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ABSTRACT For large scale global optimization (LSGO) problems, many algorithms have been proposed
in recent years. However, there are still some issues to be further handled since the search space grows
exponentially and the problem solving becomes more and more difficult as the problem scale becomes larger
and larger. In this paper, we propose a new hybrid algorithm for solving large-scale global optimization
problems. First, we adopt an existing group algorithm to divide the large-scale problem into several
small-scale problems. Second, a modified self-adaptive discrete scan method is designed to roughly scan
the whole search space and then focus the search on the promising regions. Third, a hybrid search strategy is
proposed, which adaptively chooses the one-dimensional search scheme or the covariance matrix adaptation
evolutionary strategy to solve the subproblems of separable, partially (additively) separable problems or
non-separable problems, respectively. To demonstrate the performance of the proposed algorithm, we con-
duct the experiments on 15 difficult LSGO problems in CEC’2013 benchmark suite and compare the
performance of the proposed algorithm with that of the several state-of-the-art algorithms. The results show
that the proposed algorithm is more effective than the compared algorithms in terms of solution accuracy.

INDEX TERMS Large scale global optimization, hybrid algorithm, one-dimensional search, covariance
matrix adaptation evolutionary strategy.

I. INTRODUCTION
Many real world problems can be modeled as continuous
large scale global function optimization problems, and these
problems appear in a variety of fields such as biometrics,
aerospace, network antennas, data mining and so on [1]–[4].
Usually, a global optimization problem with dimension
higher than or equal to 1000 is called a large scale global
optimization (LSGO) problem.

At present, there are two important challenges in solv-
ing LSGO problems. The first one is that the search space
for LSGO problems grows exponentially as the problem
dimension increases [5]. For example, for a 1000-dimension
global optimization problem, when the search range in each
dimension is [-50, 50], the search space contains as large
as 1001000 points even if we only consider integers in each
dimension. The extremely huge search space will make it
impossible to search the whole space because the exist-
ing optimization algorithms cannot explore the entire space
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within valid time or limited computing resources. Liu and
Wang [6] proposed a self-adaptive discrete scan method try-
ing to shrink the search space by finding the promising region
in the huge search space quickly and roughly from the current
best solution. However, this scan method adopt a fixed shrink
rate which cannot be suitable to different situations and dif-
ferent stages of evolution process, affecting the performance
of scan method greatly. Therefore, designing a reasonable
self-adaptive scan method to narrow the search space and to
focus the search range on themost potential domain canmake
a great contribution to the whole optimization algorithm.

Another major challenge is that the LSGO problems can-
not be solved effectively by using the traditional math-
ematical optimization algorithms such as Quasi-Newton
method [7], conjugate gradient method [8] and so on. This is
attributed to the fact that the LSGO problems are generally
complex, non-convex and non-differentiable. Evolutionary
Algorithms (EAs) such as genetic algorithms (GAs), esti-
mation of distribution algorithms (EDAs), evolution strat-
egy (ES), particle swarm optimization (PSO), ant colony
optimization (ACO), etc. have been widely applied in LSGO
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problems because of their characteristics of self-organized,
self-adaptive and derivative free [9]. These algorithms work
well for solving medium and small size optimization prob-
lems. However, it has been demonstrated that the perfor-
mance of EAs deteriorates rapidly as the problem dimension
increases [10], which is called ‘the curse of dimensionality’.
Therefore, designing an effective and efficient algorithm
for LSGO problems is a non-trivial task. It has attracted
many researchers and a great deal of research works have
been done in the past decades. An efficient approach for
solving LSGO problems usually uses a divide-and-conquer
strategy and tries to divide a large-scale problem into a
set of smaller sub-problems. By optimizing these sub-
problems separately, one can get the global optimal solu-
tion for the original problem. Cooperative Co-evolution (CC)
has been proposed by Potter and De Jong [11] based on
the above strategy. To improve the performance of CC,
in recent years, many decomposition strategies have been
developed, such as differential grouping (DG) and its
variants [12]–[16], recursive differential grouping (RDG) and
its variants [17], [18], formula-based grouping(FBG) [19]
and so on. Recent studies show that these state-of-the-art
decomposition methods can decompose most of the existing
large-scale partially separable benchmarks with 100 percent
accuracy [20]. The definitions of separable, partially (addi-
tively) separable and non-separable problems can be found in
literatures [12], [21], [22]. The existing grouping-based opti-
mization algorithms, such as DECC-RDG [17], CMAESCC-
RDG [17], CMAESCC-RDG2 [18], and CBCC-DG2 [16]
improve the performance of CC framework effectively in
solving LSGO problems. However, the existing algorithms
are still far unsatisfactory because the best solutions they
obtained for the majority benchmarks are far away from the
true global optimal solutions. Thus, developing more effec-
tive algorithms still remain an arduous challenge.

In this paper, we propose a new hybrid algorithm based
on a modified self-adaptive discrete scan method and a
sub-problem solving strategy called the combination opti-
mization strategy. The modified self-adaptive discrete scan
method guides search from the whole search space to a
narrowed promising region with a self-adaptive shrink rate.
By using the self-adaptive shrink rate, discrete scan method
can adjust the shrink speed of search space adaptively to fit
the different situations on different evolutionary stages. As a
result, it can provide potential initial solutions for the algo-
rithms to solve sub-problems. And then, a strategy combining
the covariance matrix adaption evolution strategy (CMAES)
with one-dimensional search method to optimize the sub-
component is designed to improve the performance of the
hybrid algorithm.

The remainder of this paper is organized as follows.
Section 2 describes the related work on solving large scale
optimization problems briefly. Section 3 presents the pro-
posed method in detail. Numerical experiments are carried
out and analyzed in Section 4. Section 5 concludes the paper
and points out the future works.

II. RELATED WORK
Large-scale global optimization is a hot research field in the
past decade. A large number of metaheuristic approaches
have been developed. In this section, we give a brief descrip-
tion about the state-of-the-art ones for solving LSGO prob-
lems. These algorithms can be divided into two classes:
decomposition based algorithms which decompose the prob-
lem into a set of small-scale sub-components (sub-problems)
and non-decomposition based algorithms which do not
explicitly decompose the LSGO problems [6].

A. DECOMPOSITION BASED ALGORITHMS
CC based algorithm is a typical class of decomposition based
algorithms. The proposed algorithm belongs to this class
and we shall briefly introduce CC based algorithms. A CC
based algorithm consists of two phases: decomposition and
optimization [17]. The whole problem is divided into sev-
eral sub-problems and optimizing each sub-problems inde-
pendently. Then the solutions obtained in all sub-problems
are combined into one solution as the current solution of
the whole problem in each cycle. One major issue affect-
ing the performance of the CC based algorithms is the
way of the decomposition [12], [13], [23]. In recent years,
many decomposition methods have been proposed to decom-
pose the LSGO problem into small sub components. These
decomposition methods can be classified into two cate-
gories: manual decomposition and automatic decomposi-
tion [17]. Also, different optimization methods are designed
or selected to solve each sub-problem in a round robin
fashion.

In manual decomposition methods, the size of each
sub-component and the number of sub-components are man-
ually designed. For example, in literature [11], the uni-
variable grouping method is proposed to decompose a
n-dimension problem into n 1-dimension sub-problems,
which does not consider the interaction between decision
variables. Yang et al. [24] propose a random grouping
method (RG), which randomly splits decision variables into
m s-dimension sub-components and use differential evolu-
tion under CC framework (DECC-G) to optimize each sub-
problem. The ‘random’ strategy ensures that each variable has
the same chance to be grouped in any of the sub-problems
to increase the chance of assigning two interacting decision
variables to one group. And also a particle swarm optimiza-
tion (PSO) [25] and an artificial bee colony (ABC) [26] algo-
rithm are incorporated with RG to improve the optimization
performance. However, this grouping method needs the user
to predetermine the sub-component size. These algorithms
have proven to be very effective for fully separable problems.
But the performance deteriorates when the interaction exists
among three or more variables. The reason is that these
methods do not take the structure of the potential interac-
tion between decision variables into account fully. For prob-
lems with non-separable sub-problems, Omidvar et al. [27]
develop algorithm DECC-D incorporating differential evo-
lutionary (DE) with the delta grouping. In delta grouping,
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it assumes that when assigning interacting variables into
different subgroups, the improvement on the objective func-
tion value of the interacting variables is limited. The delta
grouping classifies the variables with the smaller delta value
into the same subgroup, where the delta value refers to the
amount of change on the objective function by a certain vari-
able in each iteration. The DECC-G based on delta grouping
improves the performance of DE effectively. However when
it is applied to the problemswithmore than one non-separable
groups, its performance drops significantly.

To overcome the disadvantage of the manual decomposi-
tion and improve the decomposition accuracy, many auto-
matic decomposition methods have been proposed in decade
years, where the grouping methods are based on the inter-
action check (i.e., by identifying the interaction) between
variables and assign the interacting variables into the same
group without setting the size of sub-component or the num-
ber of sub-components manually. A representative automatic
decomposition method, cooperative co-evolution with vari-
able interaction learning (CCVIL), is proposed based on
the non-monotonicity detection by Chen et al. [28]. In this
method, if the monotonicity of a variable does not vary with
the value of another variable, the two variables are considered
to be independent. Otherwise they are considered to be inter-
act with each other. The CCVIL algorithm has been proven to
be more accurate than most manual decomposition methods.
However, the change of monotonicity cannot be detected eas-
ily in the limited number of function evaluations, so the per-
formance of the CCVIL is limited by themaximumnumber of
function evaluations specified in the optimization algorithms.
In literature [12], differential grouping (DG) is developed
based on the non-linearity detection. If the differential of
objective function value caused by perturbing one variable
changes for different values of another variable, the two
variables are defined to be interacted. The experiment results
show that DG has a higher grouping accuracy than CCVIL
on the CEC’2010 benchmark problems. It has also been
demonstrated by experiments that the DECC-DG algorithm
using this grouping method has achieved the better results
than the predecessors on CEC’2010 benchmark problems,
but it still cannot find the global optimal solutions for many
benchmarks. Themain reason is that theDGgroupingmethod
can only find directly related variables, so the variables with
indirect interaction cannot be correctly grouped. To over-
come this issue, Mei et al. [14] develop a global differential
grouping (GDG) method with an interaction matrix between
variables which indicates whether the variables are related to
each other or not. GDG outperforms other five algorithms
on CEC’2010 benchmark suite when it is embedded into
a variant of covariance matrix adaption evolution strategy
(CMAES) [29] under CC framework (CC-GDG-CMAES).
Since both DG and GDG need calculate all the differential
values between every pair variables, their computational com-
plexity is high. To tackle this problem, a recursive differ-
ential grouping (RDG) is proposed based on non-linearity
detection [17]. It firstly identifies the interaction between the

chosen variable xi and the remaining variables. If there is any
interaction identified, the set of remaining variables is divided
into two subsets G1 and G2 equally. And then the interaction
between xi and each subset is checked, respectively. This
process is recursively executed until interaction between xi
and all of the variables are identified. If no variable interacted
with xi, xi will be placed into a separable group. When no
interaction can be identified, RDG outputs each variable as
a separable group, i.e., all the variables are independent.
Later, Sun et al. [17] proposed CMAESCC-RDG in which
CMAES is adopted as the subcomponent optimizer. Com-
pared with MOS and MA-SW-Chains, CMAESCC-RDG
performs better than these two state-of-the-art algorithms
on CEC’2010 benchmark and CEC’2013 benchmark suite.
However, in RDG, the parameter to control the threshold
value determining whether two variables interact with each
other or not should be set manually. Sun et al. [18] proposed
an adaptive threshold parameter estimation scheme with
recursive differential grouping called RDG2. RDG2 achieves
higher decomposition accuracy than RDG.

The aforementioned grouping methods are all proposed for
the black box optimization problems where the information
of function expression is supposed unknown or unavailable.
However, in many real world problems, the function expres-
sions are known or available. In this situation, it is very
possible to design more effective variable group method. For
example, in literature [19], Wang et al. develop a formula
based grouping (FBG) for white box problems where the
information of function expression is known or available.
This method can accurately identify the interaction of vari-
ables and can group variables correctly by scanning function
expressions. In this paper, we suppose that the problem to be
tackled is a black box problem and we shall adopt RDG2 as
the decomposition method.

An variant of CC methods is the contribution based coop-
erative co-evolution framework (CBCC) [30], which com-
bines CC with a computation resource allocation scheme.
CBCC tries to improve the efficiency of the CC meth-
ods by assigning different computational resources to dif-
ferent sub-components based on their contribution to the
improvement of objective function value. CBCC has three
major variants: CBCC1 [30], CBCC2 [30] and CBCC3 [20].
In CBCC1, sub-groups are optimized one by one in each
cycle in CC framework, and then the sub-group with the
largest cumulative contribution is optimized with one more
chance, whereas CBCC2 chooses the sub-group with the
largest cumulative contribution to optimize repeatedly until
it enters a stagnant state. The experimental results on the
CEC’2013 benchmark suite [31] show that the resource
allocation policy of CBCC1 encourages exploration search
and that of CBCC2 encourages the exploitation search,
respectively. To balance the exploration and exploitation,
CBCC3 uses the contribution in a single cycle instead of
cumulative contributions as the measure of contribution and
gets better results. In this paper, we adopt main idea of
the resource allocation scheme in CBCC3 to assign more
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computation resources to the group with the largest contri-
bution in each cycle.

B. NON-DECOMPOSITION BASED ALGORITHMS
Apart from the decomposition based algorithms, there are
many approaches which do not explicitly decompose the
problems. These algorithms often combine multiple algo-
rithms or multiple techniques together to improve the ability
of solving large-scale optimization problems. For example,
the MA-SW-Chains algorithm proposed in literature [32] is
a memetic algorithm which uses steady-state GA as a global
search method and Solis and Wets algorithm as a local search
method. At the same time, a local search chain is applied
to store the local search state of the variable so that the
same parameters can be used in the next time when the
local search is performed on the variable. In literature [33],
a multiple trajectory search (MTS) is investigated to solve
the LSGO problems. In the MTS, the performance of three
local search methods is tested and the best one is chosen
to optimize the problems. LaTorre et al. [34] [35] propose
a combination algorithm called multiple offspring sam-
pling (MOS). It is a dynamic hybrid evolutionary algorithm
seamlessly combining different types of algorithms, e.g.
genetic algorithm, Solis and Wets, opposition based dif-
ferential evolution [36], MTS-LS and so on. MOS selects
one algorithm among these above algorithms dynamically
based on their performance in every phase to optimize the
LSGO problems and gets very good performance (it is the
champion algorithm in CEC’2013 and CEC’2015 algorithm
competitions). Later, the authors in literature [37] propose
a modified whale optimization algorithm (MWOA), which
effectively combines three techniques. A nonlinear dynamic
strategy based on cosine function is proposed to control the
optimization parameters firstly. Then, a quadratic interpola-
tion method is used to improve the ability of local search,
and finally the Lévy-flight strategy is adopted to make the
algorithm jump out of the local optimal solution. Recently,
Molina et al. [38] propose a SHADE algorithm that combines
the DE algorithm with a set of local search algorithms
in an iterative manner. The appropriate local optimization
algorithm is selected according to their improvements in the
previous optimization phase. It is also a dynamical hybrid
algorithm. The experiment results show that the aforemen-
tioned non-decomposition based algorithms perform better
than the state-of-the-art decomposition based algorithms.
This indicates that the appropriate combination strategy in
non-decomposition based algorithms is very important and
can improve the performance of algorithms significantly for
the LSGO problems. However, the performance of these
non-decomposition based algorithms are far not satisfactory
because they cannot find a good approximate global solu-
tion for many benchmark problems. Therefore, designing an
effective combination strategy to improve the search ability
of non-decomposition based algorithms is still a challenging
and urgent issue.

Besides the aforementioned methods, there are some other
non-decomposition based algorithms proposed to improve
the ability of solving LSGO problems, e.g. auxiliary func-
tion methods [39]–[42] and parallel algorithms [43], [44],
etc. In this paper, we shall make use the advantages of both
decomposition based algorithms and non-decomposition
based algorithms and focus the research on designing effec-
tive combination strategy and combining it with CBCC
framework.

III. PROPOSED METHOD
In this section, we develop a new hybrid algorithm for solv-
ing LSGO problems. The algorithm consists of two phases,
decomposition phase and optimization phase. Its pseudo code
is shown in Algorithm 1. In the first phase (i.e. decomposition
phase), the decompositionmethod RDG2 is used to divide the
problem intom small scale sub-problems. In the second phase
(i.e. optimization phase), the modified self-adaptive discrete
scan method (mSaDS) proposed in Section III-A is used to
scan the whole search space quickly and roughly, and narrow
it to a promising region. Then the combination optimiza-
tion algorithm(COA) designed in Section III-B combining
different optimization methods based on the separability of
sub-problems is applied to optimize the problem. The details
of mSaDS and the combination strategy are described in the
following sections.

Algorithm 1 The New Hybrid Optimization Algorithm
(mSaDS-COA)
1: (m, x1, x2, . . . , xm) = RDG2(f , lb, ub, n); //decompose

the problem into m subcomponents by RDG2
2: initialize the population;
3: calculate the fitness of each individual;
4: find the best member bestmen and its function value
bestval, respectively;

5: while FEs ≤ FExMax do // FEs is the number of func-
tion evaluations, and FEsMax is the maximum number
of function evaluations.

6: use mSaDS to roughly scan the whole search space;
7: use COA to optimize the problem;
8: end while

A. MODIFIED SELF-ADAPTIVE DISCRETE SCAN METHOD
As discussion in Section I, one major difficulty of the LSGO
problems is that the huge search space makes the prob-
lems too complex. The modified self-adaptive discrete scan
method (mSaDS) is proposed to find the promising regions
and reduce the whole search space. In mSaDS, the continuous
search space was divided into discrete one by inserting a cer-
tain amount of points along each dimension uniformly. These
discrete points are referred to the levels on each dimension.
Only such points consisting of all these possible levels from
all dimensions are searched in mSaDS. Thus the number of
points searched will be decreased from infinite to finite and
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the search space is narrowed. And then the search will be
focused on the promising region. The detail is as follows.

We suppose the current best solution is x∗ =

(x1∗, x2∗, . . . , xn∗)T and its function value is f ∗ = f (x∗).
Without loss of generality, we take ith dimension as an
example. Assume that the current upper bound and lower
bound of ith dimension is ub(i) and lb(i) respectively.
Firstly, we distribute uniformly levelnum points l1, l2, . . . ,

llevelnum in the continuous region [lb(i), ub(i)] while the vari-
ables in the other dimensions keep fixed values at x∗. Evaluate
every level and find the best one li∗ along dimension i.
Secondly, it is very possible for the neighbor region around

this level to be a more promising region in dimension i. The
neighbor region can be defined as

U (li∗) = [l∗i − r ∗ d, l
∗
i + r ∗ d],

where

d = ub(i)− lb(i)

and r is the shrink rate between 0 and 1.We update the current
upper and lower bounds of the ith dimension by (1) and (2)
respectively to narrow the search region. If the updated lb(i)
or ub(i) exceeds the boundary of the search region, we reset
it to the value before updated.

ub(i) = li∗ + r ∗ d (1)

lb(i) = li∗ − r ∗ d (2)

Thirdly, if the length of [lb(i), ub(i)] is less than a pre-
determined threshold bgap_min, repeat the above narrowing
process along next dimension until the narrowing process on
all dimensions is finished.

The performance of the proposed algorithm is sensitive to
the parameter r . The larger the value of r is, the slower the
space shrinks. If the value is set too small, the search space
would shrink too fast in the early generations and the global
optimal solution may be missed. However, if the value is set
too large, the method cannot effectively reduce the search
space and especially cannot quickly find a potential region in
the later stage of iterations. Also, if the value of r is taken
a fixed value (e.g., as in the scan method [6]), the corre-
sponding scan method cannot fit the requirements of different
situations and different stages. To overcome this shortcoming,
we propose a self-adaptive scan method with adaptive shrink
rate called a modified self-adaptive discrete scan method
(mSaDS). The adaptive shrink rate is given by (3).

r =
e1/
√
iter
− 1

e1/
√
iter + 1

(3)

where iter is the current iteration and r adaptively decreases
with the increase of iter . In the early stage of evolution,
the value of r would be relatively large which means that
the search space would reduce slowly to keep the diversity
of solutions and as the process advances (i.e. as the iter
increases), r would become smaller and smaller, narrowing
the space fast on a promising region.

The pseudo code of the modified self-adaptive dis-
crete scan method with adaptive shrink rate is present in
Algorithm 2.

Algorithm 2 The Modified Self-Adaptive Discrete Scan
Method (mSaDS)
Require: The population size: popsize; The lower and upper

bounds lb and ub of the variables; The number of
points distributed in ith dimension: levelnum; The current
best solution: bestmem; The current best function value:
bestval; The minimum boundary gap: bgap_min; The
maximum number of iterations: iterNum.

Ensure: The updated lower and upper bounds lb and ub of
the variables; The new best solution: bestmem; The new
best function value: bestval;

1: while iter ≤ iterNum do
2: for i = 1 to dim do

(Note that dim is the total number of selected dimen-
sions.)

3: levelNum = popsize;
4: level_gap = (ub(i)− lb(i))/(levelnum− 1);

(Note that level_gap is the level gap of the search
region.)

5: if (ub(i)− lb(i)) < bgap_min then
6: continue;
7: else
8: levels = lb : level_gap : ub;
9: end if
10: evaluate the function values of all the levels;
11: find the new best member and its function value

denoted as bestmen_new and bestval_new respectively;
12: if bestval_new < bestval then
13: bestval = bestval_new;
14: bestmem = bestmen_new;
15: end if
16: calculate shrink rate r = e1/

√
iter
−1

e1/
√
iter+1

;
17: update lb(i) and ub(i) by (2) and (1) respectively;
18: if lb(i) or ub(i) exceeds the boundary of the search

region then
19: reset it to the original value;
20: end if
21: iter = iter + 1;
22: end for
23: end while

B. A COMBINATION OPTIMIZATION ALGORITHM
After scanning the entire search space by mSaDS, we can
locate promising regions and find good solutions for LSGO
problems. The solutions will be used as the initial points
for further optimization. In the following optimization step,
we propose a combination optimization algorithm (COA)
based on the characteristics of one-dimensional search meth-
ods, CMAES and CBCC for solving LSGO problems.
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CMAES is a kind of estimation of distribution algorithm
which was proposed for solving difficult non-convex contin-
uous optimization problems. It samples the population under
a normal distribution N (me,C), which can be expressed as
follows.

N (me,C) ∼ me + C
1
2N (0, I) (4)

where me is the mean value and C is the covariance
matrix. The main idea of CMAES is iteratively updating
the covariance matrix based on the offsprings to guide
the search towards the areas with lower objective func-
tion values. For more details of CMAES, please refer
to literatures [14] and [29]. The numerical experiment
results of CMAESCC-RDG [17], CMAESCC-RDG2 [18]
and CC-GDG-CMAES [14] demonstrate that the perfor-
mance of CMAES outperforms many other algorithms for
non-separable LSGO problems.

Based on the above analysis, we develop an combina-
tion strategy integrating CMAES and a one-dimensional
search method according to whether the subcomponent is
separable or not. For a LSGO problem, after it is decom-
posed by RDG2 into m subgroups, the variables with inter-
action are classified into one group, which is called a
non-separable subcomponent, and the variables which have
no interaction with other variables form one group. Such
group is called a separable sub-component. The main idea
of the combination strategy is that assigning CMAES to
optimize the non-separable subcomponent and applying a
one-dimensional search method to optimize the separa-
ble subcomponent dynamically. In this paper, mSaDS pro-
posed in Section III-A is a one-dimensional search method
which will be used for optimizing a separable compo-
nent in the combination optimization algorithm. And also,
in order to make use of the computing resources efficiently,
we combine the two aforementioned optimization algorithms,
i.e. CMAES and mSaDS, into CBCC framework to form
a combination optimization algorithm. The pseudo code of
the detailed combination optimization algorithm is shown in
Algorithm 3. From Algorithm 3, we can see that the main
framework of the combination optimization algorithm can be
summarized in the following three steps:
Step 1. In each round of optimization, we optimize each

subcomponent by any optimization algorithm under CC
framework to provide initial improvements for all subcompo-
nents (Lines 5-9). And then sort the subcomponents accord-
ing to their contributions on the improvements of the whole
function value.
Step 2. We choose the subcomponent with the biggest

contribution and give it one more chance to be optimized
(Lines 14-18). If the chosen subcomponent is a separable sub-
component, we use mSaDS as the optimizer to optimize the
subcomponent, otherwise, we use CMAES as the optimizer.
Then we rank all the subcomponents again according to their
contributions on the improvements of the whole function
value (Lines 19-21).

Step 3. If the biggest contribution of all subcomponents is
smaller than a threshold. Then return to step 1 to carry out the
next round of optimization until termination condition is met.

Algorithm 3 The Combination Optimization Algori-
thm (COA)
Require: The current best solution: bestmem; The current

best function value: bestval;
Ensure: The updated best solution: bestmem; The updated

best function value: bestval;
1: set the current best individual cv = bestmen;
2: f ∗ = bestval;
3: 1 = zeros(1,m); // initialize the improvement vector for

all subcomponents
4: while FEs ≤ FExMax do // FEs is the number of func-

tion evaluations, and FEsMax is the maximum number
of function evaluations.

5: for i = 1 to m do
6: fp = f ∗;
7: (cv, f ∗) = optimizer(cv, xi); //xi is a vector con-

taining all the variables in ith subcomponent
8: 1i = fp − f ∗;
9: end for
10: (C, index) = sorting(1, descending);
11: j = index(1);
12: while C1 > epsilon and FEs < FExMax do
13: fp = f ∗

14: if jth subcomponent is a separable subcomponent
then

15: (cv, f ∗) = mSaDS(cv, xj); // xj is a vector
containing all the variables in jth subcomponent; mSaDS
is used as a one-dimensional search method;

16: else
17: (cv, f ∗) = CMAES(cv, xj);
18: end if
19: 1j = fp − f ∗;
20: (C, index) = sorting(1, descending);
21: j = index(1);
22: end while
23: end while
24: if f ∗ < bestval then
25: bestval = f ∗;
26: bestmem = cv;
27: end if
28: return(bestmen, bestval)

IV. EXPERIMENTAL DESIGN
In order to evaluate the performance of the proposed
mSaDS-COA, we conduct numerical experiments on the
CEC’2013 large scale global optimization benchmark
suite. The suite consists of 15 benchmark functions with
1000 dimensions which can be divided into three categories
by their characteristics. f 1 – f 3 are fully separable func-
tions. f 4 – f 11 are partially separable functions, in which
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f 4 – f 7 has a separable subcomponent with 700 variables,
whereas f 8 – f 11 have no separable subcomponent. f 12 – f 15
are non-separable functions. The details of the benchmark
can be found in literature [31]. All the numerical experi-
ments are implemented in Matlab R2014b on a computer
with Intel(R) Core(TM) i7-3770, CPU@3.40GHz and 8.00G
RAM. Three state-of-the-art algorithms are chosen as the
comparison algorithms. The maximum number of function
evaluations FEsMax is set to 3.0×106 in all algorithms. And
all algorithms are executed 25 independent runs for each test
problem.

A. PARAMETER SETTING
The parameters of the proposed algorithm are as follows. For
mSaDS, the minimum value of boundary gap bgap_min is
set to 1.0e − 3. When the difference between the updated
upper and lower bounds of ith dimension is smaller than
this value, the algorithm will go to the next dimension. The
population size is 30. In the optimization phase, the improve-
ment threshold epsilon is set to bestval × (1.0e − 7), where
bestval is the current best function value. For CMAES, all the
parameters are set in the standard way as in CMAESCC-RDG
and CMAESCC-RDG2.

B. RESULTS AND ANALYSIS
To demonstrate the performance of the proposed algorithm,
we compare the results of mSaDS-COA with those of
TPHA [6], CMAESCC-RDG2 [18], and MOS [34]. TPHA
is a two phase hybrid algorithm and our proposed mSaDS
is modified based on its first phase method. CMAESCC-
RDG2 is the state-of-the-art algorithm developed in
literature [18], whose decomposition method (i.e. RDG2)
and optimization method (i.e. CMAES) are both used
in our proposed algorithm. MOS performs very well on
CEC’2013 benchmark functions and it is the champion
algorithm in Algorithm Competition of CEC’2013 and
CEC’2015. The comparison results are shown in Table 1,
where ‘Median’ denotes the median of the function values
of 25 independent runs, ‘Mean’ represents the mean of the
function values of 25 independent runs and ‘Std’ is the
standard deviation. The best results are highlighted using
T-test with significance level ρ = 0.05. And the results of
T-test of mSaDS-COA and the other compared algorithms are
shown in Table 2. In Table 2, ‘A’ represents acceptance, which
means the results on a function between the given algorithm
and mSaDS-COA have no statistical difference. And ‘R’
denotes rejection, which indicates the results between the
given algorithm and mSaDS-COA on a function are different
significantly.

From Table 1, we can find that mSaDS-COA performs bet-
ter than TPHA with 10 wins, 2 loses and 3 ties. mSaDS-COA
outperforms TPHA on all of the partially separable prob-
lems f 4 – f 11. Especially on functions f 4, f 7, f 8 and
f 11, the mean of function values is improved by 2, 17,
9, 9 orders of magnitudes respectively, which strongly

demonstrates that the modified self-adaptive discrete scan
method and the combination strategy are effective. The modi-
fied self-adaptive discrete scan method used in mSaDS-COA
can keep the diversity of the solutions and find the more
potential search regions than the scan method proposed in
TPHA. At the same time, the advantages of COA can be
fully utilized in the optimization phase, since the separable
subcomponents and non-separable subcomponents may exits
simultaneously in partially separable problems. Furthermore,
contribution-based combination optimization algorithm can
assign an appropriate optimization algorithm (mSaDS or
CMAES) to a specific subcomponent. In this way, the pro-
posed algorithm can make full use of computing resources to
improve the performance of the algorithm, which guarantees
the effectiveness of mSaDS-COA.

To better understand the performance of mSaDS-COA,
we give the comparison of the convergence curves of
mSaDS-COA and TPHA on f 7 and f 8 in Figs. 1 and 2 for
examples. In the figures, the horizontal axis represents the
number of function evaluations in evolutionary process. The
vertical axis denotes the mean of the best function values
found. In the scan step (i.e. the step in which the number of
function evolutions is less than about 3×105), we can see that
the curves ofmSaDS-COA converge slower than TPHA in the
beginning, which can keep more potential good solutions and
good search regions. As the process of the scanning advances,
the curves decrease faster than TPHA which guarantees the
search focus on the promising regions quickly in the later
stage of the scan step. These illustrate that the discrete scan
method with a adaptive shrink rate proposed in this paper is
more effective than that with a fixed rate proposed in TPHA.
Moreover, the curves of mSaDS-COA converge to relatively
smaller values than TPHA on these two functions in the
optimization phase, which demonstrates that the performance
of COA proposed in Section III-B is significantly better than
the optimization algorithm used in TPHA.

Comparing with CMAESCC-RDG2, mSaDS-COA gets
10 wins, 1 loses and 4 ties. On fully separable prob-
lems, mSaDS-COA finds the better optimal solutions on
f 1 and f 2, which shows that mSaDS as a one-dimensional
search algorithm is more effective than CMAES used in
CMAESCC-RDG2 for fully separable problems. For par-
tially separable problems f 4 – f 11, mSaDS-COA achieves
the best results on 6 out of 8 benchmark functions. Especially
on functions f 4, f 8 and f 11, the mean values are improved
by 4, 6, 12 orders of magnitudes, respectively. In princi-
ple, the decomposition method and optimization method
used in CMAESCC-RDG2 are also applied in mSaDS-COA,
however, the scan method and the combination strategy are
not used in CMAESCC-RDG2. That means the difference
between the two algorithms is the usage of our proposed
mSaDS and combination strategy, so the excellent optimiza-
tion results obtained by mSaDS-COA demonstrate that our
proposed algorithm is effective for partially separable prob-
lems. For non-separable problems, from Table 1 and Table 2,
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TABLE 1. Comparison between mSaDS-COA and other state-of-the-art algorithms on CEC’2013 benchmark functions.

we can find that there is no significant statistical difference
between the optimization results of CMAESCC-RDG2 and
mSaDS-COA. The reason is that on non-separable problems,

all variables are divided into only one subgroup and the pro-
posed combination optimization strategy of mSaDS-COA is
identical to CMAES used in CMAESCC-RDG2. In this case,
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TABLE 2. Results of T-test of mSaDS-COA and others.

FIGURE 1. The convergence curves of mSaDS-COA and TPHA on
f7 problem.

FIGURE 2. The convergence curves of mSaDS-COA and TPHA on
f8 problem.

the proposed algorithm is basically the same as CMAESCC-
RDG2 on non-separable problems. So the results obtained
are nearly equal.

As for MOS, we can see that mSaDS-COA performs better
than MOS on 9 functions: f 2, f 4, f 5, f 7, f 8, f 9, f 11, f 13
and f 15, whereas it performs worse thanMOS on 5 functions:
f 3, f 6, f 10, f 12 and f 14. On partially separable problems,

TABLE 3. The average ranking of each algorithm on 15 benchmark
functions.

mSaDS-COA outperforms MOS significantly. For example,
we can find that mSaDS-COA improves the mean value of
function f 4 from 1.74e + 08 to 1.69e + 02, which improves
the best objective function value by 6 orders of magnitudes.
For function f 7, the mean value 1.62e + 04 is improved to
8.06e− 22 by using our proposed algorithm. For function f 8,
mSaDS-COA reduces the mean value from 8.00e + 12 to
2.23e − 00, improving the optimization results by 13 orders
of magnitudes. And also, for function f 11, the mean value
obtained by mSaDS-COA is 5.55e − 09, while the value by
MOS is 5.22e + 07. However, on functions f 3, f 6 and f 10,
mSaDS-COA is significantly worse than MOS. The reason
is that f 3, f 6 and f 10 are Ackley functions and there exits
many local optimal solutions. MOS integrates many efficient
global search algorithms with local search algorithms, and
it use a more complex combination strategy on many efficient
algorithms. Thus it can often jump out of the local solutions
by using a proper global search algorithm to get better results
for fully non-separable problems with lots of locally optimal
solutions. This means that for this kind of problems, we have
to do further work to develop a more efficient and effective
strategy for our proposed algorithm in the future.

In overall, we can find that mSaDS-COA achieves the best
solutions on 8 test problems and MOS achieves the best solu-
tions on 6 test problems, whereas TPHA obtains the best solu-
tions on only 3 test problems and CMAESCC-RDG2 obtains
only 1 best solutions. The number of optimal solutions
obtained by the mSaDS-COA is far more than the champion
algorithmMOS. Moreover, the optimal solutions obtained by
mSaDS-COA are much better than those obtained by MOS.
For example, on four problems, mSaDS-COA got solutions
with errors less than 1.00e + 00, while MOS did so only on
two problems.

In order to further compare the comprehensive perfor-
mance of the compared algorithms, a performance measure
called Average Ranking (AR) [17] , is defined and is used as
follows.

AR =

∑N
i=1 ranki
N

(5)

where N represents the total number of functions, and ranki
denotes the rank of the algorithm for ith function. The smaller
the AR is, the better performance the algorithm has.

Table 3 gives the average ranking of each compared algo-
rithm on CEC’2013 benchmark functions. The best results
are shown in bold.
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As shown in Table 3, the average ranking of mSaDS-COA
is 1.7, the smallest one among the four compared algorithms.
This result means that the comprehensive performance of
mSaDS-COA is better than MOS, CMAESCC-RDG2, and
TPHA on solving large scale optimization problems, which
is consistent with the aforementioned analysis.

V. CONCLUSION
In this paper, we propose a new hybrid algorithm for LSGO
problems based on contribution-basedCC framework. Firstly,
we use a variant of recursive differential grouping to judge
the separability and decompose the problem. And then a
modified self-adaptive discrete scan method is applied to
scan the whole search space roughly, where the shrink rate
can be adaptively adjusted with the different evolution stage,
which would make the search focus on the promising regions.
Based on these, a combination optimization algorithm is
developed to tackle the separable and non-separable problems
by using different strategies. It combines the characteris-
tics of mSaDS, CMAES and CBCC, and assigns different
optimization algorithms to different problems and different
groups dynamically. In this way, the proposed algorithm can
effectively handle LSGO problems. However, the proposed
algorithm performs not very well on non-separable problems,
since all variables of a non-separable problem is assigned to
one subgroups by RDG2, i.e., the problem is not decomposed
at all and the proposed algorithm should face a large scale
optimization problem, where the proposed algorithm only
combines two strategies mSaDS and CMAES, and its search
ability is not so strong as that of MOS which combines many
efficient strategies. This means that for this kind of problems,
we have to design some effective decomposition methods in
the future.
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