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ABSTRACT An eddy is a circular current of water in the ocean that affects the fields of maritime transport,
ocean data analysis, and so on. Traditional eddy detection methods are based on numerical simulation data
and satellite images and their accuracy is affected greatly by manual threshold adjustment. In this paper,
we present a new eddy detection approach via deep neural networks to improve eddy detection accuracy.
First, we present a streampath-based approach to build a large-scale eddy image dataset from ocean current
data and apply our dataset to eddy detection. Second, by combining the multilayer features in the neural
network with the characteristics of the eddies, we achieve a competitive detection result with an mAP
of 90.64% and an average SDR of 98.91%, which performs better than the previous methods. Third, through
our enhanced eddy visualization approach, we solve the problem that eddies are difficult to detect in the
sparse streampath region.

INDEX TERMS Eddies detection, deep neural network, flow visualization, object detection.

I. INTRODUCTION
The ocean is full of eddies with radii from a few kilometers
to hundreds of kilometers. They have a significant impact
on weather conditions, shipping, marine ecology, multiscale
movements in the ocean, etc. [1]–[3]. Therefore, the detection
and analysis of ocean eddies have great significance and
scientific value.

In the past few decades, researchers have developed several
methods to detect eddies through numerical simulations and
satellite image measurements [4], [5]. These methods are
mainly based on the characteristics of the data for manual
detection. The detection accuracy is greatly affected by the
preset threshold, and the detection result is not intuitive.
It is difficult for nonprofessionals to understand. Recently,
object detection approaches based on deep learning, such
as faster region-based convolutional neural network (Faster
RCNN) [6], you only look once (YOLO) [7] and single shot
detection (SSD) [8], have achieved good results. Although
these approaches can be applied to eddy detection applica-
tions, there is no satisfactory eddy image dataset.

Eddies in satellite images and ocean velocity data are diffi-
cult to identify. The ground truth labeling is also a challenge
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for satellite image data and ocean velocity data. As objects
in the ocean, the eddies are different sizes and shapes. There
may be many small eddies distributed in one area. Detecting
small objects in the image is challenging for these methods.
Thus, eddy detection applications require a feasible dataset
and an improved traditional object detection method.

In this paper, we propose an eddy dataset generation
pipeline and a new approach to automatically detecting
ocean eddies fromflowfield data, so-called streampath-based
region-based convolutional neural networks (SP-RCNN).
The experimental results show that our approach achieves
higher accuracy than previous eddy detection approaches.
We further employ our approach to the visualization of
flow field data, which enhance the display of the eddies
by placing more particles in the eddy domain. Compared
to previous object detection methods, SP-RCNN is more
competitive for small objects and suitable for eddy detection
on streampath-based eddy images. We believe our method
is the first work to apply deep learning techniques to detect
eddies in flow field data.

The main contributions of our work are as follows.
1) We present a streampath approach to transform
flow field data to streampath-based eddy images. Then,
a large labeled dataset is provided for training and eddy
detection verification. 2) We propose a robust region-based
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convolutional neural network for accurate ocean eddy detec-
tion. 3) We propose an iterative approach to enhance the
streampath visualization of the eddies to further improve
the eddy detection accuracy. It is beneficial for humans
to detect the eddy directly on the current streampath
video, and people will not fail to detect unclear streampath
eddies.

The rest of this paper is organized as follows. In Section III,
we present an overview of our approach. We first intro-
duce our streampath transformation process, thenwe describe
the implementation of our eddy detection method and pro-
vide an explanation of our network structure. We also per-
form cross-validation to illustrate the effectiveness of our
approach. Finally, we describe our enhanced methods. Exper-
imental results are shown in Section IV to demonstrate the
practicability and effectiveness of our method.We present the
discussions and conclusions in Section V.

II. RELATED WORKS
In the last decade, researchers have proposed many visualiza-
tion methods based on velocity field data. Arrow plots are the
original method, but they are not intuitive enough. Vatistas [9]
proposed an empirical formula for the tangential velocity that
is better for the observations. Many methods are based on the
extension of this method. Cabral and Leedom [10] proposed
the line integral convolution (LIC), which enables velocity
field data to be better visualized. Recently, Kim and Gunther
proposed a robust reference frame extraction method [11]
based on the Vatistas velocity profile. It uses neural networks
to extract a steady reference frame from a given unsteady 2D
vector field. Under increasing noise and resampling artifacts,
this method is robust on real-world data.

It is difficult for people to extract information directly
from high-dimensional data, but they can identify the velocity
field behavior directly from the picture. There are many
techniques for visualizing ocean data. Grant [12] used
Lagrangian-Eulerian time surfaces to visualize ocean flow
vertical motions. Banesh et al. [13] introduced a visualiz-
ing and tracking mesoscale ocean eddies methods using
contours and moments that illustrated the vortex motion
event intuitively. Williams [14] and Liu [2] visualized
three-dimensional eddy structures to discover the eddies’
physical properties and motion patterns. These methods all
require eddy detection.

Traditional eddy detection methods can be divided into
three categories: 1) methods based on physical parameters;
2) methods based on ocean velocity data; and 3) hybrid
methods. The Okubo-Weiss (OW) [15], [16] method is the
most widely used eddy detection method based on physical
parameters. The parameter is defined as OW = Sn2 + Ss2 −
w2, where Sn and Ss are the normal strain and shear strain,
respectively, andw is the relative vorticity. The eddies usually
exist where the rotation dominates the flow field where OW
is negative. Although this method is widely used to detect
eddies, it still has some limitations [17], [18] in that it is
difficult to determine the optimal threshold, and the physical

parameter derivation process will create noise and increase
the eddy false detection rate.

The most representative methods based on ocean veloc-
ity data are winding-angle (WA) [17] and vector geome-
try (VG) [19] methods. The WA method, which identifies
eddies by a vortex curve, was proposed by Sadarjoen and
Post in 2000. Chaigneau et al. [18] compared OW and WA
methods on the same data from the South Pacific. The results
show that the WA method has a higher success rate than the
OW method, but it requires more computational resources.
The VG method is based entirely on the geometry of velocity
streampaths, which detect eddy centers with four predefined
constraints according to the velocity. These traditional detec-
tion methods are not only complex but also require artificial
parameter adjustment, and the application scope of these
methods is very limited.

Recently, deep learning has been applied to various
research fields and has achieved superior results, some
of which are even beyond human experts. Deep learning
approaches are also widely used in object detection applica-
tions. Since 2014, there have been a series of object detec-
tion methods, such as RCNN [20], Fast RCNN [21], Faster
RCNN [6], and YOLO [7], [22], [23], SSD [8].

RCNN was the first to show that a CNN can lead to a
higher object detection performance than methods based on
histogram oriented gradient (HOG)-like features, but it is rel-
atively slow because it requires a large computational capac-
ity without sharing computations. Fast RCNN was proposed
based on RCNN; instead of feeding each object proposal
to the CNN, it feeds the entire input image to the CNN
to compute a convolutional feature map and then identifies
each object proposal from the convolutional feature map.
Fast RCNN is significantly faster than RCNN in training
and testing sessions, but using selective search to generate
the region proposals is a slow and time consuming process.
To solve this bottleneck, Ren et al. [6] proposed the Faster
RCNN, which introduces region proposal networks to replace
the selective search algorithm to reduce the proposal compu-
tational costs. Further improvements on the object detection
approaches include YOLO and SSD. These approaches are
different from the two-stage detection algorithms seen above
in that they extract feature directly to eliminates the region
proposal process and predict bounding boxes and the class
probabilities of these boxes in a single convolutional network.
Thus, they maintain a fast running speed, and both enable
real-time object detection, but they are struggle with small
objects.

There are also some eddy detection methods based on deep
learning. Lguensat et al. [24] proposed a deep learning-based
architecture for pixel-wise detection and classification of
ocean eddies from the sea surface height (SSH) maps dataset.
Deng et al. [25] trained a vortex identification network that
used an objective vortex definition method [26] to obtain the
labels. Franz et al. [27] developed an eddy identification and
tracking framework with a classification CNN that uses the
sea level anomalies (SLA) dataset.
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FIGURE 1. Workflow of our eddy detection method. (a) The flow field data. (b) The eddy image generated using the streampath transformation
approach. (c) The SP-RCNN architecture. (d) Our predicted eddies. (e) The enhanced eddy image.

III. PROPOSED METHOD
To automatically detect eddies from the flow field data,
we combine the shape feature of the eddies to adopt a deep
CNN model in this work. The results show that our method
achieves excellent performance in eddy detection, which not
only has comparable accuracy to the previous eddy detection
approaches but can directly visualize the results on the image
so that humans can detect eddies without professional knowl-
edge. We further employ our method to visualize the flow
field data and enhance the display of the eddies by placing
more particles in the eddy domain. We believe our method
is the first work to apply deep learning techniques to detect
eddies in flow field data.

The workflow of our eddy detection method is illustrated
in Figure 1. We first process the flow field data in Figure 1(a)
and visualize them to a streampath image to obtain our
initial training dataset Figure 1(b). We extract the feature
maps of the eddy image through the convolution layer of the
SP-RCNN network Figure 1(c) and send the feature maps to
the region proposal network (RPN) to obtain the candidate
region proposal of the eddy image.

Then, we use bounding box regression to obtain the exact
position of the eddy Figure 1(d). In stage (e), we use the detec-
tion results of Figure 1(d) to place more particles in the eddy
domain to enhance the eddies. We feed these enhanced eddy
images to the dataset to make our dataset more robust and
improve the detection accuracy of SP-RCNN. The following
three subsections explain the detailed implementation.

A. STREAMPATH TRANSFORMATION
A high-accuracy eddy detection application requires a
high-quality dataset and a high-performance deep learn-
ing model. However, the performance of the existing
velocity-based eddy detection approach [19] requires fur-
ther improvement in an eddy analysis application. Many
approaches, such as CNN-based image classification and
CNN-based object detection, have the potential to fur-
ther improve eddy detection accuracy. However, the flow

FIGURE 2. A schematic diagram of UV field data from AVISO, the direction
of the blue arrow represents the direction of the speed, and the length
represents the magnitude of the speed.

field data are not like the natural image because image
camera can supply high resolution photography. The res-
olution of the flow field data is limited and they only
include the limited features for training the neural net-
work. AVISO https://www.aviso.altimetry.fr/en/home.html is
the most commonly used flow field data for ocean eddy
detection; it is combined with ocean topography experiment
results and remote sensing satellite information [28], [29].
Figure 2 shows AVISO’s absolute geostrophic velocity
data (UV) including the zonal component (U) and meridian
component (V).

To address these concerns, we present a streampath
transformation approach (SP-Tran) to generate abundant
high-quality ocean eddy images from the flow field data.
Our method is inspired by the work of LIC [10] from the
flow visualization field. Eddy images generated via SP-Tran
include more abundant eddy patterns than raw ocean velocity
data. Moreover, it is easier to label ground truth data com-
pared with the previous approaches because human systems
are sensitive to the eddy pattern. SP-Tran can be formulated
as follows:
dsp(t)
dt
= UV (sp(t), t), sp(0) = sp0, 0 ≤ t ≤ T (1)
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FIGURE 3. The generation process of a streampath image. The blue squares represent particles. The yellow arrow represents the
direction of the current particle. The yellow dot represents a period of time.

where UV is the ocean velocity field data, t is the timestamp,
T is the maximum timestamp, and sp is the function of the
streampath. We use particle motions to simulate the stream-
paths of the velocity field. For a time-varying ocean velocity
field, numerous particles are uniformly released from certain
points at each moment. The particle’s tangential direction at
any point is the same as the ocean velocity value at that point.
The particle position is updated by its tangential direction at
an iteration, as shown in Figure 3. The particle’s life cycle
is T . Every iteration, the particle’s life is reduced by one,
and the particle disappears when the life is 0. After a certain
number of iterations, we can obtain a streampath image for
an ocean velocity data frame.

FIGURE 4. Examples of our dataset, the dark region is land. Inside the red
box in (a) is a regular eddy. Inside the red box in (b) is a merging or
splitting eddy. Inside the yellow box in (c) is a strong current. (d-f) These
images have different density streampaths.

Hence, our training data generation consists of three stages.
1) Generating a streampath image by using the zonal compo-
nent (U) andmeridian component (V) flow field data, the vor-
tex streampath that is composed of particles is considered to
be an eddy, as shown in Figure 4. 2) Using the visualization
results of the first step to crop the eddy images in different
sub-regions to generate our eddy dataset. 3) Labeling this
dataset manually by two professionals, one professional is
responsible for the initial labeling and the other professional

is responsible for correction to prevent mislabeling and to add
missing labels in unclear streampath regions.

We applied SP-Tran to the AVISO and generated a dataset
with a total of 3,500 eddy images. Our dataset includes
many kinds of eddy images, as shown in Figure 4. An eddy
is composed of a vortex streampath. Figure 4(a) shows an
eddy image of a sparse streampath. Figure 4(b) is an eddy
image of a medium density streampath. Figure 4(c) shows a
confusing eddy image; the streampath inside the yellow box
is a strong current, not an eddy. Figure 4(d) presents an eddy
image of a high-density streampath in the eddy region and a
low-density streampath around the eddy region. Figure 4(e)
outlines an eddy image of a low-density streampath in the
eddy region and a high-density streampath around the eddy
region. Figure 4(f) shows an eddy image of a high-density
streampath. We take 64% of our dataset for training, 16% of
our dataset for verification and the remaining 20% is used
for testing. To our knowledge, there is currently no publicly
available eddy image dataset based on ocean velocity field
data. We have established a relatively more sufficient dataset,
and our dataset will be published for future research. We will
continue enriching our dataset in the future.

B. SP-RCNN
Inspired by the works of Ren et al. [6] and
Szegedy et al. [30]–[32], we present a deep convolution
neural networkmodel, called SP-RCNN, to identify the shape
feature of the eddies. Figure 5 shows an illustration of our
SP-RCNN architecture. First, we input the image that is
labeled with a set of ground truth eddies, and then we use
different convolutional layers to generate feature maps. These
feature maps are sent to the RPN to generate a set of manage-
able candidate eddy region proposals. Last, we concatenate
different feature maps and these proposals to the region of
interest (ROI) pooling layer and output classification and
identification information.

In many previous object detection works, researchers have
simply extracted feature maps from the last convolutional
layer. This is reasonable for many natural scene images but
is not appropriate for eddy detection. Some of the strong
currents, especially meander currents in the Gulf Stream,
as shown in Figure 4(c), have eddy-like features but should
not be considered an eddy [14]. Research shows that the depth
of the network is an important factor for achieving better
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FIGURE 5. The SP-RCNN network architecture. In the orange box, there are different convolutional legends. It takes the image as input and
generates the classification and identification information as output.

results [30]. To detect the eddies more accurately, we use
residual connections for every two convolutional layers to
deepen our network and improve the network performance.
Furthermore, the residual connection can solve the degrada-
tion problem caused by increasing the depth of the network.

In addition, high-quality proposals are critical for the
overall performance of eddy detection. RCNN [20], Fast
RCNN [21] and Faster RCNN [6] are all two-stage detection
methods, which generate region proposals in the first stage
and classify them in the second stage. Although these meth-
ods have achieved good performance in object detection, they
focus less on the quality of the region proposals generated in
the first stage. For example, some of the eddies, especially
very small eddies with a diameter of less than 100 km, are eas-
ily missed in the proposal stage. As a result, these eddies will
not be detected in the detection stage. Therefore, we combine
the RPNwith an inception block to obtainmore eddy features.
Our inception block consists of three convolutional blocks,
as shown in Figure 5. We split a 3*3 convolution layer into
a 1*3 convolution layer and a 3*1 convolution layer, which
extracts features over Conv5_4 feature maps at every sliding
location.

Because there are many currents in the ocean, most of
which are not eddies, filtering out the candidate region pro-
posals is essential for our model. Many eddies are much
smaller than objects in natural scene images. The size of
the reference bounding box has a large impact on the candi-
date region proposals of our model. To make our reference
bounding box more suitable for eddy detection, we con-
sider the multiple shapes and sizes of eddies. We predict
multiple region proposals at each location; the number of
maximum proposals for each location is k. We design four
scales (4,8,16,32) and six aspect ratios (0.2,0.5,0.8,1,1.5,2),
yielding k = 24 reference bounding boxes at every slid-
ing location to prevent missing objects such as very small
eddies.

Additionally, using only the proposals generated by the
RPN easily causes the network to lose some details [33]; thus,

treating the strong current as an eddy and may cause devia-
tion of the predicted object position. Because the low-level
features have less semantic information but the object posi-
tion is accurate, the semantic information of the high-level
features is richer, but the object position is relatively rough.
To solve this issue, we combine the feature maps of mul-
tilayer convolution (Conv3_4, Conv4_4, Conv5_4) of the
VGG19 model [34]. Then, we send these combined feature
maps and the proposals generated by the RPN to the ROI
pooling layer, which will help the classifier distinguish eddies
from various backgrounds with more discriminative features
increase the accuracy of eddy detection.

In our work, the proposal is considered as a foreground
that has an intersection-over-union (IoU) above 0.7 with the
ground truth bounding box, while the proposal that has an
IoU lower than 0.3 with the ground truth bounding box is
considered background. An interval proposal network (IPN)
is our RPN with an inception block. SP-RCNN (SPN) is our
main network with residual blocks and mutilayer features
concatenation. With these definitions, we define the loss
function for an image as follows:

Lspn= Lclsipn+ Llocipn+ Lclsroi+ Llocroi

(2)

{Lclsipn,Lclsroi} =− log[eie′i + (1− ei)(1− e′i)] (3)

{Llocipn,Llocroi} = e′
{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

(4)

where Lspn is our main loss function. Lclsipn and Lclsroi are
the classification loss functions of the IPN and ROI, respec-
tively. Llocipn and Llocroi are the regression loss functions of
the IPN and ROI, respectively. Our regression loss function is
a robust L1 loss. ei is the predicted probability of proposal i
as an object. e′i is the ground truth label. If the proposal is
foreground, the value of e′i is 1; otherwise, if the proposal
is background, the value of e′i is 0. x is the elementwise
difference between the prediction box and ground truth.
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C. CROSS-VALIDATION
Cross-validation [35] is primarily used in model training
or modeling applications. It can avoid models that have
sufficient predictive capability on the training data; how-
ever, they cannot correctly predict future data. Therefore,
cross-validation is the most common method for evaluating
model performance [36]. The data are usually divided into
two parts. Based on this division, one part is used to train,
and the other part to test predictive performance. To obtain
a reliable and stable model and avoid over-fitting and under-
fitting, we perform cross-validation.

The mean is calculated as equation 5. We divide the
dataset into k parts, i is the different combination of k data
parts. Considering the size of our dataset, we chose a 5-fold
cross-validation that takes the value of k as 5. Our dataset
is divided into five parts; we use four parts for training and
one part for verification. mAPi is the mean average preci-
sion of the different datasets, and the mean of five mAP is
an estimate of the accuracy of our model. Figure 6 is the
result of 5-fold experiments; the horizontal axis indicates the
datasets, and the vertical axis is the mAP corresponding to
different datasets. It can be seen that the accuracy of our
model is approximately the same for the different data, which
shows that our model is effective.

CVk =
1
k

k∑
i=1

mAPi (5)

FIGURE 6. The mAP of 5-fold cross-validation. The horizontal axis
indicates the datasets. The vertical axis is the mAP corresponding to
different datasets.

D. ENHANCED VISUALIZATION
For the initial flowfield data, wewere unable to determine the
position of the eddies before detection. In the initial visual-
ization stage, we scattered the particles evenly in the SP-Tran
process, which causes sparse streampaths in small veloc-
ity regions, particularly the center of the eddies, as shown
in Figure 4(a). Therefore, sparse streampaths will result in an
inaccurate definition of the eddy boundary, and it is difficult
for a person to directly identify the specific positions of the
eddies, which is likely to cause missed detection.

Applying the detection results of our network, we can
improve our SP-Tran approach in the visualization stage.
We specifically scatter more particles in the eddies region
and scatter fewer particles in the noneddies region. Thus,
the streampaths will not be too sparse even in the small
velocity region, and the eddy region will be enhanced, and the
noneddy region will be weakened. The enhanced eddy image
will reduce the noise impact of the training dataset, helping
the network detect more accurate eddy boundaries. It not only
helps humans identify eddies intuitively but also increases the
quality of our training dataset.

IV. EXPERIMENTS
In this section, we introduce the experimental results of our
proposed approach. More results are shown in the additional
demo video. Many factors affect the effectiveness of eddy
detection. We carried out three experiments to evaluate the
performance of our approach. The first experiment evaluated
the design of our network architecture. The second experi-
ment reported the effectiveness of our model compared with
state-of-the-art methods. The last experiment applied our
detected results to the visualization process and demonstrated
our enhanced eddies.

A. EVALUATION OF SP-RCNN
We considered eddy characteristics and evaluated the perfor-
mance of our network using the reference bounding boxes
designed in Section III-B. Table1 shows the settings of the
bounding boxes with different scales and aspect ratios. The
result is consistent with our expectations. We can see that
our model with four scales [4,8,16,32] and six aspect ratios
[0.2,0.5,0.8,1,1.5,2] performs better, and the network can
achieve an mAP of 88.94%. If using three scales and three
aspect ratios at each position, the mAP decreases by approx-
imately 1%. This proves that large-scale reference bounding
boxes will cause the network tomiss several small eddies, and
our reference bounding boxes are suitable for eddy character-
istics and cover almost all eddy shapes.

TABLE 1. The comparison between reference bounding boxes with
different scales and aspect ratios.

To evaluate the effectiveness of the proposed method in
Section III-B, we conducted control experiments on differ-
ent components of our network. Table 2 demonstrates the
performance of different components through mean aver-
age precision (mAP) calculation. The baseline model is our
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FIGURE 7. Results of SP-RCNN. Inside the red box is the detected eddies. (a) and (b) is the area without land boundaries, (c) and (d) is the area with
land boundaries.

TABLE 2. Control experiments on different components of our network
(dataset with 3,500 regions).

basic network with VGG19 model. The EBB is our refer-
ence bounding boxes with four scales[4, 8, 16, 32] and six
aspect ratios[0.2, 0.5, 0.8, 1, 1.5, 2]. IPN is our RPN with
an inception block. SP-RCNN (SPN) is our main network
with residual blocks and muti-layer features concatenation.
We find that the full model with EBB, SPN and IPN performs
better. This indicates that our network can detect almost all
eddies.

We show more test results of SP-RCNN in Figure 7.
We tested areas with land boundaries and no land bound-
aries. Figure 7(a) is a sparse eddy area without land bound-
aries. Figure 7(b) shows a dense eddy area without land
boundaries. Figure 7(c) is a sparse eddy area with land
boundaries. Figure 7(d) shows a dense eddy area with
land boundaries. Our method is robust, and we can detect
almost all eddies.

B. PERFORMANCE
To fully validate our model, we compare our method with the
traditional VG method. Because VG is mainly for detecting
mesoscale eddies with a radius between 100-300 kilometers
(the pixels are between 25-60 in our dataset), for consistency
of comparison, we compared mesoscale eddies and other
scale eddies. There are many different shapes of eddies near
the Gulf Stream. Therefore, we take the eddies for 6 days in
the region near the Gulf Stream for validation. We validate
our method by three different parameters [18], the success
of detection rate SDR = Nc/Nt , the excess of detection rate
EDR = Ne/Nt and the miss of detection rateMDR = Nm/Nt .

where Nt is the total number of ground truth eddies, Nc is
the number of eddies identified by the method that has an
eddy center corresponding to the position of the ground truth
eddy center, and Ne is the number of eddies identified by
the method in which the position of eddy center does not
correspond to the ground truth eddy center, Nm is the number
of eddies which should be detected, but were not detected by
the method.

Table 3 reports the results of the VG method and our
method. For the detection of mesoscale eddies, our method
achieves an average SDR of 98.91%, which is higher than the
SDR of the VG method. The VG method performs better on
mesoscale eddies than on other scale eddies, but it has a lower
SDR and a higher MDR than the original VG paper [19],
which has an SDR of 92.9%; however, the dataset of the
original paper is not disclosed. Our dataset is different, so the
accuracy is different. The detection accuracy of our method
is also higher than the SDR of the WA method (92.7%)
and OW method (86.8%) observed by Chaigneau et al. [18].
It is not possible to perform a direct comparison with these
two methods because our dataset is different from these two
methods. Furthermore, the EDR in our study is only 0.72%,
which is also lower than the traditional method.

To fully understand our results, we visualize the detection
result of day 1 in Figure 8. The red boxes present the correctly
detected eddies, the white boxes outline the missed eddies,
and the black box indicates the incorrectly detected eddy.
We can clearly see that the VG method cannot detect irregu-
larly shaped eddies or eddies with diameters less than 100 km
(25 pixels) because these eddies do not meet the predefined
constraints in a limited area. Our method can detect almost
all eddies, except for several eddies with sparse streampaths.
The incorrectly detected eddies of the VG method are mainly
due to the region meeting the predefined constraints, but it
is not a vortex streampath. The incorrectly detected eddies in
our method are mainly due to an unclear streampath.

To further validate our approach, we compare SP-RCNN
with two typical deep learning methods Faster RCNN [6]
and SSD [8]. For a comprehensive comparison, we used
500 images, 2,000 images, and 3,500 images as our dataset,
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TABLE 3. Validation results of VG (marked with 1) and SP-RCNN (marked with 2) in six days.

TABLE 4. The detection accuracy comparison between Faster-RCNN, SSD
and SP-RCNN on different datasets.

FIGURE 8. Detection results of two methods. The red boxes present the
correctly detected eddies, the white boxes outline the missed eddies, and
the black box indicates the incorrectly detected eddy.

and they are compared by mAP(%). Table 4 shows the detec-
tion accuracy comparison on our dataset. This indicates that
SP-RCNN is more competitive with an mAP of 90.64%,
outperforming the SSD by approximately 25%. Compared
with SSD, the Faster RCNN has a higher mAP, which cor-
responds with our expectation because SSD is not effective
for small objects and Faster RCNN is more competitive for
small objects.

C. ENHANCED VISUALIZATION RESULT
To prove the necessity for enhanced visualization, we selected
a sparse streampath region for comparison, as shown
in Figure 9. Using the detection results of our method,

FIGURE 9. Streampath enhancement. (a) Example of sparse streampath
eddies. (b) Enhanced eddies.

FIGURE 10. Comparison of detection accuracy between unenhanced
dataset and enhanced dataset.

we enhance the eddies region in the result of the SP-Tran
process to make it more visible and weaken the display
of the noneddies region to highlight the eddies region.
The result shows that the enhanced eddies are more easily
recognized by a human, as shown in Figure 9(b), which
corresponds with our expectation. For further comparison
fairness, we mix the original dataset and enhanced dataset
to re-train our network. For the accuracy of the results,
we tested them on different datasets, as shown in Figure 10.
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FIGURE 11. Detection results of our method and VG method in day 2 and day 3.

FIGURE 12. The eddies detected by our method in different scenarios.

The evaluation results show that training the enhanced
eddy image can increase the detection accuracy (mAP) by
approximately 0.6%.

V. CONCLUSION
We present a deep learning-based method (SP-RCNN) for
high-accuracy eddy detection, which shows a high accuracy
with an mAP of 90.64%. To the best of our knowledge,
there is no publicly available eddy image dataset based on
flow field data. We have established a relatively more suf-
ficient dataset, and our dataset will be published for future
research. Our method is the first to apply deep learning tech-
niques to eddy detection in flow field data. The experimen-
tal results demonstrate that SP-RCNN performs better than
previous eddy detection methods. It can directly visualize
the detection results on the image so that humans can detect
eddies without professional knowledge. The enhanced eddy

images can also expand our dataset tomake it more robust and
further improve the accuracy of eddy detection. In the future,
we plan to extend our approach to explore other eddy-based
applications. Eddy tracking and eddy event finding may be
potential directions.

APPENDIX
A. MACHINE CONFIGURATION
Our machine is a Desktop PC with an Intel i7-8700K CPU,
32GB RAM, and NVIDIA GeForce GTX 1080Ti GPU.
We trained our dataset on Ubuntu 18.04.

B. MORE RESULTS
Figure 11 shows the day2 and day3 results of our method
and VG method. It can be seen that our method is more
robust thanVG.More results of our detected eddies are shown
in Figure 12. It can be seen that the eddies can be detected in
various complicated scenarios.
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