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ABSTRACT Advanced persistent threat (APT) for data theft poses a severe threat to cloud storage systems
(CSSs). An APT actor may steal valuable data from the target CSS even in a strategic fashion. To protect a
CSS from APT, the cloud defender has to dynamically allocate the limited security resources to recover the
compromised storage servers, aiming at mitigating his total loss. This paper addresses this dynamic cloud
storage recovery (DCSR) problem by employing differential game theory. First, by introducing an expected
state evolution model capturing the CSS’s expected state evolution process under a combination of attack
strategy and recovery strategy, we measure the APT attacker’s net benefit and the cloud defender’s total loss.
On this basis and in the worst-case situation where the cloud defender assumes that the APT attacker has
full knowledge of his expected loss, we reduce the DCSR problem to a differential game-theoretic problem
(the DCSR∗ problem) to characterize the strategic interactions between the two parties. Second, we derive
a necessary condition for Nash equilibrium of the DCSR∗ problem and thereby introduce the concept of
competitive strategy profile. Next, we study the structural properties of the competitive strategy profile,
followed by some numerical examples. Then, we conduct extensive comparative experiments to exhibit that
the competitive strategy profile is superior to a large number of randomly generated strategy profiles in the
sense of Nash equilibrium solution concept. Finally, we briefly analyze the practicability (scalability and
feasibility) of this paper. Our findings will be helpful to enhance the APT defense capabilities of the cloud
defender.

INDEX TERMS Advanced persistent threat, cloud storage recovery, state evolutionmodel, differential game,
Nash equilibrium, necessity system, competitive strategy profile.

I. INTRODUCTION
More and more organizations are moving to cloud. In particu-
lar, with the financial justifications and increasing functional-
ity, cloud storage systems (CSSs), which typically encompass
a collection of storage servers to provide long-term storage
services over the Internet [1], are being embraced by organi-
zations. According to [2], more than 72% of global organi-
zations will migrate to cloud by 2022, and the global cloud
storage market is projected to be worth USD 101.59 billion
by 2023, cementing the rise of cloud storage.

Despite the huge benefit, a CSS is often confronted with
a variety of cyber threats. Among them, advanced persistent
threat (APT) for data theft is one of the most serious threats to
the CSS. Specifically, the following three phases of an APT
campaign may be involved.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

• Reconnaissance. Gather information about the CSS and
the cloud defender, including the system vulnerabilities
and work mode of the cloud defender.

• Infiltration. Combine the information obtained in the
reconnaissance phase with social engineering attacks,
infiltrate the CSS and then establish footholds.

• Data exfiltration. Encrypt and exfiltrate valuable data
from the target CSS stealthily and continuously through
an established communication channel.

In general, most traditional cyber attacks like computer
viruses are single-run and automatic, with the intent of break-
ing down systems. As a result, the success rate of these
cyber attacks is lower and the chance of being detected is
higher. In contrast, APT for data theft is time-continuous
and highly motivated, and usually performed by well-funded
attackers, aiming at stealing valuable data from the target
CSS in a covert fashion over a long period of time without
being caught [3]. Through extended reconnaissance and by

103556 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-5549-3864
https://orcid.org/0000-0001-6931-2692


P. Li, X. Yang: On Dynamic Recovery of CSS Under APT

FIGURE 1. Diagram of a typical cloud storage system, where there are
multiple storage servers to provide storage services to individuals or
organizations, and the cloud defender as the owner is responsible for the
decision-making (e.g., recovery) of the whole system.

using social engineering attacks, an APT attacker can always
infiltrate the CSS, leading to severe data leakage. Due to
the fast rate at which the APTs are evolving, it is almost
impossible to perfectly protect a CSS from APTs only by
employing traditional defense mechanisms such as Intrusion
Detection System (IDS) and firewall.

A. MOTIVATION
Consider a CSS consisting of multiple storage servers. The
cloud defender as the owner of the CSS is responsible for the
decision-making of the whole system. Every day a substantial
amount of data will be uploaded to or downloaded from the
CSS by individual devices or organizations [4]. See Fig. 1 for
the diagram of such a CSS. In this setting, an APT attacker
can apply social engineering attacks to the cloud defender to
compromise the storage servers and establish footholds. Once
having footholds in the target CSS, the APT attacker will be
able to encrypt and exfiltrate the valuable data to his remote
command-and-control (C&C) server through an established
communication channel which applies mainstream protocols
such as HTTP, HTTPS, FTP, P2P, and others. See Fig. 2 for
the diagram of the APT for data theft on the CSS shown
in Fig. 1.

According to [5], when an APT campaign on the CSS
is identified and all the compromised storage servers are
confirmed by the cloud defender, the next step is to recover
all the confirmed compromised storage servers. This recovery
work may involve some of the following activities:

• Collect and analyze the system logs, including service
logs and traffic logs.

• Search for and kill the suspicious processes in the com-
promised storage servers.

• Analyze the samples of the attack scripts or toolkits and
then develop new patches accordingly.

• Migrate data and then reinstall the systems of the com-
promised storage servers.

FIGURE 2. Diagram of an APT for data theft on the cloud storage system
shown in Fig. 1, where the APT attacker makes the attack decision to
compromise the storage servers, and then exfiltrate valuable data from
the compromised servers to his C&C server through an established
communication channel.

On the one hand, the above recovery work is resource-
intensive, i.e., security resources including money and man-
power need to be put in place to accomplish this recovery
work. On the other hand, the security resources of the cloud
defender are usually limited. As a result, the cloud defender
has to effectively manage his security resources so that he can
make responses in a timely manner when facing an APT.

Resource management, which is the efficient and effec-
tive management of an organization’s resources and has
been widely applied to different research topics such as
defense of terrorist attacks [6], trust data sharing in edge
computing [7], green services of content-centric IoT [8] and
efficient job scheduling and energy-aware resource manage-
ment in data center networks [9], [10], provides the cloud
defender the inspiration to the development of an effective
security resources allocation strategy that mitigates his total
loss. As the APT campaign is time-continuous, the cloud
defender also needs to take continuous actions. In this con-
text, we define a dynamic recovery (DR) strategy as a
vector-valued function consisting of all the recovery rates of
all storage servers at all times in the course of the APT cam-
paign. The DR strategy is controllable by the cloud defender,
and the total loss is dependent on the strategy. Therefore,
the cloud defender has to deal with the following problem:
Dynamic cloud storage recovery (DCSR) problem: Sup-

pose an APT campaign on a cloud storage system has been
identified. Develop an effective DR strategy so that the cloud
defender’s total loss, which includes the direct loss caused
by the leakage of valuable data and the recovery cost for
recovering the compromised storage servers, is minimized.

Dealing with this problem will contribute to the enhance-
ment of the APT defense capabilities of the cloud defender.

B. APPROACH
In dealing with the DCSR problem, we need to measure
the cloud defender’s total loss. This quantity consists of two
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parts: the direct loss resulted from the leakage of valuable
data and the recovery cost for recovering the compromised
storage servers. In our work, the direct loss can be measured
by the cloud defender’s expected loss, while the recovery cost
can be estimated by the expected recovery cost. As both the
two measures are closely related to all the CSS’s expected
states in the course of the APT campaign, we need to estab-
lish the CSS’s expected state evolution model. In this work,
we introduce a differential dynamical system to capture the
CSS’s expected state evolution process. Thereby, we evaluate
the cloud defender’s total loss. On this basis, the main task of
the cloud defender is to seek a feasible DR strategy so that the
total loss is minimized. As the total loss simultaneously relies
on the DR strategy and the dynamic attack (DA) strategy
which consists of all the attack rates of all storage servers
at all times and is typically unknown to the cloud defender,
a game-theoretic model is especially suitable to capturing the
interactions between the cloud defender and theAPT attacker.

In the worst-case situation where the cloud defender
assumes that the APT attacker has full knowledge of the
his expected loss, seeking a Nash equilibrium is the main
task of the cloud defender. As the strategies of both parties
are dependent only on time, the equilibrium is an open-loop
Nash equilibrium. For convenience, in this paper, unless oth-
erwise specified, we will interchangeably use the two terms
open-loop Nash equilibrium and Nash equilibrium. Given a
Nash equilibrium including a DA strategy and a DR strategy.
According to the nature of Nash equilibrium, both the cloud
defender and the APT attacker cannot achieve a better goal by
unilaterally deviating from their respective strategies in the
equilibrium. Hence, at least from the worst-case perspective,
it is appropriate for the cloud defender to adopt the DR
strategy in the equilibrium. Therefore, the DCSR problem
is reduced to a game-theoretic problem we refer to as the
DCSR∗ problem, in which the ultimate goal of the cloud
defender is to find a Nash equilibrium [11]. A DCSR∗ game
of the DCSR∗ problem is a differential game, because it
relies on a differential dynamical system capturing the CSS’s
expected state evolution process, and the strategies of both
parties are time-varying.

C. CONTRIBUTIONS
The main contributions of this paper are sketched as follows.

• By introducing an expected state evolution model
capturing the CSS’s expected state evolution process
under a combination of DA strategy and DR strategy,
we measure the APT attacker’s net benefit and the
cloud defender’s total loss. On this basis and in the
worst-case situation where the cloud defender assumes
that the APT attacker has full knowledge of his expected
loss, we reduce the DCSR problem to a differential
game-theoretic problem of seeking a Nash equilibrium,
which we refer to as the DCSR∗ problem.

• According to differential game theory, we derive a nec-
essary condition for Nash equilibrium of the DCSR∗

problem and thereby introduce the concept of competi-
tive strategy profile. Then we inspect the structural prop-
erties of the competitive strategy profile, followed by
some numerical examples. Through extensive compar-
ative experiments, we find that the competitive strategy
profile outperforms a large number of randomly gener-
ated strategy profiles in the sense of Nash equilibrium
solution concept. Therefore, we recommend to the cloud
defender the DR strategy in the competitive strategy
profile. In addition, we briefly analyze the practicability
of this work. The results either deepen our understanding
of the APT on the CSS or help the cloud defender to
enhance the APT defense capabilities.

The rest of this work is organized in the following fashion.
We review the related works and illuminate their relationship
with our work in Section II. Then we model the DCSR
problem as the DCSR∗ problem in Section III. In Section IV,
we derive the necessity system, introduce the concept of
competitive strategy profile, examine the structural properties
of the competitive strategy profile, and give some numeri-
cal examples. The performance of the competitive strategy
profile is evaluated in Section V. In Section VI, we briefly
analyze the practicability of this work. Finally, Section VII
draws conclusions of this work.

II. RELATED WORK
In recent years, the advanced persistent threats (APTs) have
posed a severe threat to modern society [5], [12]. By using
multiple advanced tools, an APT attacker can often evade
conventional defense measures of a system to slowly and
covertly exfiltrate valuable data over a long period of time
without being noticed. To defend against APT, numer-
ous efforts have been made in cyber security community.
For example, many APT detection techniques have been
proposed [13]–[16], and different APT defense models have
been suggested [17]–[24].

Generally speaking, the APT defense can be classified into
two types: proactive APT defense and reactive APT defense.
For the former, the defender uses different proactive defense
techniques (e.g., moving target defense (MTD) [25]–[27])
to prevent APT. For the later, the defender takes actions to
recover the target system only when an APT campaign has
been identified.

A. CLOUD STORAGE DEFENSE AGAINST APT
With significant financial benefits, more and more modern
organizations have moved to the cloud, which has changed
the APT landscape. Instead of targeting one organization,
the cloud could allow the APT to target a cloud storage
system (CSS) and then gain access to different organizations’
valuable data [5]. Therefore, it is crucial for a cloud defender
to guarantee the security of the CSS in the presence of APT.
Toward this direction, many defense mechanisms in the cloud
have been reported in literature [28]–[30].

Game theory is the dominant formalism for studying the
strategic interaction between rational decision-makers [31],
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and has been applied to deal with different cybersecurity
problems [32]–[34]. In [35], the interaction between an APT
attacker and a system defender was modeled as a stealthy
takeover game (the FlipIt game). In this work, both the APT
attacker and the system defender pursue their objectives with-
out having knowledge of the current state of the target system.
Recently, the game framework proposed in [35] has been
extensively applied to the defense against APT, particularly
in the protection of cloud storage systems. Reference [36]
studied the security of the cloud-based system by employing
the FlipIt game. Reference [37] applied the FlipIt game to
investigate the cloud storage defense against APT. In this
work, the prospect theory (PT) was employed to characterize
the subjectivity of the APT attacker and the cloud defender,
and the target system was assumed to consist of a single
storage server. In practice, most CSSs usually consist of
multiple storage servers. Thus, [38] extended the gamemodel
in [37] to adapt to a more actual situation in which the CSS
consists of multiple storage servers. In addition, the game
model in [37] was also modified in [39] by employing the
cumulative prospect theory (CPT), which is more readily
extended to cases with much more outcomes than prospect
theory. All the previous works build on an assumption that
both the defense and attack resources are unlimited. In real
world, the security resources (CPU, money, manpower, etc.)
are typically limited. In this case, [40] investigated the cloud
storage defense against APT with limited resources over
multiple storage servers in the target CSS, by modeling the
interaction between the cloud defender and the APT attacker
as a Colonel Blotto game (CBG). However, in this work,
the data size of each storage server was assumed to be
identical and unchanged over time. In practice, the storage
servers usually have different amount of data, and the data
size also changes over time. Therefore, in [41], the CSS was
extended to a dynamic onewhose data size changes over time.
In [42], evolution game was used to model the long-term
behavior of APTs on a CSS. Evolution game was also
employed to study the APT defense of fog computing in [43].
Reference [44] addressed the security of cloud-enabled Inter-
net of Controlled Things (IoCT) through the contract theory.
Reference [45] studied the interaction among three parties:
the administrator of cloud, an attacker, and a device, with the
investigation of the nature of a Gestalt Nash equilibrium.

All the above works fall into the proactive APT defense,
that is the defender uses different proactive defense tech-
niques to prevent APT.

B. OUR WORK
Different from the previously mentioned works, the present
paper aims at solving the dynamic cloud storage recov-
ery (DCSR) problem in the framework of the reactive APT
defense. Nonetheless, our work is highly inspired by all of the
previous works. In dealing with the DCSR problem, the ulti-
mate goal of the cloud defender is to seek a time-continuous
DR strategy to minimize his total loss. However, the total loss
simultaneously relies on the DR strategy and the DA strategy,

making it a much more complex problem. In the worst-case
situation where the cloud defender assumes that the APT
attacker has full knowledge of his expected loss, the DCSR
problem is reduced to a game-theoretic problem of searching
a Nash equilibrium, which we refer to as the DCSR∗ problem.
ADCSR∗ game of the DCSR∗ problem is a differential game,
because it relies on a differential dynamical system capturing
the CSS’s expected state evolution process, and the strategies
of both parties are time-varying.

Dealing with the DCSR problem is of great importance to
the cloud storage defense against APT. To our knowledge,
this is the first time the DCSR problem is addressed in this
fashion.

III. THE DCSR PROBLEM AND ITS MODELING
This section models the DCSR problem according to the
following procedure. First, we introduce some basic terms
and notations. Second, we formulate a DA strategy and a
DR strategy. Thirdly, we establish the CSS’s expected state
evolution model under a combination of DA strategy and DR
strategy. Next, we measure the APT attacker’s net benefit and
the cloud defender’s total loss. Finally, we reduce the DCSR
problem to a differential game-theoretic problem.

A. TERMS AND NOTATIONS
Table 1 summarizes all the notations used in the paper.

Consider a cloud storage system (CSS) shown in Fig. 1.
Suppose an APT campaign on the CSS has been detected at
time t = 0, and the cloud defender is going to continuously
defense by recovering the compromised storage servers in
the finite time horizon [0,T ]. Meanwhile, the APT attacker
constantly launches attacks to compromise the target CSS
during the time horizon.

Suppose the CSS consists of N storage servers. In practice,
the amount of data stored in the CSS is time-varying. Hence,
we assume that at any time t ∈ [0,T ], storage server i stores
data of size Di(t). Then D(t) = (D1(t), · · · ,DN (t)) denotes
the CSS’s data size vector at time t , and B(t) =

∑N
i=1 Di(t)

denotes the total size of data stored in the CSS at time t . For
simplicity, in this work we assume that Di(t) ∈ [0, 1], where
0means there is no any data stored in the storage server, while
1 means the data size reaches the maximum capacity of the
storage server. Then the feasible set of D(t) is

D =

{
D(t) : D(t) ∈

N∏
i=1

[0, 1], t ∈ [0,T ]

}
. (1)

In this paper, we will generate the data size vector by
performing an algorithm which is referred to as the DSV
algorithm shown in Algorithm 1, where DSV stands for data
size vector.

We assume that at any time t ∈ [0,T ], each and every
storage server of the CSS is in one of two possible states:
uncompromised and compromised. An uncompromised stor-
age server is under control of the cloud defender and the data
stored in it is safe, whereas a compromised storage server is
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TABLE 1. Summary of symbols and notations.

Algorithm 1 DSV
Input: positive real number N , T .
Output: a data size vector D.
1: for i = 1 to N do
2: for t = 0 to T do
3: choose a random value η ∈ [0, 1];
4: Di(t)← η;
5: end for
6: end for
7: return D.

under control of the APT attacker and the data stored in it can
be stolen by the attacker.

Let Si(t) = 0 and 1 denote that storage server i is uncom-
promised and compromised at time t , respectively. Then the
vector

S(t) = (S1(t), · · · , SN (t)) (2)

represents the CSS’s state at time t .
Let Ci(t) denote the probability of storage server i being

compromised at time t , i.e., Ci(t) = Pr{Si(t) = 1}. Then we
get that the probability of storage server i being uncompro-
mised at time t is 1− Ci(t). Thus, the vector

E(t) = (C1(t), · · · ,CN (t)) (3)

represents the CSS’s expected state at time t .
In practice, the attacker can determine whether the attack is

detected and stopped by the cloud defender by observing the
size of the stolen data. This implies that the APT attacker is
aware of the CSS’s state at any time. For the cloud defender,

the initial expected state of the CSS can be estimated rela-
tively accurately by employing some proven APT detection
techniques. Hence, in what follows we assume E(0) is known
to the cloud defender.

B. THE DA STRATEGY AND DR STRATEGY
Let αi(t) denote the rate at which the APT attack makes Si(t)
to go up at time t . We refer to αi(t) as the attack rate on
storage server i at time t . Then the following N -dimensional
vector-valued function

x(t) = (α1(t), · · · , αN (t)), t ∈ [0,T ], (4)

is referred to as a dynamic attack (DA) strategy and is con-
trollable by the APT attacker.

Let γi(t) denote the rate at which the cloud defender’s
recovery makes Si(t) to go down at time t . We refer to γi(t)
as the recovery rate on storage server i at time t . Then the
following N -dimensional vector-valued function

y(t) = (γ1(t), · · · , γN (t)), t ∈ [0,T ], (5)

is referred to as a dynamic recovery (DR) strategy and is
controllable by the cloud defender.

According to stochastic process theory, the diagram of state
transition of the storage server i is as shown in Fig. 3. Nowwe
impose a few restrictions on the DA strategy and DR strategy
as follows.

First, we assume that x and y are both piecewise con-
tinuous. Obviously, the piecewise continuous DA strategy
and DR strategy are easy to be implemented. Let 0N [0,T ]
denote the set of all the piecewise continuous N -dimensional
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FIGURE 3. The diagram of state transition of the storage server i under
the combination of the attack rate and recovery rate.

vector-valued functions defined on the interval [0,T ]. Then,
x, y ∈ 0N [0,T ].

Second, let αi > 0 and αi <∞ denote the lower bound and
upper bound of attack rate on the storage server i at any time,
respectively. Let γi > 0 and γi <∞ denote the lower bound
and upper bound of recovery rate on the storage server i at any
time, respectively. Then, for t ∈ [0,T ], 1 ≤ i ≤ N , we have
αi ≤ αi(t) ≤ αi and γi ≤ γi(t) ≤ γi. Hence, the admissible
set of the DA strategy is

X =

{
x ∈ 0N [0,T ] | x(t) ∈

N∏
i=1

[
αi, αi

]
, t ∈ [0,T ]

}
, (6)

and the admissible set of the DR strategy is

Y =

{
y ∈ 0N [0,T ] | y(t) ∈

N∏
i=1

[
γi, γi

]
, t ∈ [0,T ]

}
. (7)

We refer to α =
(
α1, · · · , αN

)
as the attack lower bound

vector, α = (α1, · · · , αN ) as the attack upper bound vector,
γ =

(
γ1, · · · , γN

)
as the recovery lower bound vector, and

γ = (γ1, · · · , γN ) as the recovery upper bound vector.

C. THE CSS’S EXPECTED STATE EVOLUTION MODEL
To model the DCSR problem, we need to measure the cloud
defender’s direct loss, which is closely related to the CSS’s
expected state evolution process.

Let E [·] denote the mathematical expectation of a random
variable. By definitions of αi(t) and γi(t), we get that the
rate at which the state of storage server i goes up at time
t is αi(t)Si(t) − γi(t)Si(t). Hence, the average rate at which
the expected state of storage server i goes up at time t is
E [αi(t)Si(t)− γi(t)Si(t)] = αi(t) [1− Ci(t)] − γi(t)Ci(t).
Therefore, the CSS’s expected state evolves over time accord-
ing to the following differential dynamical system:

dCi(t)
dt
= αi(t) [1− Ci(t)]− γi(t)Ci(t),

t ∈ [0,T ], 1 ≤ i ≤ N . (8)

D. THE APT ATTACKER’S NET BENEFIT AND THE CLOUD
DEFENDER’S TOTAL LOSS
In order to model the DCSR problem, we need to measure the
APT attacker’s net benefit and the cloud defender’s total loss.
Given a strategy profile (x, y), the cloud defender’s total loss
consists of the cloud defender’s expected loss incurred by data
leakage and the expected cost coming from the implemen-
tation of the DR strategy y, while the attacker’s net benefit
takes the difference between the cloud defender’s expected

loss and the expected cost coming from the implementation
of the DA strategy x. Now we are going to formally measure
these quantities.

To measure the cloud defender’s expected loss, we intro-
duce the first assumption as follows.
(A1) The average amount of losses per unit time resulted

from the leakage of per unit data volume is w > 0.
We refer to w as the loss coefficient.

According to this assumption, in the infinitesimal time
horizon [t, t + dt), the cloud defender’s average loss owing
to the storage server i is wDi(t)dt or 0 according as Si(t) = 1
or 0. As a result, the cloud defender’s expected loss in the
infinitesimal time horizon [t, t + dt) is wDi(t)dt×Pr{Si(t) =
1}+ 0×Pr{Si(t) = 0} = wDi(t)Ci(t)dt . Therefore, the cloud
defender’s expected loss during the time horizon [0,T ] is

EL(x, y) = w
∫ T

0

N∑
i=1

Di(t)Ci(t)dt. (9)

To evaluate the expected cost coming from the imple-
mentation of the DA strategy x, we introduce the second
assumption as follows.
(A2) The cost per unit time for attacking the uncompromised

storage server i at the rate of α is φi(α), where φi is
referred to as the attack cost function of storage server
i and is strictly increasing and φi(0) = 0. We refer to
φ = (φ1, · · · , φN ) as the attack cost function vector.

Similarly, according to this assumption, the expected cost
coming from the implementation of the DA strategy x during
the time horizon [0,T ] is

ECA(x, y) =
∫ T

0

N∑
i=1

φi(αi(t))(1− Ci(t))dt. (10)

To quantify the expected cost coming from the implemen-
tation of the DR strategy y, we introduce the third assumption
as follows.
(A3) The cost per unit time for recovering the compromised

storage server i at the rate of γ is ψi(γ ), where ψi
is referred to as the recovery cost function of storage
server i and is strictly increasing and ψi(0) = 0.
We refer to ψ = (ψ1, · · · , ψN ) as the recovery cost
function vector.

Similarly, according to this assumption, the expected cost
coming from the implementation of the DR strategy y during
the time horizon [0,T ] is

ECD(x, y) =
∫ T

0

N∑
i=1

ψi(γi(t))Ci(t)dt. (11)

Hence, the APT attacker’s net benefit is measured by

UA(x, y) = EL(x, y)− ECA(x, y)

=

∫ T

0

N∑
i=1

{wDi(t)Ci(t)−φi (αi(t)) [1− Ci(t)]} dt,

(12)
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and the cloud defender’s total loss is measured by

UD(x, y) = EL(x, y)+ ECD(x, y)

=

∫ T

0

N∑
i=1

[wDi(t)+ ψi (γi(t))]Ci(t)dt. (13)

E. THE GAME MODEL FOR THE DCSR PROBLEM
According to the previous discussions, the DCSR problem is
reduced to a game-theoretic problem, which we refer to as the
DCSR∗ problem, in which the goal is to seek a DR strategy
y ∈ Y so that the UD(x, y) is mitigated, provided the DA
strategy x ∈ X is unknown to the cloud defender. Specifically,
the DCSR∗ problem consists of all DCSR∗ games defined as
follows.
Definition 1: A DCSR∗ game includes three components:

C1. The set of players, P = {APT attacker,Cloud defender}.
C2. The admissible set of the DA strategy, X, and the admis-

sible set of the DR strategy, Y.
C3. The APT attacker’s net benefit, UA(x, y), and the cloud

defender’s total loss, UD(x, y), where (x, y) ∈ X× Y.
Every DCSR∗ game can be represented by an 11-tuple

G =
(
N ,D, α, α, γ , γ , φ,ψ,E0,w,T

)
. (14)

Now let us formally give the definition of the open-loop
Nash equilibrium of a DCSR∗ game.
Definition 2: Given a DCSR∗ game. The strategy profile

(x∗, y∗) ∈ X × Y is an open-loop Nash equilibrium for the
game if

UA(x∗, y∗) ≥ UA(x, y∗), ∀x ∈ X, (15)

and

UD(x∗, y∗) ≤ UD(x∗, y), ∀y ∈ Y. (16)
For convenience, in this paper, we interchangeably use the

two terms open-loop Nash equilibrium andNash equilibrium.
Given the Nash equilibrium of a DCSR∗ game, (x∗, y∗).
According to the nature of Nash equilibrium, both the cloud
defender and the APT attacker cannot achieve a better goal by
unilaterally deviating from their respective strategies in the
equilibrium. Hence, at least from the worst-case perspective,
it is appropriate for the cloud defender to adopt the DR
strategy y∗ in the equilibrium.
Although many efforts have been taken in some particular

classes of differential games such as trilinear games [46]
and state-redundant games [47], due to the complexity of the
DCSR∗ problem, we fail to show the existence and unique-
ness of the open-loop Nash equilibrium for a DCSR∗ game.
As a result, a DCSR∗ game may possibly admit no or more
than one Nash equilibrium. Nonetheless, in the following
section, we will try our best to deal with the DCSR∗ problem.

IV. DEALING WITH THE DCSR∗ PROBLEM
In the previous section, we modeled the DCSR problem as
the DCSR∗ problem. In this section, we devote ourselves to
dealingwith the DCSR∗ problem. First, we derive a necessary

condition for Nash equilibrium of the DCSR∗ problem and
thereby introduce the concept of competitive strategy profile.
Second, we investigate the structural properties of the com-
petitive strategy profile. Finally, we present some numerical
examples of the competitive strategy profile.

A. A NECESSARY CONDITION
First, we present a necessary condition for the Nash equilib-
rium. According to differential game [11], the Hamiltonian
for the APT attacker is

HA(E, x, y, λ) =
N∑
i=1

[wDiCi − φi(αi)(1− Ci)]

+

N∑
i=1

λi [αi(1− Ci)− γiCi] , (17)

and the Hamiltonian for the cloud defender is

HD(E, x, y, µ) =
N∑
i=1

[wDi + ψi(γi)]Ci

+

N∑
i=1

µi [αi(1− Ci)− γiCi] , (18)

where λ = (λ1, · · · , λN )T and µ = (µ1, · · · , µN )T are their
respective adjoint functions.

The following theorem presents the necessary condition for
the Nash equilibrium of a DCSR∗ game.
Theorem 1: Suppose (x, y) is a Nash equilibrium of a

DCSR∗ game, and E is the solution to the expected state
evolution model (8). Then, there exist λ and µ with λ(T ) =
µ(T ) = 0 such that
dλi(t)
dt
= −wDi(t)− φi(αi(t))+ λi(t) [αi(t)+ γi(t)] ,

dµi(t)
dt
= −wDi(t)− ψi(γi(t))+ µi(t) [αi(t)+ γi(t)] ,

t ∈ [0,T ], 1 ≤ i ≤ N .
(19)

Moreover,
αi(t) ∈ argmaxα∈

[
αi,αi

] [1−Ci(t)] [λi(t)α−φi(α)] ,
γi(t) ∈ argmax

γ∈
[
γi,γi

] Ci(t) [ψi(γ )− µi(t)γ ] ,
1 ≤ i ≤ N , t ∈ [0,T ],

(20)

Proof: According to the Pontryagin Maximum/
Minimum Principle [48], there exist λ and µ such that

dλi(t)
dt
= −

∂HA(E(t), x(t), y(t), λ(t))
∂Ci

,

t ∈ [0,T ], 1 ≤ i ≤ N , (21)

and

dµi(t)
dt
= −

∂HD(E(t), x(t), y(t), µ(t))
∂Ci

,

t ∈ [0,T ], 1 ≤ i ≤ N . (22)

103562 VOLUME 7, 2019



P. Li, X. Yang: On Dynamic Recovery of CSS Under APT

Thus, we can get Eqs. (19) by direct calculations, and λ(T ) =
µ(T ) = 0 holds. Besides, for t ∈ [0,T ], according to the
optimality conditions

x(t) ∈ argmax
x̂∈X

HA(E(t), x̂(t), y(t), λ(t)), (23)

and

y(t) ∈ argmin
ŷ∈Y

HD(E(t), x(t), ŷ(t), µ(t)), (24)

we can get Eq. (20).
In what follows, we refer to the system of Eqs. (8), (19),

and (20) with E(0) = E0 and λ(T ) = µ(T ) = 0 as the
necessity system for the DCSR∗ problem, and each strategy
profile in solutions to the necessity system as a competitive
strategy profile of the DCSR∗ problem.

We should note that the necessity system is only a nec-
essary condition for Nash equilibrium; a Nash equilibrium
must be a competitive strategy profile, but the converse may
not hold. Nonetheless, finding a competitive strategy profile
and evaluating its performance offer a feasible approach to
dealing with the DCSR∗ problem. Additionally, it is seen
from Eq. (20) that a DCSR∗ game may admit more than one
competitive strategy profile. For clarity, whenever solving
a necessity system, we always break each tie appearing in
Eq. (20) by letting the attack rate or the recovery rate takes
on the lower bound.

When it comes to numerical calculation of the necessity
system, we describe an algorithm shown in
Algorithm 2, which is based on the Forward-Backward
Sweep Method [49]. We refer to the algorithm as CSP algo-
rithm, where CSP stands for competitive strategy profile.
In this algorithm, ‖h‖ = max0≤t≤T

∑N
i=1 |hi(t)|, and we set

ε = 10−6, K = 103 for all of the experiments.

B. THE STRUCTURAL PROPERTIES OF THE COMPETITIVE
STRATEGY PROFILE
Now, let us study the structural properties of the competitive
strategy profile. Let (x, y), E, and λ and µ be the competitive
strategy profile, the solution to the associated expected state
evolution model, and the associated adjoints, respectively.

First, let us examine the structural properties of x. Let

θi =
φi(αi)− φi(αi)

αi − αi
, 1 ≤ i ≤ N . (25)

The first and second results in this subsection are given
below.
Theorem 2: Suppose φi is concave. For t ∈ [0,T ], we have

αi(t) =

{
αi if Ci(t) = 1 or λi(t) ≤ θi,
αi if Ci(t) < 1 and λi(t) > θi.

(26)

Proof: If Ci(t) = 1, it follows from Eq. (20) and the
definition of the competitive strategy profile that αi(t) = αi.
If Ci(t) < 1, then define the function gi as follows.

gi(α; t) = λi(t)α − φi(α), α ∈ [αi, αi], (27)

Algorithm 2 CSP
Input:
DCSR∗ game G =

(
N ,D, α, α, γ , γ , φ,ψ,E(0),w,T

)
,

convergence error ε, maximum number of iterations K .
Output: a strategy profile (x, y).
1: // initialize
2: for i = 1 to N do
3: for t = 0 to T do
4: αi(t)← αi, γi(t)← γi;
5: end for
6: end for
7: // iteration
8: k ← 0
9: repeat
10: k ← k + 1
11: for t = 0 to T do
12: compute Ek (t) based on Eq. (8);
13: end for
14: for t = T to 0 do
15: compute λk (t) and µk (t) based on Eq. (19) with

λ(T ) = µ(T ) = 0;
16: compute xk (t) and yk (t) based on Eq. (20);
17: end for
18: until ‖xk − xk−1‖ + ‖yk − yk−1‖ < ε or k ≥ K
19: return

(
xk , yk

)
.

As φi is concave, gi is convex. So, by comparing gi(αi; t) and
gi(αi; t), we deduce Eq. (26).
Theorem 3: Suppose φi is strictly convex and differen-

tiable. For t ∈ [0,T ], we have

αi(t) =


αi if Ci(t) = 1 or λi(t) < φ′i(αi),
αi if Ci(t) < 1 and λi(t) > φ′i(αi),[
φ′i

]−1 (λi(t)) otherwise.

(28)

Proof: If Ci(t) = 1, it follows from Eq. (20) and the
definition of the competitive strategy profile that αi(t) = αi.
If Ci(t) < 1, then as φi is strictly convex, it follows that the
function gi defined by Eq. (27) is strictly concave. Hence,
there are three cases.

(a) gi is strictly decreasing, which implies λi(t) < φ′i(αi).
Then αi(t) = αi.

(b) gi is strictly increasing, which implies λi(t) > φ′i(αi).
Then αi(t) = αi.

(c) gi is first increasing then decreasing. Then dgi(αi(t);t)
dα =

0, which implies αi(t) =
[
φ′i

]−1 (λi(t)).
Next, let us inspect the structural properties of y. Let

ηi =
ψ(γi)− ψ(γi)

γi − γi
. (29)

The third and fourth results in this subsection are given
below.
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FIGURE 4. Three attack rate functions and three recovery rate functions in each of the two competitive strategy
profiles given in Example 1, where (a)–(c) are for the DCSR∗ game G1, (d)–(f) are for the DCSR∗ game G2.

Theorem 4: Suppose ψi is concave. For t ∈ [0,T ],
we have

γi(t) =

{
γi if Ci(t) = 0 or µi(t) ≤ ηi,

γi if Ci(t) > 0 and µi(t) > ηi.
(30)

Theorem 5: Suppose ψi is strictly convex and differen-
tiable. For t ∈ [0,T ], we have

γi(t) =


γi if Ci(t) = 0 or µi(t) < ψ ′i (γi),

γi if Ci(t) > 0 and µi(t) > ψ ′i (γi),[
ψ ′i
]−1 (µi(t)) otherwise.

(31)

The proofs of the two theorems are similar to those of
Theorems 2 and 3 and hence are omitted.

Theorems 2–5 partly illuminate the structural properties of
the competitive strategy profile.

C. EXPERIMENT SETTINGS
All the experiments in this paper are conducted on a PC
with Intel Xeon E3-1231 CPU and 8GB RAM. Furthermore,
we need to obtain the competitive strategy profiles of a set
of DCSR∗ games by solving the corresponding necessity
systems. For this purpose, we will generate these DCSR∗

games by setting the parameters in detail as follows.
• Set N . Let N 1

= 50, N 2
= 100. In all the experiments,

N ∈ {N 1,N 2
}.

• Set D. Let D∗ be the data size vector generated by
invoking the DSV algorithm. In all the experiments,
D = D∗.

• Set α, α, γ , and γ . For m ∈ {1, 2, · · · , 5}, let αm =
(0.m, · · · , 0.m) and γm = (0.m, · · · , 0.m) be the vectors
with N components, where N ∈ {N 1,N 2

}. In all the
experiments,

(
α, α

)
∈
{(
α1, α3

)
,
(
α2, α4

)}
,
(
γ , γ

)
∈{(

γ 2, γ 4
)
,
(
γ 3, γ 5

)}
.

• Set φ and ψ . Let φ
1
2 (α) =

(√
α, · · · ,

√
α
)
, φ2(α) =(

α2, · · · , α2
)
, ψ

1
2 (γ ) =

(√
γ , · · · ,

√
γ
)
, and ψ2(γ ) =(

γ 2, · · · , γ 2
)
be the vectors with N components, where

N ∈ {N 1,N 2
}. In all the experiments, φ ∈

{
φ

1
2 , φ2

}
,

ψ ∈
{
ψ

1
2 , ψ2

}
.

• SetE0. LetE∗ = (0.2, · · · , 0.2) withN 0.2 components,
where N ∈ {N 1,N 2

}. In all the experiments, E0 = E∗.
• Setw. Form ∈ {4, 5}, letwm = m. In all the experiments,
w ∈ {w4,w5

}.
• Set T . Let T ∗ = 10. In all the experiments, T = T ∗.

D. EXAMPLES OF THE COMPETITIVE STRATEGY PROFILE
In this subsection, we solve some DCSR∗ games to obtain
their competitive strategy profiles.
Example 1: (a) Consider the DCSR∗ game

G1
=

(
N 1,D∗, α1, α3, γ 2, γ 4, φ

1
2 , ψ

1
2 ,E∗,w4,T ∗

)
.

By solving the necessity system, we get the competitive strat-
egy profile. Fig. 4(a)–(c) plots three attack rate functions and
three recovery rate functions in the strategy profile.
(b) Consider the DCSR∗ game

G2
=

(
N 1,D∗, α1, α3, γ 2, γ 4, φ2, ψ2,E∗,w4,T ∗

)
.

By solving the necessity system, we get the competitive strat-
egy profile. Fig. 4(d)–(f) plots three attack rate functions and
three recovery rate functions in the strategy profile.
Example 2: (a) Consider the DCSR∗ game

G3
=

(
N 2,D∗, α2, α4, γ 3, γ 5, φ

1
2 , ψ

1
2 ,E∗,w5,T ∗

)
.

By solving the necessity system, we get the competitive strat-
egy profile. Fig. 5(a)–(c) plots three attack rate functions and
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FIGURE 5. Three attack rate functions and three recovery rate functions in each of the two competitive strategy
profiles given in Example 2, where (a)–(c) are for the DCSR∗ game G3, (d)–(f) are for the DCSR∗ game G4.

three recovery rate functions in the strategy profile.
(b) Consider the DCSR∗ game

G4
=

(
N 2,D∗, α2, α4, γ 3, γ 5, φ2, ψ2,E∗,w5,T ∗

)
.

By solving the necessity system, we get the competitive strat-
egy profile. Fig. 5(d)–(f) plots three attack rate functions and
three recovery rate functions in the strategy profile.

From the above examples we conclude that for any DCSR∗

game, each rate function in the competitive strategy profile
first stays at a high value (mostly, the upper bound), and then
falls sharply or gradually to the lower bound, and finally stays
at the lower bound.

On the one hand, the above results are completely in
accordance with theorems 2–5. Specifically, when the cost
function of a rate is concave, then the rate will only take
on its lower bound or upper bound (see Fig. 4(a)–(c) and
Fig. 5(a)–(c)). In contrast, when the cost function of a rate is
strictly convex and differentiable, then the rate may take on
some values in between its lower bound and its upper bound
(see Fig. 4(d)–(f) and Fig. 5(d)–(f)). On the other hand, in the
course of the APT campaign, the APT attacker first selects
high attack rates to gain as much benefit as possible from
data theft at the beginning. However, as time goes by, the cost
will overtake the benefit. Hence, the APT attacker reduces the
cost to achieve a better tradeoff. Similarly, the cloud defender
needs to make responses in a timely manner by selecting high
recovery rates at the beginning of theAPT campaign, and then
reduce the cost to achieve a better tradeoff as well.

V. PERFORMANCE OF THE COMPETITIVE
STRATEGY PROFILE
In the previous section, we derived a necessity system for
seeking the competitive strategy profile of a DCSR∗ game.

Algorithm 3 RAS
Input:
DCSR∗ game G =

(
N ,D, α, α, γ , γ , φ,ψ,E(0),w,T

)
.

Output: a DA strategy x.
1: for i = 1 to N do
2: for t = 0 to T do
3: choose a random value δ ∈

[
αi, αi

]
;

4: αi(t)← δ;
5: end for
6: end for
7: return x.

In this section, we are going to evaluate the performance
of the competitive strategy profile through computer exper-
iments. Let (x∗, y∗) be the competitive strategy profile of a
DCSR∗ game. For our purpose, we generate a set of 100 fea-
sible DA strategies by executing algorithm 3 (the RAS
algorithm, where RAS stands for random attack strategy)
100 times, denoted Xrand = {x1, · · · , x100}, and a set
of 100 feasible DR strategies by executing algorithm 4 (the
RRS algorithm, where RRS stands for random recovery strat-
egy) 100 times, denoted Yrand = {y1, · · · , y100}.
Experiment 1: Consider the two DCSR∗ games given in

Example 1. Fig. 6 shows the comparative results. It can be
seen from these results that for either of the two games,
we have
(1) UA(x∗, y∗) > UA(x, y∗), x ∈ Xrand,
(2) UD(x∗, y∗) < UD(x∗, y), y ∈ Yrand,
(3) UD(x∗, y∗) > UD(x, y∗), x ∈ Xrand.
Experiment 2: Consider the two DCSR∗ games given in

Example 2. Fig. 7 shows the comparative results. Again, it can
be seen from these results that for either of the two games,
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FIGURE 6. The performances of the competitive strategy profiles in Experiment 1, where (a)-(c) are for the DCSR∗ game G1,
(d)-(f) are for the DCSR∗ game G2.

Algorithm 4 RRS
Input:
DCSR∗ game G =

(
N ,D, α, α, γ , γ , φ,ψ,E(0),w,T

)
.

Output: a DR strategy y.
1: for i = 1 to N do
2: for t = 0 to T do
3: choose a random value δ ∈

[
γi, γi

]
;

4: γi(t)← δ;
5: end for
6: end for
7: return y.

we have
(1) UA(x∗, y∗) > UA(x, y∗), x ∈ Xrand,
(2) UD(x∗, y∗) < UD(x∗, y), y ∈ Yrand,
(3) UD(x∗, y∗) > UD(x, y∗), x ∈ Xrand.
Now let us take a few minutes to discuss the above experi-

ment results in detail as follows.
First, Experiment 1(1)-(2) and Experiment 2(1)-(2) are

in accordance with the definition of Nash equilibrium
(Definition 2), which means that for a given DCSR∗ game,
the DA strategy and DR strategy in the competitive strategy
profile are respectively optimal for the APT attacker and the
cloud defender under the Nash equilibrium solution concept.
Therefore, from the worst-case perspective, we recommend
to the cloud defender the DR strategy in the competitive
strategy profile.

Second, in this paper, we solve the DCSR problem in
the worst-case situation where the cloud defender assumes
that the APT attacker has full knowledge of his expected
loss. However, in practice, due to the lack of information or
bounded rationality, the APT attacker may well be unaware
of the exact form of the cloud defender’s expected loss. In this

context, the attackermay not be able to find theDA strategy in
the competitive strategy profile. As a result, the attacker may
subjectively choose a DA strategy. From Experiment 1(3) and
Experiment 2(3) we can conclude that the APT attacker may
well choose a DA strategy in favor of the cloud defender
(i.e., a lower total loss) when the attacker does not have full
knowledge of the cloud defender’s expected loss, which is an
advantage for the cloud defender to realize the DR strategy in
the competitive strategy profile.

VI. PRACTICABILITY OF OUR WORK
In previous sections, we presented a full framework for
dealing with the DCSR problem. In this section, we briefly
analyze the practicability of our work.

A. SCALABILITY
From a holistic perspective, game theory provides a suitable
framework for modeling a variety of cybersecurity problems.
In a cybersecurity game, the main task of the defender is to
seek an equilibrium (Nash, Stackelberg, etc.) of the game.
Though classical works provide rich mathematical founda-
tions and equilibrium concepts, searching the admissible set
of strategies for an equilibrium will become extremely dif-
ficult with the increasing scale and complexity of the target
system. Computational game theory aims at addressing such
algorithmic issues, and different algorithms were proposed to
tackle complex cybersecurity game problems.

Despite the advancement of application of computational
game theory to cybersecurity domain, the curse of dimension-
ality is still a stumbling block for dealing with many cyber-
security games. In truth, the main difficulty comes from the
process of finding the equilibrium of a cybersecurity game.
In most cases, the algorithms (learning, uphill/downhill, etc.)
executed by the defender start from some initial points in
the admissible set of strategies and then search the set for
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FIGURE 7. The performances of the competitive strategy profiles in Experiment 2, where (a)-(c) are for the DCSR∗ game G3,
(d)-(f) are for the DCSR∗ game G4.

an equilibrium according to some basic rules. Due to the
lack of knowledge of the form of the equilibrium, the time
cost of some of these algorithms may become prohibitive
quite quickly with the increasing scale of the target system.
Consequently, the scalability of some of these algorithms is
questionable.

In our work, the necessity system provides guidance for
the defender to search the admissible set of strategies for
the competitive strategy profile. In fact, the necessity system
shows the specific form that the competitive strategy profile
must satisfy. As a result, the time cost is much lower than
that of the above mentioned algorithms. Therefore, our work
delivers superior scalability, making it a good solution to the
DCSR problem.

B. FEASIBILITY
In this subsection, we discuss the potential of applying a
DCSR∗ game model to solve the real-world DCSR problem.

In practice, it is important to determine the model param-
eters. The parameters related to the APT attacker can be
estimated by the cloud defender. Specifically, by conducting
repeated APT attack-defense manoeuvres, the cloud defender
can generate amass of data. On this basis, the attack lower and
upper bound vectors can be estimated by statistical analysis of
the generated data, and the attack cost function vector can be
approximated by fitting the generated data. The other parame-
ters are controllable by the cloud defender. That is, the recov-
ery lower and upper bound vectors are determined by the
security requirement and budget, the recovery cost function
vector is configuredmanually, the initial CSS’s expected state
can be estimated by some provenAPT detection tools, and the
loss coefficient is dependent on the value of the data stored in
the CSS which is typically known to the cloud defender.

To solve a real-world DCSR problem, the cloud defender
needs to take the following two steps.

• Step 1: At time t = 0, estimate/configure model param-
eters, numerically solve the necessity system to obtain
the competitive strategy profile (x∗, y∗).

• Step 2: During the time horizon (0,T ], allocate the
security resources to recover the CSS in accordance with
the DR strategy y∗ obtained in Step 1.

In practice, the cloud defender can repeat the above pro-
cedure so that he can defend against APT in a long time
span, though our work is restricted to the time horizon [0,T ].
In addition, this procedure can be executed in a relatively flex-
ible fashion. Specifically, on the one hand, a larger T means
a lower frequency of re-estimation of the model parameters,
which reduces the overheads for re-estimation works. Never-
theless, the behavior of the game model may deviate from the
real scenario, resulting in insufficient DR strategies. On the
other hand, a smaller T means the model parameters will be
re-estimated more frequently, which will inevitably increase
the overheads, though it helps to guarantee the accuracy of the
behavior of the game model. Consequently, by dynamically
adjusting T , the cloud defender may achieve a better balance
in the course of dealing with a real-world DCSR problem.

VII. CONCLUSION
This paper has addressed the problem of finding an effec-
tive dynamic recovery (DR) strategy to mitigate the cloud
defender’s total loss under an identified APT campaign,
which we refer to as the dynamic cloud storage recov-
ery (DCSR) problem. Based on an expected state evo-
lution model, the APT attacker’s net benefit and the
cloud defender’s total loss have been measured. From the
worst-case point of view, the DCSR problem has been
reduced to a differential game-theoretic problem (the DCSR∗

problem), in which the ultimate goal of the cloud defender is
to seek a Nash equilibrium strategy profile. A necessity sys-
tem has been derived and the concept of competitive strategy
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profile has been introduced. The structural properties of the
competitive strategy profile have been examined. Extensive
comparative experiments have shown that the competitive
strategy profile outperforms a large number of randomly gen-
erated strategy profiles. Finally, the practicability (scalability
and feasibility) of this work has been analyzed briefly.

There are some problems to be solved. In practice,
the APT attacker may well have only partial informa-
tion about the cloud defender’s expected loss. Hence,
the DCSR problem can be addressed by using Bayesian
game approach [50], [51]. In addition, this work is based on
expected utility theory (EUT), in which the players choose
their strategies to optimize their expected utilities. In the
situation in which the players with bounded rationality may
suffer the deviations of decisions from EUT-based results,
the prospect theory (PT) can be used to deal with the DCSR
problem [52]. The challenge of an APT campaign is escalated
when it is facilitated by the insiders, which often have privi-
leged access to the CSS and could trade valuable data to the
APT attacker for financial benefits [53], [54]. In this context,
the interaction among the cloud defender, the APT attacker,
and the insiders should be judiciously studied to find an effec-
tive recovery strategy. Moreover, with the development of
mobility, it is worthwhile to protect mobile cloud computing
from the APTs [55], [56].
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