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ABSTRACT The deep convolutional neural networks (DCNN) require large number of training data to
avoid overfitting, which makes it unsuitable for processing small-scale image datasets. The transfer learning
using DCNN (TCNN) reuses pre-trained layers to generate a mid-level image representation so that the
optimization of more than millions CNN parameters can be avoided. By this way, overfitting problem in
small-scale data can be alleviated. However, although now many public DCNNs have been trained and
can be reused, the existing TCNNs are formed by only a single pre-trained DCNN structure and cannot
make full use of multiple structures of pre-trained DCNNs. At the same time, the existing ensemble CNNs
have not enough good representation ability. To address this problem, we combine the conventional ideas of
ensemble CNNs and propose three ensemble TCNNs (TECNN). They are the voting method based on the
combination of all TCNNs, the PickOver method by finding the optimal combination, and weighted method
by finding weighted combination. Different from the existing ensemble CNNs, the proposed methods do not
need to retrain the component CNNs and generate ensemble transferring representations by transferring the
pre-trained mid-level parameters. The mathematical models of those three methods are also provided. Their
versions of using fine-tuning are also compared in the experiments. In addition, we replace the Softmax
classifier with ensemble linear classifiers in the full-connection layer. They outperform the current state
of the art algorithms on Caltech ImageNet and some internet image data. All this research has released
as an open source library called Transferring Image Ensemble Representations using Deep Convolutional
Neural Networks (TECNN). The source codes and relevant datasets in different versions are available from:
http://www.cquptshuyinxia.com/TECNN.html.

INDEX TERMS Convolutional neural networks, deep CNN, transferring CNN, transferring Learning.

I. INTRODUCTION
The object recognition represents an important part of the
computer vision. Recently, the robust image descriptors
have been developed significantly, such as SIFT [1] and
HOG [2], bag of features image representations [3]–[6],
deformable part models [7] and deep convolutional neural
networks (DCNNs). An enabling factor is the development of
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increasingly large and realistic image datasets, providing an
object annotation for training and testing, e.g. Caltech256 [8],
Pascal VOC [9] and ImageNet [10]. The CNNs are
high-capacity classifiers with a very large number of param-
eters that need to be optimized during the training process.
CNNs have a long history in visual recognition and exhibit
record-shattering results in computer vision [11], [12], image
translations [13], optical character recognition [14]–[16]
and many other various fields [17]–[21]. The early CNNs’
performance was limited by a relatively small size of the
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standard object recognition datasets. However, this limitation
has changed due to the appearance of the large-scale Ima-
geNet dataset [10] and enhancement of the GPU computing
power. Krizhevsky et al. achieved a performance leap in
the image classification on the ImageNet 2012 Large-Scale
Visual Recognition Challenge (ILSVRC-2012). They further
improved the network performance by training with 15 mil-
lion images and 22,000 ImageNet classes [22]. According to
their works, a thorough evaluation of networks is made in
terms of depth incensement by using an architecture with very
small (3x3) convolution filters [23]. In addition, a significant
improvement of the prior art configurations can be achieved
by increasing of the depth to 16-19 layers. Although this
result is promising and exciting, it is also worrisome as mil-
lions of annotated images are required to be collected for each
visual recognition task. Namely, collection of a large corpus
of annotated data to train the CNNs is nearly impossible in
real applications, such as the robotics applications [24] and
customized categories of applications [25]. In other words,
the DCNN offers a large representation space and is very
easy to lead to overfitting in processing small-scale datasets.
Although the shallow CNNs including the ensemble CNNs
can avoid overfitting in the processing of small-scale datasets,
it suffers from poor representation ability due to the small
number of parameters and layers.

To take advantage of the good representation ability of
the DCNN and prevent overfitting by avoiding training too
much parameters, researchers have studied the transfer image
representations of DCNNs for visual recognition tasks with
small sample size. Instead of directly training CNN for a spe-
cific task with a small-scale dataset, Oquab et al. designed a
method that reuses the intermediate layers of a DCNN trained
on the ImageNet dataset to generate a mid-level image repre-
sentation of images in the PASCAL VOC dataset [26]. This
transferred representation can significantly enhance classifi-
cation accuracy in visual recognitions tasks with small sam-
ple size, such as [27]–[32]. However, the mentioned works
almost used only one single pre-trained DCNN structure
althoughmany pre-trained DCNNs can be efficiently used for
transfer learning.

To make full use of the existing pre-trained DCNNs,
we propose here three methods to integrate multiple
pre-trained DCNNs by introducing the ensemble methods of
conventional CNNs.

The contributions of this paper are threefold as
follows.

1) We introduce conventional ideas of ensemble CNNs
into TCNNs and propose three ensemble TCNNs (TECNNs).
They are the voting method based on the combination of all
TCNNs, the PickOver method by finding the optimal combi-
nation, and weighted method by finding weighted combina-
tion. Different from the existing ensemble CNNs in which
the component CNNs are retrained, the proposed methods
do not need to retrain the component DCNNs and generate
ensemble transferring representations by transferring the pre-
trained mid-level parameters.

2) Their versions of using fine-tuning are also compared
in the experiments, and the fine-tuning versions achieve a
higher generalizability by using the ‘‘root mean square prop’’
method to fine-tune the last full-connected layer.

3) Except the ensemble method in the pre-trained DCNNs,
we replace the Softmax classifier with ensemble linear clas-
sifiers in the full-connection layer, and the proposed methods
achieve better performance on some datasets.

II. RELATED WORK
A. TRANSFERRING DCNN
The key idea of the existing transfer learning DCNN (TCNN)
is that the internal layers of the CNN act as the extractors
of a mid-level image representation. They can be hence
pre-trained with the source dataset and then reused for other
target tasks, as shown in Fig. 1 [26]. First, a network is
trained on the source task (e.g. the ImageNet classification,
top row) with a large amount of available labelled images.
Then, the pre-trained parameters of the internal layers of the
network (C1-FC7) are transferred to the target tasks (bottom
row). To compensate different image statistics, e.g., objects
types, typical viewpoints and imaging conditions, of the
source and target data, an adaptation layer (fully connected
layers FC1) is introduced and trained on the labelled data
of the target task [26]. The TCNN has been widely used
in various fields [33]–[35]. By transferring the pre-trained
parameters of the internal layers, the TCNN is not required
to train too many parameters and has deep representation
ability. As a result, the TCNN not only exhibits outstanding
representation ability of the deep CNN, but also alleviates
overfitting for the DCNN process of small-scale datasets.

FIGURE 1. CNN Transferring parameters [26].

B. ENSEMBLE NEURAL NETWORK
Neural network ensemble is a learning strategy in which a
limited number of neural networks receive the same task
training [36]. It was derived from the work of Hansen and
Salamon [37]. In general, two steps are required to con-
struct a neural network integration including training a few
component neural networks and combining them. The gen-
eralizability of the neural network system can be signifi-
cantly improved by combining a series of neural networks.
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This technology recently has become very popular in neu-
ral networks and machine learning community [38]. It has
been successfully applied to various fields, such as the
face recognition [39]–[41], medical diagnosis [42], image
retrieval [43], [39] pedestrian detection [44], biological infor-
mation processing [45] and medication safety [46]. Bagging
and Boosting represent the most popular methods for training
the component neural networks. The Bagging is based on the
bootstrap sampling proposed by Breiman [47], [48] which
generates several training sets from the original training
set and then trains component neural networks from them.
The Boosting was first proposed by Schapire [49] and then
improved by Freund [50], Freund and Schapire [51], which
produces a series of neural networks.

There are many other methods for training component
neural networks. Hampshire and Waibel [52] use different
target functions to train different neural networks. Liu [39]
trains the network of components for different amounts of
hidden units. Maclin and Shavlik [53] initialize component
networks in different positions in the weight space. Krogh
and Vedelsby [54] use cross-validation to create a component
network. Opitz and Shavlik [55] use genetic algorithms to
train different knowledge-based component networks. Yao
and Liu [56] see all the individuals in the neural networks
of evolution as component networks.

The most popular methods are plurality voting or majority
voting [20] for classification tasks, simple average [57] or
weighted average [58] for regression tasks. Wolpert [59]
combine the learning system into component neural net-
works. Merz and Pazzani [60] use the principal component
regression to determine the appropriate constraints of compo-
nent network weights and combine them. Jimenez [61] uses
dynamic weights that are determined by the confidence of the
component networks to combine them. Ueda [62] uses the
optimal linear weighting to combine the component neural
networks based on the statistical pattern recognition theory.
There are someways to use neural networks to complete tasks
in the style of divide-and-conquer [63]–[65].

Currently, however, few ensemble TCNNs are studied.
Those existing ensemble CNNs are designed to retrain and
integrate the CNN classifiers including a large number of
parameters, leading to overfitting in small-scale datasets.
In contrast, the TECNNs are not required to retrain a large
number of parameters in the convolutional layers and can
reuse several types of TCNNs. In this paper, we introduce
three ensemble DCNN methods for transferring learning and
verify their performance.

III. TRANSFERRING ENSEMBLE REPRESENTATIONS
USING DEEP CONVOLUTIONAL NEURAL NETWORKS
A. THE FRAMEWORK OF TRANSFERRING IMAGE
ENSEMBLE REPRESENTATIONS USING DEEP CNN (TECNN)
Fig. 2 shows the Framework of the Transferring Image
Ensemble Representations using Deep CNN (TECNN). This
framework is constituted of several pre-trained DCNNs, each

FIGURE 2. Transferring Image Ensemble Representations using DCNNs.

TABLE 1. Symbols used.

of which has a corresponding TCNN. The TECNN is consti-
tuted of several TCNNs. Each convolutional layer of TCNN is
generated by transferring the convolutional layers of the cor-
responded pre-trainedDCNNs to the newDCNN. In addition,
new adaptation layers are added into each TCNN and need
to be retrained to compensate for different image statistics
(type of objects, typical viewpoints, imaging conditions) of
the source and target data. Moreover, an ensemble layer is
added to integrate the results of the outputs of those TCNNs.
More details and the mathematical model will be presented
in Sec. 3.2.

B. CLASSIFICATION MODEL
Table 1 lists the symbols.

Take the binary classification problem as an example.
A sample is labeled with +1 or −1. The loss function of the
voting TECNN method can be expressed as follows:

argmin
n∑
j=1

∑
wi

vi∈[0,1],
i∈{1..,N },

{
((f (xj,wi,TCNNi)− yj)2

}
(1)

The decision function of this method is expressed as
follows:

f̂ (x) = sign(
∑

(label(f (xj,wi,TCNNi))− yj)), (2)
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where sign(x) is a function described as follows:

sign(x) =

{
1, if x > 0
1, if x <= 0

To optimize (1), each TCNN needs to be trained. In (2),
the sign(.) function’s value of the sum of the output labels of
a sample in all TCNNs is considered as its predicted value
when the voting TECNN method is used.

argmin
n∑
j=1

∑
wi

vi∈[0,1],
i∈{1..,N },

 ((f (xj,wi,TCNNi)− yj)2

+ |sign(vi ∗ label(f (xj,wi,TCNNi))
−yj))

,

(3)

where label (f (xj, wi, TCNNi)) denotes the validation label of
xj in the i-th TCNNi. The loss function in (3) is constituted
with two parts. In (3), the first half is first optimized and
the second is then done. Consequently, the whole loss of (3)
can be minimized. The first half denotes the loss function of
each TCNN, so each TCNN should be optimized on their
corresponding source dataset. The second half denotes the
difference of combination output labels of the combination
TCNNs and the true label. By optimizing the values of vi,
the value of which is set to 0 or 1, the candidate TCNNs are
selected for ensemble.

In (3), some output probability values are lost in the ensem-
ble process of labels. For example, the output probability
values of a sample are respectively 0.7 and 0.4 in two TCNNs,
so its labels are respectively 1 and−1 in binary classification
problems. The ensemble results of the sample in the two
TCNNs in (3) is equal to 0. If the output probability values
of the sample are changed to be respectively 0.9 and 0.4,
its ensemble result is the same with the above. Therefore,
some output probability values are lost. Thus, (4) replaces
the output label with the output probability value in the loss
goal of (3). In addition, to show the different importance,
in the third method, the test accuracy of a single TCNN is
used as its weight to measure its importance in the ensemble
representations. Therefore, (3) can be transformed into (4) as
follows:

argmin
n∑
j=1

∑
wi

vi∈[0,1],
i∈{1..,N },

 ((f (xj,wi,TCNNi)− yj)2

+PAi ∗ |sign(vi ∗ (f (xj,wi,TCNNi)
−yj))|

,

(4)

where PAi denotes the validation accuracy of the i-th trans-
ferred TCNNi.

C. ALGORITHM DESIGN
To implement model (1), (2) and (3), three algorithms have
been designed as Table 2, Table3 and Table 4.

TABLE 2. Training learning of the voting method.

TABLE 3. Training learning of the PickOver.

TABLE 4. Training learning of the weighted method.

D. FINE-TUNING ENSEMBLE METHODS
In Sections III. A, B, C, the fine-tuning mechanism in
pre-trained DCNNs is not used. Using the fine-tuning mech-
anism is good for improving the generalizability of TDCNN.
However, it is easy to lead to overfitting in small-scale
data sets if too much layers are fine-tuned. To utilize the
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advantage of the fine-tuning mechanism, at the same time,
and optimize as few parameters as possible in the fine-tuning
process, the last full-connected layer is fine-tuned by using
the ‘‘root mean square prop’’ method. The ‘‘root mean square
prop’’ method is proposed by Geoff Hinton in the Coursera.
Although it is not published, it has been widely used in
various fields. The weights of convolutional layers are fixed
in this paper. The fine-turned version of Algorithm 1, 2, 3 are
separately named by putting ‘‘+’’ after these letters.

E. USING VARIOUS LINEAR CLASSIFERS IN THE
FULL-CONNECTION LAYER
The Softmax classifier is a common linear classifier in the
full-connection layer, and some other classifiers are used
to replace the Softmax classifier, such as SVM [65]. Few
studies use the ensemble classifiers in the full-connection
layer. In this paper, we will use the ensemble linear classi-
fiers to achieve better classification generalizability. Sign(.)
function’s value of the sum of the output value of a sample
in all TCNNs is considered as the output value of the sample,
and its decision function can be expressed as follows:

f̂ (x) = sign(
∑

(f (xj,wi,TCNNi)− yj))

IV. EXPERIMENTS
In this section we first describe details of the pre-trained
CNNs. Next, we show the experimental results of the pro-
posed transfer learning method on different datasets collected
from the Google, Baidu’s picture library and Caltech. More-
over, to demonstrate the superior efficiency of the proposed
algorithms, we compare them with the TCNN method [26]
and CNNs. The structure of the compared CNNs is set as
follows. The size of the network inputs is 224 × 224 ×
3 pixels. As the training set is not large, the structure only
contains three convolutional layers. The full architecture
corresponds to C(32,3,3)-R-P-C(32,3,3)-R-P-C(64,3,3)-R-P-
FC(2048)-R-Dropout(0.5)-FC(48)-R-Dropout (0.5), where
C(d,f,s) represents a convolutional layer with d filters with
spatial size of f × f, applied to the input with strides. Here,
FC(n) is a fully connected layer with n nodes, and theDropout
layer is used to alleviate the overfitting.Moreover, R indicates
the activation layer using the RELU function. All pooling
layers P pool spatially in non-overlapping 2× 2 regions. The
final layer is connected to a Softmax classifier with dense
connections.

The experiments have been performed on a standalone
desktop computer, configured as follows.We use a CPU from
Intel Core i5-4460 3.20GHz CPU, 8.00GB RAM, 465GB
hard drive; 64-bit Windows10 Enterprise Edition operating
system, 64-bit Windows version of python3. 5.2, and Jet-
Brains PyCharmCommunity Edition 2016.2 as the compiling
software. The other parameters are same as the default system
configuration.

FIGURE 3. Some of the images in the data set. (a) ass, (b) horse,
(c) cervus Nippon, (d) Bactrian camel, (e) giraffe, (f) sheep.

TABLE 5. Data sets details from Google and Baidu’s picture library.

A. PRE-TRAINED CNNs
We have used five pre-trained DCNNs based on the
Keras framework, namely VGG16 [23], VGG19 [23],
ResNet50 [66], InceptionV3 [67], and Xception [68]. Their
structures have been trained by using the dataset ImageNet.
The five per-trained models are combined with the trans-
fer learning methods in [26] and named as TCNN_VGG16,
TCNN_VGG19, TCNN_ResNet50, TCNN_InceptionV3 and
TCNN_Xception, respectively. In all experiments, to stabilize
the performance analysis of the compared algorithms, the test
accuracy is achieved by averaging over 10 times. In each time,
80% samples are randomly selected from each dataset as the
training set, and the remaining 20% as the test set. We have
also used TensorFlow as the backend, where the parameters
are set as the default values. The target objects in our datasets
are not contained in the training dataset of the pre-trained
DCNNs. So, the transferring representation ability of those
algorithms can be checked.

B. IMAGE CLASSIFICATION ON INTERNET DATA
The experimental data sets have been randomly achieved
from the Google and Baidu’s picture library. There are six
classes of picture data, each of which is composed 130 pic-
tures. They include ass, horse, cervus nippon, bimodal camel,
giraffe and sheep. Fig. 3 shows the experimental data. Each
dataset is constituted of two classes, with 260 pictures in each
class. Table 5 lists the experimental datasets. These datasets
are available in http://pan.baidu.com/s/1mihu564.

The experimental results of all algorithms on all data sets
are shown in Fig. 4. The DCNN has good representation
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FIGURE 4. The comparison of test accuracy on different algorithms.

TABLE 6. Comparisons of test accuracy between different algorithms on
the 12 data sets from internet.

TABLE 7. Comparisons of test accuracy between traditional transferred
and ensemble transferred algorithms on the 12 Data Sets from Internet.

ability to describe an image; by contrast, the representa-
tion ability of CNNs is lower than the ability of DCNNs.
Therefore, the transfer learning algorithms weighted method,
PickOver method, voting method, TCNNVGG16, TCN-
NVGG19 and TCNNResNet50 exhibit higher test accuracy
than the original CNN algorithm in most cases.

The proposed PickOver and Weighted methods present
higher test accuracy than the CNN on all those datasets.
InceptionV3 and Xception always exhibit the lowest accu-
racy. It indicates that these two TCNNs have not good
transferring learning ability because of their relatively small
original training data sets or simple structure or bad structure
design. In addition, by integrating different TCNNs, Voting,
PickOver andWeighted exhibit an obviously higher test accu-
racy than other TCNN algorithms.

Tables 6 and 7 provide the detail data, and the bold-
face is corresponded with the highest accuracy. As shown
in Tables 6 and 7, it has the highest accuracy advantage
when compared with other TCNN algorithms on the data2,

TABLE 8. Comparisons of average test accuracy between different
algorithms.

TABLE 9. Comparisons of test accuracy between traditional algorithms
and fine-tuning ensemble transferred algorithms.

TABLE 10. Comparisons of test accuracy between traditional algorithms
and fine-tuning ensemble transferred algorithms.

TABLE 11. Comparisons of average test accuracy between traditional
algorithms and fine-tuning ensemble transferred algorithms.

i.e.1.73% higher than the most effective TCNN algorithm
(i.e. VGG16) on data2.

Table 8 presents the average accuracies of the nine algo-
rithms which are computed from Tables 6 and 7. As shown
in Table 8, the proposed TECNNs have higher test accuracies
than other algorithms, where the PickOver is the best. The
average test accuracy provided by the PickOver is 9.55%
higher than the CNN and 1.65%higher than themost effective
TCNN algorithm (i.e. VGG16) in the experiments.

Tables 9-11 present the results of both the fine-tuning
DCNNs and their TECNNs. Table 11 shows the average
accuracies. Similar with the TECNNs that does not use fine-
tuning, the PickOver exhibits the best performance in aver-
age. The voting and weighted methods can also achieve better
performance on some cases.
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TABLE 12. Comparisons of average test accuracy between from internet.

TABLE 13. Comparisons of average test accuracy between from internet.

TABLE 14. The experimental results on comparison methods.

Tables 12-13 show the comparison between the two meth-
ods of using fine-tuning and not using fine-tuning. The fine-
tuning methods are suffixed with ‘‘+’’. It can be observed
that the VGG16+, VGG19+ and Resnet50+ exhibit higher
accuracies than the versions of not using fine-tuning on all
datasets. The inceptionV3+ and Xception + achieve higher
accuracies on part of datasets. In average, the fine-tuning
methods exhibit higher generalizability than the version of
not using fine-tuning. However, fine-tuning may lead to over-
fitting to an extent, so as shown in Table 13, the methods of
fine-tuning have lower accuracies on few cases. That indi-
cates the generalizability may be decreased. Table 14 com-
pare the performance between methods of using different
linear classifiers in the full-connection layer. T_SM uses the
Softmax classifier in the full-connection layer, and T_SVM
uses the SVM. T_SM_SVM combines the Softmax and
SVM. It can be observed from Table 14 that, T_SVM and
T_SM_SVM can achieve higher accuracy than the T_SM on
some cases.

C. IMAGE CLASSIFICATION ON CALTECH
These experimental datasets are randomly selected from
the image dataset Caltech256. The datasets are constituted

TABLE 15. Data sets selected from the caltec.

FIGURE 5. The comparison of test accuracy on different algorithms.

of 17 classes of pictures, and each class contains 130 pictures.
Each dataset is constituted of two classes of pictures with
260 pictures. Table 15 provides the specific information of
those datasets.

Fig. 5 presents the experimental results. Similar with
Fig. 4, our proposed algorithms and other TCNN algorithms,
TCNNVGG16, TCNNVGG19 and TCNNResNet50, exhibit
higher test accuracies than the conventional CNN on most of
the datasets except data2, data9 and data 10. The weighted
method presents higher test accuracy than the conventional
CNNs on all datasets only except data9. In addition, the TEC-
NNs have higher test accuracies than the TCNN algorithms.
Different from the case in Fig. 3, the weighted method
almost has the highest test accuracy instead of the PickOver
method. It shows that the proposed three TECNN algorithms
have different ensemble advantages for different datasets.
Tables 16 and 17 provide details. The boldface corresponds
to the highest accuracy of the algorithms. Table 18 provides
the average accuracies of the nine algorithms achieved from
Tables 16 and 17. As shown in Table 18, the proposed three
TECNNs have higher test accuracies than other algorithms,
where the weighted method is the best. The proposed Pick-
Over provides 5.85% higher accuracy than the most effective
TCNN algorithm, TCNNVGG19.

The PickOver and Weighted methods have the similar
mechanism to find the best combination of TECNNs. So,
they present almost the same performance on many datasets.
Despite of this, they exhibit different performance on some
datasets, such as the experimental results in Table 16 and 17.

It can be observed from Tables 19, 20, 21 that, similar with
the experimental results in Tables 9, 10, 11, the PickOver
exhibits the best performance in comparison with other meth-
ods. The voting and weighted methods can achieve better
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TABLE 16. Comparisons of test accuracy between different algorithms.

TABLE 17. Comparisons of test accuracy between different algorithms.

TABLE 18. Comparisons of average test accuracy between different
algorithms.

TABLE 19. Comparisons of test accuracy between traditional algorithms
and fine-tuning ensemble transferred algorithms.

performance on some cases. Tables 22, 23 show that the
T_SVM exhibits the highest classification accuracy than
other two methods. Tables 24, 25 show that the fine-tuning
methods achieve better generalizability; at the same time,
fine-tuning may lead to overfitting on some cases, so clas-
sification accuracy is decreased.

D. IMAGE CLASSIFICATION ON ImageNet
In this section, to generate small data sets, two classes
of data are randomly selected from the latest ImageNet
to form each dataset, where the ImageNet is available at:
http://www.image-net.org. The content of the ImageNet is
continuously updated, and the generated datasets used in this
section are not included in the original trained datasets for

TABLE 20. Comparisons of test accuracy between traditional algorithms
and fine-tuning ensemble transferred algorithms.

TABLE 21. Comparisons of average test accuracy between traditional
algorithms and fine-tuning ensemble transferred algorithms.

TABLE 22. Comparisons of test accuracy between traditional algorithms
and fine-tuning ensemble transferred algorithms.

TABLE 23. Comparisons of average test accuracy between traditional
algorithms and fine-tuning ensemble transferred algorithms.

TABLE 24. Comparisons of average test accuracy between methods of
using fine-tuning and not using fine-tuning.

the five TCNNs, which are trained by the 2014 version of
ImageNet. Therefore, the original datasets and target datasets
are different. Table 26 lists these datasets. Similar with the
experiments, to generate small-scale datasets, each class con-
tains 130 images that are randomly selected, and each dataset
is formed by 260 images. Moreover, 80% of each dataset, i.e.
208, were used for training, and the remaining 20%were used
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TABLE 25. Comparisons of average test accuracy between methods of
using fine-tuning and not using fine-tuning.

TABLE 26. Experimental data sets from imagenet.

FIGURE 6. The comparison of test accuracy on different algorithms.

TABLE 27. Comparisons of test accuracy between different algorithms.

for the test. The training structure of the CNN is the same as
the previous.

Fig. 6 presents the experimental results. It can be seen that
the proposed algorithms and other TCNN algorithms, i.e.,
TCNNVGG16, TCNNVGG19 and TCNNResNet50, have
higher test accuracies than the conventional CNNs on most
datasets except data8. The test accuracies of the proposed
TECNNs are higher than the conventional CNNs on all

TABLE 28. Comparisons of test accuracy between different algorithms.

TABLE 29. Comparisons of average test accuracy.

TABLE 30. Comparisons of test accuracy between traditional algorithms
and fine-tuning ensemble transferred algorithms.

TABLE 31. Comparisons of test accuracy between traditional algorithms
and fine-tuning ensemble transferred algorithms.

TABLE 32. Comparisons of average test accuracy between traditional
algorithms and fine-tuning ensemble transferred algorithms.

datasets. In addition, the proposed TECNNs provide higher
test accuracies than the TCNNs.

Tables 27 and 28 provide the details. Table 29, derived
from Tables 27 and 28, presents the average accuracies of the
eight algorithms. As shown in Table 29, the proposed three
TECNNs have higher test accuracies than other algorithms,
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TABLE 33. Comparisons of test accuracy between traditional algorithms
and fine-tuning ensemble transferred algorithms.

TABLE 34. Comparisons of average test accuracy between traditional
algorithms and fine-tuning ensemble transferred algorithms on the
12 data sets from ImageNet.

TABLE 35. Comparisons of average test accuracy between methods of
using fine-tuning and not using fine-tuning.

TABLE 36. Comparisons of average test accuracy between methods of
using fine-tuning and not using fine-tuning.

in which the voting method is the best. In particular, the pro-
posed voting method provide 0.85% higher accuracy than
other most effective TCNN algorithm (i.e. TCNN_VGG19)
in this experiment. As shown in Tables 27 and 28, the pro-
posed weighted method presents the highest accuracy in
comparison with other TCNN algorithms on the data6,
i.e. 5% higher than the most effective TCNN algorithm
TCNN_VGG16 on data12.

Similar with the experimental results, Tables 30, 31, 32 still
exhibit better generalizability of the PickOver in comparison
with other methods. Tables 33-34 show that the T_SM has the
highest classification accuracy in these ImageNet datasets.
As shown in Tables 35-36, different from the experimental

results on the Caltech, the two TCNNs, i.e. InceptionV3 and
Xception, exhibit higher classification accuracy than the ver-
sion of using fine-tuning. It indicates that fine-tuning lead to
obvious overfitting.

V. CONCLUSIONS
Tomake full use of the existing multiple TCNNs and improve
their generalizability, this study proposes three ensemble
TCNNs by introducing the ensemble ideas. The experimen-
tal results show that these TECNNs exhibit better general-
izability than the conventional CNNs and a single TCNN.
In comparison with the CNN and five widely used TCNNs,
the proposed TECNNs enhance the average test accuracy by
1.65%, 5.85% and 7.58% respectively on the internet datasets
and two benchmark small-scale datasets, and the highest test
accuracy by 1.73%, 7.12% and 8.85%.

Due to space limitations, only some common ensemble
methods are combined into the proposed TECNNs. In the
future, we will introduce more ensemble technologies to
achieve better performance.
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