d

n∑
k=1

(Dk − Xk )2

Xk
(11)

χ2
=

(α − Xi)2

Xi
+

(β − Xj)2

Xj
+

(ν − Xk )2

Xk
+

(γ − Xl)2

Xl
(12)

After simplification, (12) gets the form

χ2
=

σ (ασ − ωρ)2

ρ(σ − ρ)(σ − ω)
(13)

After features ranking based on the Chi2 test score
(denoted by χ2 in (13)), next we need to select the opti-
mal number of features out of the ranked features. This is
explained in the context of the proposed cascaded learning
system discussed as follows:

In this paper, we cascade the two models discussed above
i.e. Chi2 model and Adaboost model. In order to obtain
better performance, we need to optimize the two models.
The optimization of the Chi2 model means searching the
optimal subset of the ranked features that are generated by the
Chi2 model. While optimization of Adaboost model means
to search optimal number of estimators i.e. Nest that would
yield better classification performance for each subset of
features. In order to meet this objective, we sort features in
ascending order according to features importance reflected
by the Chi2 test score. Thus, the first feature is the feature
with highest Chi2 test score i.e. the most important feature.
The second feature is the feature that contains second highest
Chi2 test score i.e. it is the second most important or relevant
feature and so on.

After features preprocessing, we consider the first subset
of features by considering only one feature having highest
importance i.e. S = 1, where S denotes the size of subset of
features. The subset of features is applied to the Adaboost

ensemble model. The Adaboost model has its own hyper-
parameter Nest i.e. the number of estimators used. In order
to obtain better classification performance, we search the
optimal value of Nest by using exhaustive search strategy.
Thus, the best performance obtained for the first subset of
features is obtained under optimized Adaboost model and
the performance is noted. In next iteration, another subset of
features is constructed by addition of another feature hav-
ing second highest importance into the previous subset of
features i.e. we construct subset of features with S = 2. The
subset of features is applied to the Adaboost ensemble model
and the optimized version of Adaboost ensemble model is
obtained by using the same exhaustive search strategy. The
performance of this subset of features is also noted. The same
process is repeated until all the ranked features are added
to the subset of features. Finally, we report the subset of
features as optimal subset and the Adaboost model as optimal
Adaboost model that yield best performance.

IV. VALIDATION AND EVALUATION
In order to validate the effectiveness of the proposed cas-
caded system, we utilize stratified k-fold validation scheme
with value of k = 4 and k = 5. In the first three exper-
iments, we use k = 5 and in the last experiment k = 4
is utilized. To evaluate the effectiveness of the proposed
cascaded system, we tested it against five different evalu-
ation metrics. These metrics include accuracy, sensitivity,
specificity, F-score or F-measure and Mathews correlation
coefficient (MCC). However, conventional accuracy metric
fails to reflect the true behavior of a model and this fact is
also demonstrated in experiment 1 of the section V of this
paper. Thus, we propose to use the balanced accuracy metric
which better reflects the true behavior of the constructed
models [27]–[29]. In previous studies, Pereira et al. [15] used
similar accuracy metric (named global accuracy in [15]) that
was proposed by Papa et al. in [30]. This accuracy metric
is also a good choice for reflecting or measuring the true
behaviour of a model when it is trained on imbalanced data.
In the below formulation, ACC denotes the conventionally
used accuracy metric and ACCbal denotes the balanced accu-
racy metric. The formulation of these evaluation metrics is
given as follows:

ACC =
TP+ TN

TP+ TN + FP+ FN
(14)

where TP denotes the number of true positives, FP denotes
the number of false positives, TN denotes the number
of true negatives and FN denotes the number of false
negatives.

Sen =
TP

TP+ FN
(15)

Spec =
TN

TN + FP
(16)

ACCbal =
Sen+ Spec

2
(17)
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MCC =
TP× TN−FP× FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

(18)

F =
2TP

2TP+ FP+ FN
(19)

F denotes F-score also known as F-measure, or F1 score in
statistical analysis of binary classification. F returns value
between 0 and 1 where 1 indicates perfect predictions and
0 means worst predictions. MCC is used to measure a
test’s accuracy. MCC can have a value between −1 and
1 where 1 indicates perfect predictions and −1 means worst
predictions.

In order to demonstrate the advantages of using balanced
accuracy metric, consider a case of 100 subjects with 90 PD
patients and 10 healthy subjects. If we construct a model that
will always predict a subject to be PD patient, then it will yield
100% of sensitivity but 0% of specificity and conventional
accuracy of 90%.However, the balance accuracywill be 50%.
Thus, it is evident that the balanced accuracy metric reflects
the true behaviour of the constructed model as the model
can detect only one class but completely failed to detect
the second class. However, the conventional accuracy failed
to reflect the true behaviour of the constructed model.

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, four different types of experimental set-
tings have been established for simulating the proposed
method and validating its effectiveness. The first three exper-
iments use 5-fold stratified cross validation while the fourth
experiment uses 4-fold. In the first experiment, the impact
of imbalanced HandPD on constructed models is demon-
strated. In the second experiment the effectiveness of the
proposed cascaded system is validated by comparing it with
other similar models while simulating it on spirals data.
In the third experiment, we further validate the effective-
ness of the proposed method by simulating it on meanders
data. All the machine learning models including Adaboost,
SVM, GNB, DT, LDA and KNN were implemented using
scikit-learn framework of Python package. These models
were optimized using grid search algorithm. The main reason
for choosing these models is that they have shown state-of-
the-art performance on many biomedical and health infor-
matics problems. Authors can find the source code on github
using ‘‘reliable Parkinson’s detection’’.

A. EXPERIMENT NO 1: HIGHLIGHTING AND
DEMONSTRATING IMPACT OF IMBALANCED DATA ON THE
CONSTRUCTED MODELS
1) EXPERIMENTS USING SPIRAL DRAWINGS DATA
In this experiment, we demonstrate the impact of imbalanced
data on the fitted or constructed models. The results shown in
TABLE 2 clearly show that machine learning models are sen-
sitive to imbalanced data. The constructed models are biased
towards majority class. For example, it can be seen that when
the models are trained using imbalanced data, we obtain high
rate of sensitivity and low rate of specificity (highlighted in

TABLE 2. Demonstration of impact of the imbalanced HandPD (Spirals)
data on the constructed models. BT: Balanced training, IBT: Imbalance
training, ACCbal : Balanced accuracy, ACC : Conventional accuracy metric,
MCC: Mathews Correlation Coefficient, Sens[itivity] and Spec[cificity]. F:
F-score or F-measure.

yellow in the table). It can also be seen that the conventionally
used accuracy metric cannot reflect the biasedness in the
constructed models as the metric shows good performance
(see red text). However, the balanced accuracy truly reflects
the original performance of the constructed models. To avoid
the problem of biasedness in constructed model, we take
measures to balance the training data. As discussed above,
we use random undersampling method to balance the size of
each class in the training data. After balancing the training
process, it is evident from the table that the biasedness in the
constructed models have been alleviated i.e. the models no
more show biased performance as can be seen from the sen-
sitivity and specificity rates highlighted in green in the table.
Furthermore, after balancing the training process, the conven-
tional accuracy metric is approaching the balanced accuracy
metric (see the red and cyan color text).

2) EXPERIMENTS USING MEANDER DRAWINGS DATA
In this experiment, we further validate the above findings
by performing similar experiments using meander drawings.
Again, we demonstrate the impact of imbalanced data on the
fitted or constructed models using meander drawings. The
results shown in TABLE 3 for meanders data also show that
machine learning models are sensitive to imbalanced data.
The constructed models are biased towards majority class
(evident from sensitivity and specificity rates highlighted in
yellow in TABLE 3). Again, we randomly undersample the
majority class in the training data to balance the size of
each class. After, balancing the training process, it is evident
from the table that the biased nature of the model has been
alleviated as can be seen from the sensitivity and specificity
rates highlighted in green in the table. Additionally, it is
important to note from TABLE 2 and TABLE 3 that data
balance or imbalance has little impact on GNB model.

B. EXPERIMENT NO 2: DEVELOPMENT OF THE
PROPOSED CASCADED LEARNING SYSTEM TO IMPROVE
THE PD DETECTION USING SPIRALS DATA AND ITS
COMPARISON WITH OTHER SIMILAR MODELS
In this experiment, we develop the proposed cascaded learn-
ing system i.e. Chi2-Adaboost. In order to validate the effec-
tiveness of the proposed cascaded system, we also develop
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TABLE 3. Demonstration of impact of the imbalanced
HandPD (Meanders) data on the constructed models. BT: Balanced
training, IBT: Imbalance training, ACCbal : Balanced accuracy, ACC :
Conventional accuracy metric, MCC: Mathews Correlation Coefficient,
Sens[itivity] and Spec[cificity]. F: F-score or F-measure.

TABLE 4. Development of the proposed cascaded learning system using
HandPD (Spirals) data and its comparison with other similar models. S:
Size of subset of features, ACCbal : Balanced accuracy, MCC: Mathews
Correlation Coefficient, Sens[itivity] and Spec[cificity]. F: F-score or
F-measure.

other similar cascaded systems e.g., Chi2 model cascaded
with Linear Discriminant Analysis model (LDA), with Gaus-
sian Naive Bayes (GNB), with Decision Tree (DT), with K
Nearest Neighbors (KNN), with SVM Linear and with SVM
RBF. The results for each of the developed cascaded model
are shown in TABLE 4. These results are obtained by simulat-
ing the cascaded systems using spiral drawings data. It can be
seen that the highest accuracy of 72.46% is achieved by the
proposed Chi2-Adaboost model. It is important to note that
the proposed method achieved this results using only a small
subset of features with S = 2. Hence, the propose method
also reduces the complexity of the Adaboost predictive model
as training on less number of features will result in lower
training time. It is important to note that for the optimal subset
of features with S = 2, the optimized Adaboost model was
obtained at Nest = 2 using grid search algorithm.

C. EXPERIMENT NO 3: DEVELOPMENT OF THE
PROPOSED CASCADED LEARNING SYSTEM TO IMPROVE
THE PD DETECTION USING MEANDERS DATA AND ITS
COMPARISON WITH OTHER SIMILAR MODELS
In this experiment, we develop the proposed cascaded
learning system for meander drawings data. In order
to validate the effectiveness of the proposed cascaded
system, we also develop other similar cascaded sys-
tems i.e., Chi2-GNB, Chi2-DT, Chi2-LDA, Chi2-KNN,
Chi2-SVM(Lin) and Chi2-SVM(RBF). The results for each
of the developed cascaded model are shown in TABLE 5.
It can be seen that the highest accuracy of 78.04% is achieved

TABLE 5. Development of the proposed cascaded learning system using
HandPD (Meanders) data and its comparison with other similar models.
S: Size of subset of features, ACCbal : Balanced accuracy, MCC: Mathews
Correlation Coefficient, Sens[itivity] and Spec[cificity]. F: F-score or
F-measure.

FIGURE 4. Performance of the proposed Chi2-Adaboost model at
different subsets of features.

by the proposed Chi2-Adaboost model. It is important to
note that the proposed method achieved this results using
only a small subset of features with S = 5. Hence, the pro-
posed method also reduces the complexity of the Adaboost
predictive model as training on less number of features will
result in lower training time. Moreover, for the optimal subset
of features with S = 5, the optimized Adaboost model was
obtained at Nest = 37 using grid search algorithm. From
the experimental results, it is clear that the optimal subset
of features contains complimentary information about PD
compared to the full features space.

The performance of the proposed method at different sub-
sets of features (for both spirals and meanders data) is given
in FIGURE 4. It can be seen that for spiral data, the best
performance of 72.46% is obtained using subset of features
with sizes 2, 3, 4 and 5. However, we reported S = 2
i.e. subset of features with size 2 as optimal as it would
construct a less complexmodel (in terms of time complexity).
Moreover, the selected features for each subset are reported
in TABLE 6 and 7. In the tables, a feature having value of
True means the feature is selected while a feature with value
False means it is rejected.

D. COMPARATIVE STUDY WITH CONVENTIONAL
ADABOOST MODEL
In this subsection, to further validate the effectiveness of
the proposed cascaded system, we compare performance of
the proposed cascaded system with conventional Adaboost
model. For spiral data, we simulated conventional Adaboost
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TABLE 6. Details about selected features for spiral data.

TABLE 7. Details about selected features for meander data.

model and it achieved 69.40% accuracy on optimal Nest = 4
while the proposed cascaded system achieved 72.46% accu-
racy. Hence, it is proved that the proposed cascaded method
has improved the strength of conventional Adaboost model
by 3.06% for spiral data. Moreover, we also simulated the
conventional Adaboost model on meander data and achieved
74.80% accuracy on optimal Nest = 55 while the proposed
cascaded system obtained 78.04% accuracy. Hence, it is evi-
dently clear that the proposed method improved the strength
of conventional Adaboost model by 3.24% for meander
data.

To further validate the fact that the proposed method
improves the strength of conventional Adaboost model,
we utilized two more evaluation metrics i.e. ROC chart and
area under the curve (AUC). The ROC chart for conventional
Adaboost model is shown in FIGURE 5 (a) and the ROC chart
for the proposed cascaded system is shown in FIGURE 5 (b).
These ROC charts are obtained considering spiral data. Sim-
ilarly for meander data, the ROC chart for conventional
Adaboost model is shown in FIGURE 6 (a) and the ROC
chart for the proposed system is shown in FIGURE 6 (b).
Thus, it is also evident from the ROC charts that the pro-
posed method has improved the strength of conventional
Adaboost model as the ROC charts for the cascaded system
have more AUC compared to ROC charts of conventional
Adaboost model. It is important to note that the improvement
in performance of conventional Adaboost model is due to the
fact that Chi2 model successfully eliminate some irrelevant
features from the feature space before their application to the
Adaboost model. If we train conventional Adaboost model
without features refinement through Chi2 model, it will
learn some noisy patterns from the irrelevant features during

FIGURE 5. ROC charts using conventional Adaboost model and the
proposed cascaded Chi2-Adaboost for spiral data.

FIGURE 6. ROC charts using conventional Adaboost model and the
proposed cascaded Chi2-Adaboost for meander data.

training process, thus, will show degradation in performance
on the testing data.
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TABLE 8. Performance of the proposed cascaded system on spiral data
using 4-fold cross validation.

TABLE 9. Performance of the proposed cascaded system on meander
data using 4-fold cross validation.

E. EXPERIMENT NO 4: PERFORMANCE OF THE
PROPOSED CASCADED METHOD USING
4-FOLD CROSS VALIDATION
In this subsection, we check the performance of the proposed
cascaded system by using the value of k= 4 for the stratified
cross validation and utilizing undersampling with replace-
ment method for balancing the training process. The main
objective of this experiment is to further validate the effec-
tiveness of the proposedmethod by using undersamplingwith
replacement method and to reduce subject dependence in
training and testing datasets. The simulation results for spiral
data are reported in TABLE 8 and the results for meander data
are given in TABLE 9. Moreover, it was also observed that
for the spirals data, conventional Adaboost yielded 67.58%
accuracy (the optimal value of Nest = 2 is obtained for spiral
data). For meanders data, the conventional Adaboost model
obtained 75.05% accuracy (the optimal value of Nest = 19 is
obtained for the meanders data). Thus, it is further validated
that the proposed cascaded model improves the strength of
conventional Adaboost model.

VI. CONCLUSION AND FUTURE WORK
In this paper, we considered the problem of PD detection
based on handwritten data. The data under consideration
was highly imbalanced in nature. We experimentally demon-
strated the biasedness in the machine learning models that
is caused by the imbalanced data. It was shown that when
machine learning models are trained on imbalanced data,
their performance is biased towards the majority class in
the data. Hence, for the PD detection problem, we observed
high rate of sensitivity and low rate of specificity as the
patient class was in majority and healthy class was in minor-
ity. To alleviate the biasedness in the constructed models,

we utilized random undersampling method. After the opti-
mization or balancing of the training process through random
undersampling method, unbiased models were developed.
Moreover, to improve PD detection accuracy, feature selec-
tion method was integrated with machine learning methods.
Thus, a cascaded learning system namely Chi2-Adaboost
was developed. It was shown that the proposed system out-
performed six similar cascaded learning systems. Addition-
ally, it was also observed that the proposed cascaded system
improved the performance of a conventional Adaboost model
by 3.3%.

Although, in this study, the problem of biasedness in con-
structedmodels was avoided and an unbiased cascadedmodel
was developed that improved the PD detection accuracy as
well as reduced the complexity of machine learning models
by reducing the number of features. However, the obtained
accuracy still needs considerable amount of improvement.
This is a limitation of this study. In future studies, we need to
develop more robust models that can improve the PD detec-
tion accuracy while maintaining the unbiased behaviour of
the constructed models. This can be achieved by integrating
feature selection methods with deep learning models.
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