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ABSTRACT White matter hyperintensities (WMH) generally can be detected and diagnosed by magnetic
resonance imaging (MRI). It has been pointed out that WMH is closely associated with stroke, cognitive
impairment, dementia, and even is very relevant to the increased risk of death. This paper proposes a
new iterative linearly constrained minimum variance ILCMV) classification-based method which expands
an iterative constrained energy minimization (ICEM) detection-based method developed for hyperspectral
image classification. It explores the potential of ILCMV combined with different spatial filters in classifi-
cation of brain normal tissues and WMH and also develops an alternative version of ILCMYV, called Multi-
class ICEM (MCICEM) for a comparative study. The synthetic images in BrainWeb are used for quantitative
evaluation of ILCMV and the real brain MR images are used for visual assessment. The experimental results
suggest that the Gaussian filter is most suitable for [ILCMV and MCICEM if the computational time is
factored into consideration. Otherwise, ILCMV/MCICEM combined with a Gabor filter yields the best
classification. In addition, the average Dice similarity indexes (DSI) of CSF/GM/WM volume measurement
produced by ILCMV method combined with Gaussian filter were 0.936/0.948/0.975 in synthetic MR images
with all noise levels and were better than the results reported in the literature. ILCMV can simultaneously
classifies brain normal tissues and WMH lesions in MR brain images and does better than detection of
WMH alone. In addition, its computational time is also less than MCICEM. It is our belief that the proposed
methodology demonstrates its promising in classification of brain tissue and WMH in MRI applications.

INDEX TERMS Iterative linear constrained minimum variance (ILCMV), White matter hyperintensi-

ties (WMH), magnetic resonance imaging (MRI), brain tissue classification.

I. INTRODUCTION
The detection of white matter hyperintensity (WMH) by
magnetic resonance imaging (MRI) can be used to diagnose

The associate editor coordinating the review of this article and approving
it for publication was Sunil Karamchandani.

stroke, cognitive impairment, dementia, and even the risk
of death as pointed out in the past literature [1], [2].
In general, WMH will be present in brighter areas on the
T2-weighted or fluid attenuated inversion recovery (FLAIR)
MR images. Clinicians make a diagnosis through visual
inspection and quantify WMH by manual selection. If a larger
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volume of WMH appear in the patient’s brain, it will affect
the patient’s walking and its motor function [3]. In addition,
some works reported in the literature pointed out that the
total volume of WMH in subcortical area was related to
the rate of decline in cognitive and memory [4]. Therefore,
if the volume of WMH can be accurately detected and quan-
tified, it will have substantial significance in assisting clinical
diagnosis. Since it is too cumbersome and also not feasible
in practical diagnosis to depict the WMH area manually,
developing computer aided tools can reduce the complexity
of the diagnosis and help clinicians have better diagnosis and
monitoring.

In recent years, multispectral image processing technol-
ogy has been applied to magnetic resonance (MR) image
analysis [5]-[12]. It is different from the spatial domain-
based image processing because multispectral MR images
containing rich spatial and spectral information from different
pulse sequences. The advantage of this technology is that the
same substance has different feature attributes to different
pulse sequence images that can be used to distinguish dif-
ferent material substances. So, it has been shown that multi-
spectral image processing technology is more efficient than
the traditional spatial-domain technology [13]-[15]. Despite
that multispectral image processing technology has its unique
advantages, it only takes into the spectral information of the
substance from different pulse sequences images and does
not consider the spatial information among the substances.
Therefore, Chen et al. [16] proposed a hyperspectral image
processing technique, called iterative constrain energy min-
imization (ICEM), which combines the spectral and spa-
tial information of substances to detect WMH. It used a
Gaussian filter to capture the spatial information around the
detected WMH, and then iteratively feeds the Gaussian fil-
tered spatial information back to the original hyperspectral
cube data, until it finally meets a stopping rule to terminate
the iterative process.

However, there are still three important issues in
Chen et al. [16] that were not discussed. First, since the
ICEM method is a detection technique, it can only detect one
substance at a time. Therefore, in our case the ICEM method
needs to be performed for each of brain substances. A sec-
ond issue arises from pixel classification problems because
ICEM is designed as a detector rather than a classifier. As a
result, the literature [16] can only use ICEM to detect WMH
substances. If we use ICEM to classify the four substances
in the brain, such as gray matter (GM), white matter (WM),
cerebrospinal fluid (CSF) and WMH, we must erform ICEM
four times to obtain four abundance maps of the substances.
Furthermore, since every pixel in these abundance maps is a
real value (we call these maps as soft decisions), the issue
of how to convert such soft decisions to hard decisions
for classification, referred to as mixed pixel classification,
becomes a challenge. The final issue is that in addition to
Gaussian filter used to acquire WMH spatial information [16]
there are also other filters that can be used to capture spatial
information but were not discussed in [16].
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In this paper, we propose a novel ‘iterative lin-
early constrained minimum variance (ILCMV)” method
to address the above issues. Linearly constrained mini-
mum variance (LCMV) has been widely used technique
to detect multi-component composition in remote sensing
imagery [17]-[19]. ILCMV is developed to improve the
detection performance of LCMV through capturing spatial
information. Its idea is similar to that used to develop ICEM
in [16] to use a set of spatial filters to capture the spatial con-
textual information and further feed back the spatial filtered
maps as new band images to be added to the current image
cube to create a new image cube for next round processing
of LCMV. The same procedure is repeatedly by feedbacks
in an iterative manner. To terminate ILCMV an automatic
stopping rule is also described in section 2.5.

The advantage of ILCMV is to simultaneously obtain
abundance fractional maps of four substances including nor-
mal tissues and WMH in the brain. The maximum abun-
dance value of each pixel decides its class, referred to as
maximum a posteriori (MAP). In this paper various different
filters, such as Gaussian, Gabor, Guided, and Bilateral filters
are used to obtain spatial information around the spectral-
classified maps of brain substances. Finally, experiments are
conducted to demonstrate that ILCMV using various spa-
tial filters can be used as a quantitative evaluation tool to
calculate the abundance fractional maps of GM, WM, CSF
and WMH via the synthetic MR image data from Brain-
Web (http://brainweb.bic.mni.mcgill.ca/brainweb/) and real
MR image data from Taichung Veterans General Hospital.

Three main contributions of this paper can be summarized
as follows. First of all, our proposed method, ILCMYV, can
simultaneously detect and classify brain substances, and thus
reduce the operation time of ICEM in [16]. Second, we use
MAP to determine the class of each pixel. In other words,
the ILCMV calculated abundance fractions can provide valu-
able information as soft decisions that can enhance visual
contrast of physicians. In addition, such ILCMV generated
abundance fractional maps can be further used to perform
pixel classification as hard decisions via a thresholding tech-
nique such as Otsu’s method [20]. This concept has not been
explored in the past. The third contribution is to gain insight
into the influence of ILCMYV using different spatial filters on
the confidence level of test data.

Il. MATERIALS AND METHODS

A. MATERIALS- BRAIN SYNTHETIC MR IMAGE

AND REAL MR IMAGE DATA

The synthetic MR images with multiple sclerosis (MS)
were downloaded from BrainWeb, which was developed
by McConnell Brain Imaging Centre, McGill University,
Canada. Figure 1(a) is one slice of the synthetic MR images
with MS lesions, and Figure 1(b) shows the ground truths
of brain tissues and MS lesions. MS lesions are typically
hyperintense on T2 weighted (T2W) or fluid attenuation
inversion recovery (FLAIR) sequence image. These brain
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FIGURE 1. The synthetic brain MR images with Multiple Sclerosis (MS)
from BrainWeb. (a) From left to right is the PD, T1W, and T2W MR image
respectively with 0% noise level and 0% INU. (b) The ground truths of
CSF, GM, WM, and MS lesions.

MR images are included in the modalities of proton density
(PD), T1 weighted (TIW), and T2 weighted (T2W) with
specifications provided in BrainWeb. The thickness of slice
is 1 mm with size of 181 x 217 x 181. Each slice is specified
by INU (intensity non-uniformity) 0% or 20%, denoted by
rfO and rf20 with six different levels of noise, 0%, 1%, 3%,
5%, 7% and 9%.

Our study also used real brain MR images with different
grades of lesion distributions for analysis. The distributions of
lesions were divided into small, medium and large levels by
Fazekas er al. [21]. Figure 2 showed the different Fazekas lev-
els of white matter hyperintensity (WMH) in FLAIR images.
In this study, the 1.5 T whole body magnetic resonance
machine manufactured by Siemens (Germany) was used to
obtain the following three sets of three-dimensional brain
MR images. The details of the imaging parameters are as
follows: T1-weighted (T1w) 3D MRI (MP-RAGE): TR/TE =
1600ms/3-5ms, 1 excitation; T2-weighted (T2w) turbo-spin-
echo (TSE) SPACE: TR/TE = 3200-4000ms/360-400ms,
1 excitation, with variable flip-angle distribution; FLAIR
3D MRI: TR/TI = 5000ms / 1800ms, TE = 357ms, one
excitation, with variable flip-angle distribution. All of them
have the same parameters setting such as slice thickness =
1.1mm, matrix 224 x 256, field-of-view = 22-24cm. In addi-
tion, the research conducted in this paper was approved by
the Clinical Research Ethics Committee of Taichung Veterans
General Hospital (IRB No.: CE16138A). Of the 111 cases
collected, 58 cases belonged to Fazekas level 1, 44 cases
belonged to Fazekas level 2, and the rest were Fazekas level 3.
Therefore, we selected 10 cases from Fazekas level 1,
11 cases from Fazekas level 2, and 9 cases from Fazekas
level 3 for analysis and comparison.

B. PREPROCESSING - NONLINEAR BAND

EXPANSION (NBE)

Since ICEM and ILCMV are hyperspectral imaging tech-
niques which require a large number of band images and the
used brain MR images have only three band images acquired
by Tl-weigted, T2-weighted and FLAIR, there are not
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FIGURE 2. Lesion categorized by three grades of Fazekas shown in FLAIR
images. (a) Fazekas grade 1. (b) Fazekas grade 2. (c) Fazekas grade 3.

sufficient images that can be used for ICEM or ILCMV.
To address this issue a nonlinear band extension (NBE) must
be implemented prior to [CEM/ILCMV. The NBE can expand
the original MR image to more band images through nonlin-
ear functions such as auto- or cross-correlation. Combining
these new NBE-generated images with the original image
produces a new set of hyperspectral images that can be used
by ICEM and ILCMV. In this paper, we use the 3" order
correlation band images as the pre-processing step [16] for
NBE. It is worth noting that NBE can only generate nonlinear
spectral information of brain tissues or WMH, but cannot cap-
ture their spatial information. Therefore, we will use different
spatial filters to extract spatial information to be fed back
to ILCMV. The details of the implementation are described
in the following section.

C. LINEARLY CONSTRAINED MINIMUM

VARIANCE (LCMV) [18]

We interpret the six MR images, T1-weighted, T2-weighted,
FLAIR, and three 3" order correlation-generated band
images from NBE as spectral bands, in which case
MR images can be then considered as a hyperspectral image
cube. Let {rnL},':’:l be an L-dimensional MR image pixel
vector where L is the number of image pulse sequences
used for MR data acquisition and each image acquire by
a particular pulse sequence or the NBE preprocessing is
considered as a spectral band image. In addition, N is the
number of all pixels in MR image, and the n™ pixel vector
isrt, = (ry1, "2, ...,rnL)Tfor 1 < n < N.We assume
that gray matter (GM), white matter (WM), cerebrospinal
fluid (CSF), and WMH are interest targets and their spectral
signature vectors are {dj, j=1,2,3, 4}. Therefore, we can
obtain an interest target signature matrix specified by D =
[d1, d3, d3, d4]. Our goal is to design a linear finite impulse
response (FIR) filter which is a L-dimension weighted vector
specified by w = (wi,wa, ... wL)T to minimize the filter
output energy subject to the equation (1).

L
D”w = ¢ where dij = Zwldjl =¢ forl<j<4 (1)
=1

where ¢ = (cy, ¢2, ¢3, C4)T is a constraint vector, [ is one of
spectral bands and L is the number of all spectral bands. Let
yn is the output signal of each input pixel vector, r,,, through
the designed FIR filter, and y,, is shown as the equation (2).

L
T T
)’nZZernlzw r,=r,w 2)
=1
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Based on the concept of beam-former from LCMV, we can
find the average energy of the output signal as shown in the
equation (3).

1 1 1 Y T
N =y e =y 2 (miw) - (saw)
n=1

N
1
wl <ﬁ ;rnr,{) W= WTRLXLW 3)

Therefore, we design an LCM V-based desired target detec-
tor that can be constrained by the minimum of equation (1),
as shown in equation (4).

min HWTRLwa} subject to D'w=c @)
w

where Ry 1 is an autocorrelation sample matrix in hyper-
spectral images. The equation (4) can be considered as a
constrained least mean squares problem, so we can use the
Lagrange multiplier method to fine the optimal solution
weight wP!. First, the constraint function and cost function
from equation (3) combined to a H (w) function through a
Lagrange multiplier vector A. For the convenience of opera-
tions, we put the constant % in the cost function, so it can be
rewritten as equation (5).

1
H (W) = W Rixw+ AT (DTw _ c) (5)
We take the gradient of equation (5) for w, and then we can
get the equation (6).
VoH (W) =Ry w+A"DT =R w4+ DL (6)
Therefore equation (6) is equal to zero if the optimization
is required, that is VywH (W) = Ry« w + DA = 0. For the
Lagrange multiplier, the optimal weight vector is shown in
equation (7).
-1
w? = —R/,, DA @)
Since we assume Rpy.y is a positive definite matrix,
RZi , must be existed, and wo! is satisfied the condition of
equation (4). So DTwo" = DT (—RZ}(LDX) = ¢, and then
we can find the Lagrange multiplier vector A as shown in
equation (8).
Tp-1 -1
x=-[D"R;},D| ¢ ®)

From equations (7) and (8), we can find the optimal weight
vector wo of constrained least mean squares problem, such
as equation (9).

-1
w? =R;! D[D'R;],D]| e ©)

We replace the weighted vector w in (2) by the optimal
weight vector w’! in the LCMYV filter, which implements a
detector, sV (r) given by equation (10).

SUMY (1) = (W) r (10)

By virtue of (10) the abundance maps of brain tissue and
abnormal area such as GM, WM, CSF, and WMH, ca be
generated for data analysis.
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FIGURE 3. A flowchart of ILCMV.

D. ITERATIVE LCMV (ILCMV)
This section introduces an iterative version of LCMYV,
referred to as ILCMV. Its main idea is to implement spatial
filters on the LCMV-generated abundance maps to capture
spatial information around LCMV-classified pixels. Then
these spatial filtered LCMV-classified maps are further fed
back to be added to the current being processed image cube
to create a new set of image cubes for next round LCMV
processing. The iterative process will be terminated once a
stopping rule is met. Figure 3 depicts a flowchart of step-
by-step ILCMV implementation. When the original brain
MR images are expanded by NBE to generate a new set of
brain MR image cubes, these images are then used as an
input to ILCMV to obtain the abundance fractional maps
of four components of interest. Once ILCMYV satisfies the
stopping rule, the resulting LCM V-classified abundance frac-
tional maps are converted by MAP to decide the classes of
pixels. The dashed box in Figure 3 describes the stopping rule
of how the iterative process is terminated.

The details of ILCMV implemented in Figure 3 are sum-
marized as follows:

ILcmv

1) Initial conditions: Let Q© is a set of brain hyper-
spectral MR images after the NBE preprocessing, and
D© is a set of spectral profiles of brain tissue and
WMH which we are interested in. We make k = 1.

2) After executing (SII;CMV with D® on the set Sl(k), a set
AkCMV of LCMV abundance maps is generated. This
set is contained four abundance maps for gray matter,
white matter, cerebrospinal fluid, and WMH.

3) Use different spatial filters to smooth the abundance
map set |A£CMV , where |AkCM‘]\;jvis the absolute value
of the abundance map set A%C . These smoothing

abundance images by spatial filters, such as Gaussian,

Gabor, Guided, or Bilateral, are defined as |FB%CMV|.
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4) We can obtain the smoothing abundance image set
IFBEMV| after the (k-1)™ brain MR hyperspectral
image set %1 is calculated by the LCMV method.
And then we combine this set of images |FB£CMV | with
the (k-1)™ image set %1 to obtain the k™ new brain
MR hyperspectral image set 2*). The mathematical
expression is defined as %) = @*=D y ‘FB%CMV‘.

5) Verify that the abundance map set |A%CMV| meets the
stop rules described in Section 2.5. If it does, we will
stop the iteration loop and skip to step 7. If not, go back
to step 2 and continue with ILCMV.

6) The obtained abundance image set |FB%CMV| and the
previous brain MR hyperspectral image set are com-
bined into a new operation set, such as Q*k+h — @)y

‘FB%CMV‘. Let k < k + 1 and returns to Step 2.

7) End of the iteration of ILCMYV, use the winner-take-
all condition, i.e., MAP, to classify each pixel of the
abundance map into brain tissue or WMH on binary
image.

E. STOPPING RULES OF ILCMV

In order to effectively stop ILCMYV, we use Otsu’s
method [20] to convert the abundance fractional maps of
|ALCMV| of GM, WM, CSF and WMH into their correspond-
ing binary maps [BLY®MV|. We then use the Dice similarity
index (DSI) [22] defined as follows as a measure for stopping

rule
2 |Br N By _
pSI® — 218k N Bi—1| (11
|Bil + 1By

where By and By _| represent the binary result set of the k'
and (k — 1)'" LCMV methods, respectively. The DSI is the
average of four binary results since each abundance fractional
map set can produce four binary results. When the averaged
DSI is greater than threshold e(e is a similar threshold, here
we set 0.99, 0.95, 0.90, 0.85, and 0.80), the iterative process
is terminated and the final abundance fractional maps of
ILCMV binarized by MAP. Figure 4 delineates a flowchart
of the stopping rule implemented in ILCMV.

F. MULTIPLE CLASS ITERATIVE CONSTRAINED ENERGY
MINIMIZATION (MCICEM)

The ICEM proposed by Chen er al. [16] was originally
designed to detect white matter hyperintensity area while
discarding detection of other brain tissues, such as GM, WM,
CSEF, etc. In order to compare with ILCMV, we expand ICEM
into a multi-class ICEM (MCICEM). Despite the fact that
MCICEM and ILCMV are both multi-class classification
methods, a key difference between them that MCICEM can
only feed back abundance fractional map of one target at
a time in ICEM, while ILCMYV can feed back abundance
fractional maps of all targets all together in a feedback loop.
In other words, MCICEM is extension to ICEM as a multiple-
target detector. In this case, the feedback loops are carried out
by the number of targets via constraining each desired target
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signature d; in (1). By contrast, ILCMV is a multiple-class
classifier which classifies all targets simultaneously in one
shot operation via the desired matrix D in (9). As a result,
there is only one single feedback loop resulting from ILCMV.

There are two scenarios of implementing a stopping rule in
MCICEM. One is that the DSI value of each target needs to
meet the same threshold value ¢ for all targets (where we set
the same threshold as 0.99, 0.95, 0.90, 0.85 and 0.80).The
resulting MCICEM is referred to as MCICEM. The other
is that the DSI value of each target varies. In this case,
the process of each target will be terminated at a different
number of iterations. The process will be only terminated
until all targets are completed. Such MCICEM is referred
to as MCICEM-4DSI. Since MCICEM-generated abundance
fractional maps are also soft decisions, we need to use MAP
to make hard decisions for each pixel in the same way as
ILCMYV does. Figure 5 provides a flow chart of MCICEM.
More details of ICEM are referred to [16].

G. FILTERS USED TO CAPTURE SPATIAL INFORMATION
OF BRAIN TISSUES AND WMH

In this section, four different spatial filters, Gaussian, Gabor,
Guided and Bilateral filters are used to explore their effects
on capturing spatial information of brain tissues and WMH.

1) GAUSSIAN FILTER
The Gaussian filter is the most commonly used smoothing
spatial filter in digital image processing [23], which is mainly
used to blur the edges of images to reduce the sharp transition
of grayscale intensities in images. Its formula is shown in
equation (12).

242

G(x,y) = e 27’ (12)

2mo?
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TABLE 1. Parameters used by ILCMV, MCICEM and MCICEM-4DSI.

FIGURE 5. An implemented flow chart of MCICEM.

2) GABOR FILTER

In the field of image processing, many scientists believe that
the frequency and direction of the Gabor filter can be used
to simulate the human visual system. It is found that the
Gabor filter is particularly suitable for texture representa-
tion and discrimination. The 2D-Gabor filter can simulate
human two-dimensional visual perception by the tuning char-
acteristics of spatial positioning, direction selectivity, spatial
frequency selection and quadrature phase relationship. This
neural model was originally proposed by Daugman [24], [25].
Its formula is shown in equation (13).

f @) =exp =it = 0 + (v = 30 b1
x exp {=2ilug (v = x0) +v0 6 = y0)]} - (13)

The spatial position parameters in equation (13) are
(x0, yo), the modulation parameters are (ug, vo) and two scale
parameters are (a, D).

3) GUIDED FILTER

The guided filter is also one of commonly used smoothing
filters. The output of a guided filter is a linear transform
by using the guidance image, and it has better performance
and the fastest edge-preserving properties [26]. Therefore,
this paper also uses it as one of capturing spatial information
filters, as shown in equation (14).

gi=y_ W;G)p (14)
J

where p represents the input image, g represents the output
image, G represents the guided image, and i and j are pixel
indexes. The filter kernel Wj; is a function of the guidance
image, and is independent of the input image p.

4) BILATERAL FILTER (BF)
The bilateral filter is a non-linear, edge-preserving and noise-
reducing smoothing filter that replaces the intensity value

VOLUME 7, 2019

Spatial Window DSI
. Parameters used .
MCICEM filters size (Stopping rule)
Gaussian 5x5 =05
a=b=+2 0.99, 0.95,
Gabor 3 ]2 00110}l [-1] 090,085, and
Guided 5x5 - 0.80
Bilateral 5%5 6G=0r=1

of each pixel, I (x;, y;), by the average weighted intensity w
from the surrounding pixel (x,y) [26], [27]. The weighted
function is usually done by a Gaussian function as described
in equations (15) and (16).

1
BF (ti,y) =~ 3 Go, (I, 5) = (i 30
xGoy (I (x.y) =1 Gy T (xi.yi) - (15)
where w is
W=D G (166 9) = Gt 1IN Goy (I (6, =1 (i, yi)])

(16)

where G,, and G, are the one-dimensional Gaussian func-

2
\/%UV exp (—#) and Gy, (x) =
1

2
X .
exp | —= |, respectively.
foror P< 27 p y

tions of Gg, (x) =

IIl. RESULTS

In this section the performance of ILCMV and MCICEM
were compared via the synthetic brain MR images from
BrainWeb and real brain MR images from Taichung Veterans
General Hospital described in section IL.A.

A. SYNTHETIC BRAIN MR IMAGES

We used four different spatial filters to capture the spatial
information of the synthetic brain MR images, and the param-
eters used in each filter are shown in Table 1. According to
the experimental results of Chen et al. [16], the result was
better when the window width of the filter is 5 x 5 in higher
noises. Therefore, we used the same window width 5 x 5 for
all filters as the benchmark comparison. The other parameters
of different filters are listed in Table 1. We use the five DSI
threshold cases of 0.99, 0.95, 0.90, 0.85 and 0.80 to terminate
ICMYV and MCICEM. According to our experimental results,
the classification performance of using a higher threshold
for the stopping rule was better when the image noise was
increased. This is true for all the three methods, ILCMYV,
MCICEM, or MCICEM-4DSI. Due to limited space we only
include the results when the threshold value for the stopping
rule was set to 0.99. This threshold gave the best results of
BrainWeb images in twelve noise levels.

Both ILCMV and MCICEM used all slices-selected train-
ing samples from Chen er al. [16] of CSF, GM, WM and
WMH as a priori information to apply to all experiments.
These training samples were randomly selected three pixels
of each substance by the physician, and then we used spectral
angle mapper (SAM) [18] to find the similar pixel vector as
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TABLE 2. The averaged DSI results of GM, WM, CSF and WMH quantification in the brain synthetic MRI (1 x 1 x Tmm3) at various noise and intensity

uniformity settings by using ILCMV with different spatial filters.

Filters Gaussian Gabor Guided Bilateral

CSF GM WM  WMH | CSF GM WM  WMH | CSF GM WM  WMH | CSF GM WM WMH
nOrfO* | 0.955 0971 0986 0.893 | 0.953 0.968 0985 0.901 | 0951 0963 0983 0911 | 0930 0.961 0983 0.831
nlrf0 | 0943 0960 0983 0.891 | 0.948 0962 0984 0902 | 0949 0.958 0982 0912 | 0911 0945 0973 0.845
n3rf0 | 0942 0953 0979 0890 | 0947 0956 0981 0904 | 0946 0.952 0979 0.895 | 0905 0942 0974 0.849
n5rf0 | 0.936 0946 0975 0.872 | 0941 0.948 0.976 0.879 | 0.940 0942 0972 0.868 | 0.900 0.931 0.967 0.832
n7rf0 | 0.927 0.938 0970 0.847 | 0932 0940 0972 0.860 | 0.928 0.928 0.964 0.832 | 0.893 0919 0959 0.801
n9rf0 | 0917 0929 0965 0.830 | 0922 0931 0966 0.836 | 0917 00911 0953 0.784 | 0.883 0910 0954 0.781
n0rf20 | 0.945 0960 0982 0.883 | 0.950 0.961 0.983 0.900 | 0949 0958 0981 0903 | 0918 0.952 0977 0.821
nlrf20 | 0.944 0958 0980 0.876 | 0.949 0.959 0.982 0.898 | 0948 0957 0981 0905 | 0917 0.951 0976 0.815
n3rf20 | 0.942 0952 0977 0.888 | 0.948 0.955 0979 0.898 | 0.945 0952 0978 0.894 | 0.908 0943 0973 0.827
n5rf20 | 0.936 0944 0973 0.875 | 0.941 0.947 0975 0.884 | 0939 0942 0972 0.875 | 0901 0932 0.966 0.816
n7rf20 | 0.929 0937 0968 0.863 | 0.934 0.939 0970 0.870 | 0932 0928 0963 0.846 | 0.894 0.919 0.957 0.806
n9rf20 | 0.918 0.929 0963 0.835 | 0.923 0.931 0.965 0.841 | 0918 0911 0953 0.811 | 0.885 0.911 0952 0.792

* n: noise level (range of 0, 1, 3, 5, 7, and 9%); rf: intensity uniformity (range of 0 and 20%)

TABLE 3. The averaged Sl results of GM, WM, CSF and WMH quantification in the brain synthetic MRI (1 x
uniformity settings by using MCICEM with different spatial filters.

1 x Tmm?3) at various noise and intensity

Filters Gaussian Gabor Guided Bilateral

CSF GM WM  WMH | CSF GM WM  WMH | CSF GM WM  WMH CSF GM WM  WMH
n0rf0* | 0.959 0978 0.993 0.874 | 0.958 0975 0989 0.898 | 0.954 0965 0982 0.893 0.923 0961 0985 0.819
nlrf0 | 0.941 0963 0983 0.880 | 0.946 0963 0.984 0.884 | 0.945 0957 0.981 0.887 0911 0948 0.975 0.832
n3rf0 | 0.946 0.955 0979 0.885 | 0.948 0956 0.981 0.898 | 0.942 0950 0.977 0.867 | 0906 0942 0975 0.858
n5rf0 | 0.939 0945 0975 0.866 | 0.942 0948 0.976 0.874 | 0.937 0939 0971 0.847 | 0.883 0927 0.969 0.837
n7rf0 | 0.926 0.936 0970 0.843 | 0.931 0939 0.972 0.853 | 0.926 0927 0963 0.814 | 0.869 0913 0.962 0.809
n9rf0 | 0911 0928 0966 0.814 | 0.918 0930 0.967 0.813 | 0912 0914 0954 0.781 0.853 0902 0955 0.778
n0rf20 | 0.945 0.965 0984 0.887 | 0945 0.963 0983 0.898 | 0944 0956 0981 0.899 | 0915 0951 0977 0.835
nlrf20 | 0.946 0962 0982 0.886 | 0.946 0961 0983 0.893 | 0.944 0955 0980 0.890 | 0916 0950 0976 0.825
n3rf20 | 0.944 0953 0977 0.876 | 0.947 0954 0979 0.889 | 0942 0.949 0976 0874 | 0908 0940 0971 0.824
n5rf20 | 0.938 0944 0973 0.872 | 0.941 0.947 0975 0.875 | 0937 0.940 0970 0.854 | 0.885 0.927 0.966 0.830
n7rf20 | 0.928 0935 0.968 0.858 | 0.933 0.938 0970 0.866 | 0.928 0.928 0963 0.827 | 0868 0913 0961 0.814
n9rf20 | 0.914 0.927 0964 0.824 | 0920 0.930 0966 0.827 | 0913 0915 0955 0.794 | 0.855 0902 0954 0.795

desired target vector. The training samples of synthetic image
and real image were selected in the same way.

Table 2 tabulates the average DSI values of ILCMV
for classifying brain tissues and WMH using four dif-
ferent spatial filters at 12 different levels of noise and
non-uniformity. Tables 3 and 4 tabulate the results of
MCICEM and MCICEM-4DSI, respectively. The best results
are boldfaced in Tables 2 to 4. Table 5 tabulates the iteration
numbers of three proposed methods with different spatial
filters.

From the results of Table 2 to Table 4, we found that
whether the results of ILCMV and MCICEM with the Gabor
filter were always better than their counterparts using other
filters except the case that the results using Gaussian filers
were better where the noise and non-uniformity are 0%.
Two observations can be made from the results of Table 5.
First, the numbers of iterations using ILCMV method was
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smaller than those of the other two methods. Second, as the
image noise level was increased, the iterative number of
each method was also increased. The Kruskal-Wallis test
using multiple sets of sample variance analysis showed that
ILCMYV, MCICEM and MCICEM-4DSI had no significant
differences in classification of CSF, GM, WM and WMH as
shown in Table 6. Table 7 also tabulates results of using the
Kruskal-Wallis test for ILCMV, MCICEM and MCICEM-
4DSI combined with different spatial filters in classification
of CSF, GM, WM and WMH. We could see that three meth-
ods combined with different spatial filters had significant dif-
ferences in classification of CSF and WMH. There is only sig-
nificant difference in classification of GM and WM using the
MCICEM-4DSI using different spatial filters. Figure 6 shows
the box plots of three methods with different spatial filters
that have significant differences in brain normal tissue and
WMH classification.
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TABLE 4. The averaged Sl results of GM, WM, CSF and WMH quantification in the brain synthetic MRI (1x 1 x Tmm3) at various noise and intensity

uniformity settings by using MCICEM-4DSI with different spatial filters.

Filters Gaussian Gabor Guided Bilateral
CSF GM WM WMH CSF GM WM WMH CSF GM WM WMH CSF GM WM WMH
nOrf0* | 0.955 0.971 0989 0.848 | 0956 0970 0988 0.844 | 0.948 0.965 0.983 0.861 0925 0958 0982 0.821
nlrf0 | 0941 0961 0984 0.872 | 0.946 0.964 0986 0.880 | 0.945 0961 0985 0.877 | 0908 0946 0.975 0.839
n3rf0 0942 0955 0.981 0.898 | 0947 0957 0983 0903 | 0944 0953 0980 0.889 | 0.908 0.939 0973 0.858
n5rf0 0936 0945 0976 0.871 0941 0949 0978 0.884 | 0938 0941 0973 0.869 | 0.886 0.926 0968 0.830
n7rf0 | 0.925 0937 0972 0.849 | 0931 0940 0973 0.844 | 0.927 0928 0.964 0818 | 0.872 0914 0962 0.811
n9rf0 0911 0.927 0967 0.819 | 0918 0.930 0968 0.807 | 0911 0.912 0.955 0.758 | 0.853 0904 0956 0.767
n0rf20 | 0.944 0.963 0985 0.861 | 0.945 0963 0986 0.870 | 0.946 0.960 0.984 0.880 | 0.913 0947 0975 0.831
nlrf20 | 0.945 0961 0.983 0.875 | 0947 0962 0985 0.884 | 0945 0959 0983 0.888 | 0914 0.946 0974 0.827
n3rf20 | 0.943 0954 0979 0890 | 0.947 0956 0981 0.899 | 0944 0953 0979 0.885 | 0.909 0.937 0970 0.831
n5rf20 | 0.936 0944 0973 0.872 | 0.941 0.948 0976 0.888 | 0938 0942 0972 0.871 | 0.889 0.925 0.965 0.827
n7rf20 | 0.927 0936 0969 0.861 | 0.932 0.939 0971 0.866 | 0.930 0928 0964 0847 | 0.872 00913 0960 0.816
n9rf20 | 0914 0.927 0965 0.831 | 0920 0930 0966 0.825 | 0914 0914 0955 0.789 | 0.859 0.904 0.955 0.788
TABLE 5. The iteration numbers of three proposed methods with different spatial filters.
Iteration #

n0rf0 nlrf0 n3rf) n5rf) n7rf0 n9rf0 n0rf20  nlrf20  n3rf20  n5rf20 n7rf20  n9rf20

ILCMV 3 4 3 4 4 5 4 4 3 4 4 5

MCICEM 4 5 4 5 5 6 5 5 5 5 6

. CSF 2 3 4 4 4 5 4 4 4 4 4 4

Gaussian ciceM GM 3 3 4 4 4 5 4 4 4 4 4 5

-4DSI WM 2 2 2 3 3 3 2 2 2 3 3 3

WMH 5 5 6 6 6 7 5 6 5 6 7 7

ILCMV 3 3 3 4 5 7 4 4 4 4 4 6

MCICEM 5 5 5 5 5 6 5 5 5 5 5 6

Gabor CSF 2 3 3 4 4 5 3 3 3 4 4 5

MCICEM GM 3 3 4 4 5 5 4 4 4 4 5 5

-4DSI WM 2 2 2 2 3 4 2 2 2 2 3 4

WMH 5 6 5 7 7 8 6 6 6 7 7 7

ILCMV 3 2 3 4 4 5 4 4 3 4 3 4

MCICEM 4 4 4 5 6 8 5 5 5 5 6 7

Guided CSF 3 4 4 4 3 4 3 4 4 4 4 4

MCICEM GM 3 3 3 4 5 6 3 4 4 4 5 6

-4DSI WM 2 2 2 2 3 4 2 2 2 2 2 4

WMH 6 6 5 6 8 9 6 7 5 6 7 9

ILCMV 3 4 3 4 5 6 4 4 4 4 4 5

MCICEM 4 5 5 5 5 5 6 5 5 5 5 5

Bilateral CSF 3 3 4 4 4 4 4 4 4 4 4 4

MCICEM GM 3 3 5 4 4 4 5 5 4 4 4 4

-4DSI WM 3 2 3 3 3 3 2 2 3 3 3 3

WMH 5 4 6 6 6 7 6 5 5 6 5 7

B. COMPUTATIONAL BURDEN

It is very important for reasonable computing time and
hardware requirements in developing algorithms for accu-
rate classification and clinical applications. We used
a Windows 7 computer with CPU Intel ® Xeon®) E5-2620 v3
@ 2.40 GHz processor and 32 GB RAM to evaluate the
performance of the proposed methods. The average compu-
tational time of different methods combined with four spatial
filters for all synthetic MRI data sets is shown in Figure 7.
It can be seen that ILCMV has significantly less computa-
tional time than the other two methods. As for the different
spatial filters, the computing time required by the Gaussian
filter was least.
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C. REAL BRAIN MR IMAGES

We also used real brain MRI data from Taichung Veter-
ans General Hospital for experiments to evaluate the per-
formance of our purposed methods, ILCMV, MCICEM and
MCICEM-4DSI. The same parameters in Table 1 were also
used and the DSI parameter for the stopping rule was set
to 0.99.

Fig.s 8 to 10 show the classification results of CSF,
GM, WM, and WMHs by using three methods com-
bined with four spatial filters for real brain MR images
of three Fazekas grades. From the classification results of
these three Fazekas grades, several interesting findings are
observed.
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TABLE 6. The Kruskal-Wallis test results of ILCMV, MCICEM and MCICEM-4DSI methods for the classification of CSF, GM, WM and WMH.

ILCMV MCICEM MCICEM-4DSI
Median IQR Median IQR Median IQR pvalue
CSF
Gaussian 0.94 (0.93, 0.94) 0.94 (0.93, 0.95) 0.94 (0.93, 0.94) 0.858
Gabor 0.94 (0.93, 0.95) 0.94 (0.93, 0.95) 0.94 (0.93, 0.95) 0.688
Guided 0.94 (0.93, 0.95) 0.94 (0.93, 0.94) 0.94 (0.93, 0.95) 0.468
Bilateral 0.90 (0.89, 0.92) 0.90 (0.87, 0.91) 0.90 (0.87, 0.91) 0.513
GM
Gaussian 0.95 (0.94, 0.96) 0.95 (0.94, 0.96) 0.95 (0.94, 0.96) 0.985
Gabor 0.95 (0.94, 0.96) 0.95 (0.94, 0.96) 0.95 (0.94, 0.96) 0.934
Guided 0.95 (0.93, 0.96) 0.94 (0.93, 0.96) 0.95 (0.93, 0.96) 0.838
Bilateral 0.94 (0.92, 0.95) 0.93 (091, 0.95) 0.93 (091, 0.95) 0.797
WM
Gaussian 0.98 (0.97, 0.98) 0.98 (0.97, 0.98) 0.98 (0.97, 0.98) 0.842
Gabor 0.98 (0.97, 0.98) 0.98 (0.97, 0.98) 0.98 (0.97, 0.99) 0.706
Guided 0.98 (0.96, 0.98) 0.97 (0.96, 0.98) 0.98 (0.96, 0.98) 0.612
Bilateral 0.97 (0.96, 0.98) 0.97 (0.96, 0.98) 0.97 (0.96, 0.97) 0.909
WMH
Gaussian 0.88 (0.85, 0.89) 0.87 (0.85, 0.88) 0.87 (0.85, 0.87) 0.468
Gabor 0.89 (0.86, 0.90) 0.88 (0.86, 0.90) 0.88 (0.84, 0.89) 0.361
Guided 0.88 (0.84, 0.90) 0.86 (0.82, 0.89) 0.87 (0.83, 0.88) 0.320
Bilateral 0.82 (0.80, 0.83) 0.82 (0.81, 0.83) 0.83 (0.81, 0.83) 0.888
Kruskal-Wallis test, median (interquartile range, IQR). *p<0.05, **p<0.01
TABLE 7. The Kruskal-Wallis test results of Gaussian, Gabor, Guided and Bilateral filters for the classification of CSF, GM, WM and WMH.
Gaussian Gabor Guided Bilateral
- - - - p value
Median IQR Median IQR Median IQR Median IQR
CSF
ILCMV 0.94 (0.93, 0.94) 0.94 (0.93, 0.95) 0.94 (0.93, 0.95) 0.90 (0.89, 0.92) <0.001**
MCICEM 0.94 (0.93, 0.95) 0.94 (0.93, 0.95) 0.94 (0.93, 0.94) 0.90 (0.87, 091) <0.001**
MCICEM-4DSI 0.94 (0.93, 0.94) 0.94 (0.93, 0.95) 0.94 (0.93, 0.95) 0.90 (0.87, 091) <0.001**
GM
ILCMV 0.95 (0.94, 0.96) 0.95 (0.94, 0.96) 0.95 (0.93, 0.96) 0.94 (0.92, 0.95) 0.145
MCICEM 0.95 (0.94, 0.96) 0.95 (0.94, 0.96) 0.94 (0.93, 0.96) 0.93 (091, 0.95) 0.080
MCICEM-4DSI 0.95 (0.94, 0.96) 0.95 (0.94, 0.96) 0.95 (0.93, 0.96) 0.93 (091, 0.95) 0.030*
WM
ILCMV 0.98 (0.97, 0.98) 0.98 (097, 0.98) 0.98 (0.96, 0.98) 0.97 (0.96, 0.98) 0.159
MCICEM 0.98 (0.97, 0.98) 0.98 (097, 0.98) 0.97 (0.96, 0.98) 0.97 (0.96, 0.98) 0.130
MCICEM-4DSI 0.98 (0.97, 0.98) 0.98 (097, 0.99) 0.98 (0.96, 0.98) 0.97 (0.96, 0.97) 0.041*
WMH
ILCMV 0.88 (0.85, 0.89) 0.89 (0.86, 0.90) 0.88 (0.84, 0.90) 0.82 (0.80, 0.83) <0.001**
MCICEM 0.87 (0.85, 0.88) 0.88 (0.86, 0.90) 0.86 (0.82, 0.89) 0.82 (0.81, 0.83) 0.003**
MCICEM-4DSI 0.87 (0.85, 0.87) 0.88 (0.84, 0.89) 0.87 (0.83, 0.88) 0.83 (0.81, 0.83) 0.003**

Kruskal-Wallis test, median (interquartile range, IQR). *p<0.05, **p<0.01

First, the three classification methods, ILCMYV, MCICEM,
and MCICEM-4DSI combined with Gaussian and Gabor
filters were better than using other filters where the classifi-
cation results using Bilateral filters was the worst among the
all real image classification results.

Second, from the results in Figures 8 to 10, especially
the red arrow marks in Figures 9 and 10, we can see that
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ILCMV was better than MCICEM and MCICEM-4DSI in
simultaneously classifying brain tissue and WMH. Because
WMH was correctly classified when using ILCMYV with bilat-
eral filters, and the other methods with bilateral filters were
not.

Third, if we only compared the WMH classification result
of ILCMV with the results obtained in [16], the results of
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FIGURE 6. Box plots of three different methods, combined with four spatial filters from the significant differences, with the results in Table 7.
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FIGURE 7. Average computational time of three different methods,
combined with four spatial filters in all synthetic MRI data sets.

three methods combined with the Gaussian and Gabor filters
are better than those in [16].

Fourth, ILCMV performs classification of the four brain
components, such as CSF, GM, WM and WMH, which are
superior to MCICEM and MCICEM-4DSI, at least half of
the computing time in the total 30 real cases.

IV. DISCUSSION

This paper proposes a new hyperspectral magnetic reso-
nance imaging processing technique, ILCMYV, which can
simultaneously classify the normal brain tissue and white
matter hyperintensity and can also generate their abun-
dance fractional maps for soft decisions as well as their
binary classification maps for hard decision, respectively.
In clinical applications, soft decisions can provide assis-
tance for clinicians to diagnose, while hard decisions can
produce quantitative results that can be used as an objec-
tive data of patients for tracking differences before or after
treatment.

The experimental results show that when synthetic
MR images were used for experiments there was no
significant difference among ILCMV and MCICEM and
MCICEM-4DSI in classification of the normal brain tissue
and WMH. However, the computing time of ILCMV has been
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shown to be faster than the other two methods. Time saving
is very useful for clinical practical applications.

From Tables 2-4, the classification results of synthetic MR
image ILCMV, MCICEM, and MCICEM-4DSI, using Gabor
filters were the best. But the computing time of using Gabor
filters was slower than other filters as shown in Figure 7. The
fastest and slowest time difference can be 4.3 times or more.
Although the Gabor filter is considered to be effective in pro-
cessing image texture information [24], [25], its computing
time is a factor that needs to be considered when it is applied
in clinical application.

In the Kruskal-Wallis test results of the three classification
methods with the different spatial filters, we can see that there
was significant difference in classification of CSF and WMH
when different spatial filters were used to capture spatial
information around pixels. This is because the difference in
edge with high signal to noise ratio can also be blurred by the
filters and both CSF and WMH are features of high signal
intensity in PD or T2 MR images. So the Kruskal-Wallis
test results had significant differences. However, there were
no significant differences in the Kruskal-Wallis test results
in classification of GM and WM because the intensity of
GM and WM in PD or T2 MR images are darker than CSF
and WMH.

From the box plot results in Figure 6, the classification
results of CSF using ILCMV with four different filters were
more robust than the results of the other two methods with
four different filters. According to the classification results
of WMH, ILCMYV with the Gaussian and Gabor filters were
more stable than the other two methods. In addition, the three
methods combined with the Guided filters made the classifi-
cation results change greatly with the influence of different
noise and non-uniformity levels. This is because the Guided
filter is affected by its used guided image and the smoothing
effect is not so obvious.

The concept of ILCMV is derived from hyperspectral
image processing technology. So, when MR images are con-
sidered as multispectral band images, each of these MR band
images represents information provided by a different pulse
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(H) MCICEM-Bilateral

FIGURE 8. The classification results of CSF, GM, WM, and WMH by using ILCMV, MCICEM, and MCICEM-4DSI in real brain MRI with the WMH grade of
Fazekas 1. They simultaneously have soft and hard classification results. From left to right in the image are the soft classification result of CSF, GM, WM,
and WMH, with the color image being the hard classification result. (A-D) The results of ILCMV method combined with Gaussian, Gabor, Guided and
Bilateral filters, respectively. (E-H) The results of MCICEM method. (I-L) The results of MCICEM-4DSI method.
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FIGURE 9. The classification results of CSF, GM, WM, and WMH by using ILCMV, MCICEM, and MCICEM-4DSI in real brain MRI with the WMH grade of
Fazekas 2. They simultaneously have soft and hard classification results. From left to right in image are the soft classification result of CSF, GM, WM, and
WMH, with the color image being the hard classification result. (A-D) The results of ILCMV method combined with Gaussian, Gabor, Guided and
Bilateral filters, respectively. (E-H) The results of MCICEM method. (I-L) The results of MCICEM-4DSI method.

(H) MCICEM

FIGURE 10. The classification results of CSF, GM, WM, and WMH by using ILCMV, MCICEM, and MCICEM-4DSI in real brain MRI with the WMH grade of
Fazekas 3. They simultaneously have soft and hard classification results. From left to right in image are the soft classification result of CSF, GM, WM, and
WMH, with the color image being the hard classification result. (A-D) The results of ILCMV method combined with Gaussian, Gabor, Guided and
Bilateral filters, respectively. (E-H) The results of MCICEM method. (I-L) The results of MCICEM-4DSI method.

sequence, multispectral images suffer from insufficient band images so that hyperspectral image analysis technology can
images. In order to resolve this issue, we need to use NBE to be readily applied. Despite that such band expansion may
expand insufficient band images resulting from multispectral not have real physical reasoning it does provide a significant
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advantage to cope with the issue of insufficient band images.
However, due to the length of the paper, the third-order
correlation band image is used for NBE in the paper for image
analysis and the effects of using different nonlinear band
expansion methods are not discussed but can be explored in
future applications.

V. CONCLUSION

This paper develops a novel approach, called ILCMYV, which
can simultaneously classify brain normal tissues and WMH
lesions in MR brain images. Since accurate and simulta-
neous classification of brain normal tissue and WMH are
very important for assessing the cognitive deficits of demen-
tia patients and the brain tissue changes of the elderly,
this paper verifies the accuracy and feasibility of the pro-
posed ILCMYV via synthetic brain MR image and real brain
MR image experiments. In addition, a comparative analysis
between the effects and feasibility of ILCMV and MCICEM
using different spatial filters is performed. From the exper-
imental results and computational time, it shows that the
Gaussian filter is most suitable for ILCMV and MCICEM.
Although using Gaussian filters is slightly worse in accu-
racy than that using Gabor filters, its computing time is
far superior to that using Gabor filters in the sense that
they both can simultaneously complete the task of classify-
ing brain normal tissue and WMH. Moreover, ILCMV can
further provide the abundance fractional map results (soft
decision) which can help the clinician for visual assess-
ment and diagnosis as well as produce binary classifica-
tion map results (hard decision) for quantifying the brain
normal tissue and WMH volume. This advantage has never
been explored in clinical MRI research literature in the
past.
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