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ABSTRACT Inmany-objective optimization,maintaining a good balance between convergence and diversity
have turned out to be a considerable challenge for classical evolutionary algorithms. The large scale
solution set required to describe the entire Pareto optimal front hinder the decision makers from finding
the most satisfactory solution, whereas he/she is only interested in a limited part of the objective space.
The dilemma can be handled by incorporating the preference information in the search process. In this
paper, an evolutionary algorithm based on region preference is proposed for many-objective optimization.
The preference model is constructed in combination of the target region and reference points. To focus the
search on the preference region while maintaining well convergence and diversity within the region, a tri-
level ranking criterion is introduced into the proposed algorithm, and different rank works at different phase
of the search process. A fuzzy theory-based interactive approach is proposed to guide more individuals to
further search into the objective space with higher preference degree and help the decision maker choose the
most interested solution. The proposed algorithm has been extensively compared with other state-of-the-art
preference-based algorithms on DTLZ1∼ DTLZ4 test problems having 3-10 objectives. The experimental
results indicate that the proposed algorithm can achieve competitive and better performance. Moreover,
we extend the algorithm to handle multiple target regions.

INDEX TERMS Many-objective optimization, evolutionary algorithm, preference articulation, interactive
approach.

I. INTRODUCTION
Many problems in the fields of natural sciences, social sci-
ences, and engineering practice include multiple objectives to
be optimized, such as flow shop scheduling problem [1] and
portfolio optimization problem [2], etc. Generally, the multi-
objective optimization problem with more than three objec-
tive dimensions is defined as many-objective optimization
problem (MaOPs) [3]. The aim of solving MaOPs is deemed
as helping the decision makers (DM) in finding the most
preferred solution. The existing multi-objective evolutionary
algorithm (MOEAs) perform steadily on problems with two
or three objectives. However, the Pareto dominance-based
algorithms have suffered great difficulties with the increasing
number of objectives. The primary reason attributes to the
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dominance resistance [4], where most candidate solutions
become mutually non-dominated, hence lead to the severe
loss of the selection pressure.Moreover, it is often difficult for
decision makers to visually understand the trade-off between
four-dimensional and above objectives, which means it diffi-
cult to select the optimal solution from the large scale solution
set [5].

Most MOEAs attempt to discover the entire Pareto optimal
front at a large computational cost.Whereas in context of real-
world optimization problems, the decision makers are often
interested in a limited part of the objective space. Seen from
the perspective of DM, these algorithmswaste toomuch com-
putational resource acquiring unnecessary solutions. Hence
some researchers incorporate the DM’s preference informa-
tion to guide the search into the most interested region instead
of the whole Pareto front. In this way, the selection pressure
is enhanced while alleviating the selection burden of the
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DM. Most existing many-objective optimization algorithms
utilize the preference information before (a-priori) or after
(a-posteriori) the search process, but seldom of them are
designed to be interactive. Usually, the DM lacks a priori
information of the trade-off between objectives, and the true
Pareto front located within the preset target region may be
empty. The interactive approach makes it possible to change
the preference information during the search process for a
more reasonable solution set. So we should introduce an
interactive approach, which is one of starting points of our
proposed algorithm.

The preference information can be articulated through
desirability function[6], [7], preference region [8], weight
adaption [9], reference point [10], outranking relation [11],
performance indicators (R2-indicator [12], averaged Haus-
dorff distance [13]) and so on. Among these preference-
based multi-objective evolutionary algorithms (PMOEAs),
the reference points-based MOEAs perform the predefined
targeted search by means of predefined reference points,
which can effectively alleviate several difficulties in handling
many objectives; the preference region-based method define
the region in shape of a rectangle or a circle and the preference
range on each objective is controllable, making it a more
intuitive and flexible way for DM to express preference.
However, most of the existing interactive approaches produce
a single reference point, which is in dilemma to real-word
application.

In this paper, we propose a hybrid interactive many-
objective optimization evolutionary algorithm with region
preference for decision makers. The preference model com-
bines the target region and reference point together, based
on which the DM can intuitively express his/her preference
and guide the search process to the most interested region.
The main contributions of this paper can be summarized as
follows.
• We construct a preference model which reflects the pref-
erence information of DM, then a corresponding tri-level
ranking criterion is designed to focus the search process
on the preference region while balancing convergence
and diversity of the solution set.

• Fuzzy theory is utilized in interactive approach to further
guide the solutions reach to the objective with higher
preference degree, assist the DM in understanding the
distribution pattern of preferred solutions and finding the
most preferred solutions.

• Performance comparison is conducted against two state-
of-the-art algorithms on DTLZ test suit with multiple
target regions to demonstrate the efficacy and usefulness
of the proposal.

The remainder of this paper is organized as follows.
In Section II, we introduce the background knowledge,
a summary of state-of-the-art works and a visual clustering
approach to visually judge the performance of the preference-
based algorithms. The proposed algorithm is described in
detail in Section III. Section IV shows the experimental
evaluation of the proposed method and comparisons with

two recently proposed preference region-based algorithms.
Finally, the conclusion is drawn in Section V.

II. PRELIMINARIES
In this section, some basic definitions in multi-objective opti-
mization are first given. Then, we summarize the recently
improvement in preference-based algorithms, especially ref-
erence point-based and preference region-based approaches.
Finally, a visual clustering method is introduced to visually
inspect the effectiveness of PMOEAs in Section IV.

A. BASIC DEFINATIONS
In this study, the followingmulti-objective optimization prob-
lem can be mathematically defined as{

min F(x) = (f1(x), f2(x), . . . , fN (x))
subject to gi(x) ≤ 0 i = 1, 2, . . . , p

(1)

where x ∈ � is called the decision vector, and � is a
continuous search space.N ≥ 2 is the number of the objective
functions, and p is the number of constrains. F : x → RN is
the map of decision variable space to N real valued objective
space.
Definition 1. (Pareto Dominance):Given two decision vec-

tors x, y ∈ �, x is said to Pareto dominate y, denoted by x ≺ y,
iff fi(x) ≤ fi(y), for every i ∈ {1, 2, . . . ,N }, and fj(x) ≤ fj(y),
for at least one index j ∈ {1, 2, . . . ,N }.
Definition 2. (Pareto Optimality): A solution x∗ is Pareto

optimal iff there is no x ∈ � such that x ≺ x∗.
Definition 3 (Pareto Set): For a givenMOPF(x), the Pareto

set (PS) is defined as

PS = {x ∈ � |x is Pareto optimal } (2)

Definition 4. (Pareto Pront): The Pareto front (PF) is defined
as

PF =
{
f (x) ∈ RN |x ∈ PS

}
(3)

B. REFERENCE POINT-BASED APPROACHES
The reference point-based approach employs a set of pre-
defined reference points to perform the predefined targeted
research. The distribution of the reference point represents
the aspiration level of the DM on each objective.

MOGA [14] developed by Fonseca and Fleming is con-
sidered as the earliest such approach. A goal vector is uti-
lized to specify the aspiration levels and attach priority to
solutions satisfying the goals. MOGA was further extended
by [15], [16] in introducing a preferability operator and a
goal-sequence domination scheme. The main weakness of
this method is that it requires prior information of objective
value ranges so as to initialize the goal vector. Another widely
used approach, proposed byMolina et al. [17] is a dominance
relation named g-dominance. In g-dominance, solutions sat-
isfying all aspirations or none of the aspirations are preferred
over solutions satisfying some aspirations. But g-dominance
faces difficulties in handling multiple ROIs for a solution
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can g-dominance one goal vector, and simultaneously, be
g-dominated by another goal vector [18].

Goulart and Campelo [19] employ a single reference point
to express the preferences of a decision maker, and adaptively
biases the search procedure toward the region of the Pareto-
optimal front that best matches its expectations. But it is still
insufficient to express preference degree or precisely control
preference region using only a single reference point. In [20],
a positive point is utilized to divide the search space and con-
verge the population to the preference area, while a negative
point works discourage the solutions close to the negative
preference. NSGA-III [21] generates a set of well-spread ref-
erence points towards the entire PF. But under the condition
that replacing the uniform points with DM-defined reference
points, it can also focus on the preferred part of PF. Motivated
by the clustering operation inNSGA-III, Cai et al. [22] cluster
each solution based on the minimum vertical distance to its
corresponding reference line, then the ranking operator works
to accelerate the convergence pace. Zhao and Liu [23] project
these uniformly distributed point into the preference region
using the information of reference point and the preference
angle, in which way the guidance of search process is more
specifically described.

Reference points can also hybrid with the indicator-based
algorithms, where the predefined points are applied to an
achievement scalarizing function incorporated into the indi-
cator function. In R2-indicator, the preference is articulated
by the distribution of reference points. Gómez and Coello
cut-off the objective space through adaptively updating the
reference points taking the statistical information of previous
generations into account [24]. TheAspiration Set EMOA [25]
considers a set of reference points to guide the search, with
averaged Hausdorff distance as the quality indicator.

C. PREFERENCE REGION-BASED APPROACHES
In preference region-based approaches, Solutions located in
the preferred region and uninterested region are then assigned
different territories such that more solutions are obtained
within the region of interest (ROI). The ROI can be defined
either in an explicit form (such as target region [26], desir-
ability function [27], etc.), or an indirect form (such as weight
vector [28], reference vector [29], etc.).

Desirability function maps the objectives to the interval
[0, 1] according to their desired value. The search process
can be guided to different part of the PF through changing
the objective values corresponding to desired value 0 and 1.
Trautmann and Mehnen [27] incorporate Harrington’s one
side desirability function in NSGA-II for focusing on inter-
ested PF in noisy environment. In [30], DF is integrated
into the hypervolume-based selection. For the purpose of
extending DF to many-objective optimization, they take
desirability index, which is of low computational complexity,
as the second-level selection criterion in the non-dominated
sorting [31].

Jiao and Zhang [8] propose the concept of region-
dominance. Different from the nonlinearly transformation

in DF, the desired value of solutions within the region is
assigned 1, while the outside ones is assigned 0. It enables the
DM to obtain an effcient set of solutions in his/her preferred
region without using any scalarizing function. Wang and
Li [32] adapt this idea and present the target region in the
objective space in the shape of a rectangle or a circle, and
proposed a target region-based algorithm family (T-SMS-
EMOA, T-R2-EMOA and T-NSGA-II). Numerical compar-
isons show the capability of the algorithms in finding solu-
tions in a more fine-grained resolution within a predefined
target region. In the application of many-objective optimiza-
tion for agile satellite mission planning, Li et al. [33] extend
the algorithm family with T-MOEA/D and T-NSGA-III.
Compared with the original algorithms, lower bound of the
target region in T-MOEA/D and T-NSGA-III is used as the
ideal point. It accelerates the evolution process to the target
region.

Hybrid with reference vector, preference region construc-
tion in RVEA [34] is defined by a central vector and a
radius. The adaptively adjusted reference vectors within the
preference convex cone lead to the evenly distributed Pareto
solution sets. In [35], Gong et al. dynamically changing the
density of the weight vectors to specify the preference by a
hypersphere.

In [36] and [37], reference points are employed as the lower
bound of the preference regions. To avoid obtaining only one
Pareto optimal solution, an additional threshold is used to
control the range of the ROIs.

Among the above preference-based algorithms, we select
T-MOEA/D andT-NSGA-III [33] for comparison. They share
the preference region definition form with our proposed
approach and are designed for many-objective optimiza-
tion. More details of T-MOEA/D and T-NSGA-III will be
described in Section IV.

D. NON-DOMINATED SOLUTIONS VISUALIZATION
Most of the existing studies visually observe the high
dimensional non-dominated solution sets using the Parallel
Coordinate Plots [38] (PCPs). Each of axes in the paral-
lel coordinate system corresponds to one objective space,
and each solution in the M -dimensional objective space
is represented by a corresponding M-1 segment polyline.
However, the over-crowded polylines intersect and over-
lap to each other in the plot, which makes it difficult for
decision makers to understand the distribution pattern of non-
dominated solutions. In this section, we introduce the electro-
magnetic field physical model into visual clustering, aiming
to visually judge the performance of the preference-based
algorithms.

Inferred from Ampere’s circuital law and Fleming’s right
hand rule [39], for the current-carrying wires placed in
the same plane, the same current direction wires tend to
attract each other, while the opposite current directions ones
repel each other. Motivated by this phenomenon, the phys-
ical model is introduced into the visual clustering process:
solutions in the same cluster have the same direction thus
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FIGURE 1. Schematic diagram of electromagnetic field clustering method.
The solid lines are the bounds of cluster, the dotted line is the center line
of cluster.

attract each other; while the solutions in different clutter have
opposite directions and aremutually exclusive. The clustering
method based on the electromagnetic field model is shown in
Fig. 1.

Between the k-th and k+1-th dimensional axes, VUi and
VDi are the upper and lower bounds of cluster i; VMi is the
corresponding cluster centerline, and the center point is ri.
VMj is the centerline of cluster j, and the center point is
rj. To simplify the problem, we only analyze the force and
movement of the center point in the y-axis direction. The
specific steps of the clustering method are as follows:

1) Calculation of cluster center point coordinate
The initial position of the cluster center point is determined
by the mean values of upper and lower bounds of each cluster
as ri (xi, yi) and rj

(
xj, yj

)
. To reduce the staggering and over-

lapping of inter-cluster lines, the coordinate of center point is
adjusted by the repulsive force from other clusters. Referring
to the Lorentz force function, we define the cluster repulsive
force subjected to other N -1 clusters in (4),

fi = Fr ·
N−1∑
j=1

ni · nj(
ni + nj

)2 · cosαji·Hi (4)

Fr ∈ [0, 1] is the repulsive intensity coefficient, which
is used to control the repulsive strength between the cluster
center points; nj represents the number of solutions contained
in cluster j; Hi is the length of cluster center line VMi; α
denotes the angle between fji and the positive direction of
y-axis, whose cosine value can reveal the force direction
from cluster j to cluster i. Positive fi indicates that cluster i
is subjected to upward force, while negative indicates being
subjected to downward force; and the larger absolute value of
fi means the greater displacement of ri, Let the coordinates of
center point ri, after the repulsion be r

′

i

(
x
′

i , y
′

i

)
.

2) Calculation of solution center point coordinate
The solutionswithin the same cluster show gravitation to each
other, that is, the inner cluster solution center gathers toward

FIGURE 2. Calculation of solution center point coordinate.

cluster center point coordinate. Fig. 2 shows the calculation
of solution center point coordinate: Vti is one solution of clus-
ter i, whose corresponding original center point is rt (xt , yt).

Subjected to the gravitational force of r
′

i , assuming rt
moves to r

′

t

(
x
′

t , y
′

t

)
, then y

′

t can be obtained by (5),

y
′

t = Fg · yi +
(
1− Fg

)
· yt (5)

Fg ∈ [0, 1] is the gravitational intensity coefficient. The
larger Fg means the higher aggregation degree. Therefore,
the decision maker can adjust the visualization effect by
changing Fg.

3) Visualization mapping based on clustering
The input solution set D includes N solutions, and each
solution corresponds to an M -1 segment polyline. There-
fore, the solution set D corresponds to N · (M − 1) solu-
tion center point. Repeat steps 1, 2 until all the solution
center points between the adjacent axes are obtained. The
center point and the end points of the polyline served as
the extreme points, we apply cubic spline interpolation to
obtain the smooth curve after the clustering process (the
red curve in Fig. 2). Thus, the high-dimensional solu-
tion is mapped into the two-dimensional parallel coordinate
system.

Fig. 3 shows an illustration of visual clustering the true
Pareto frontier of the DTLZ3 test problem [40] based on
the electromagnetic field clustering method. According to
the variation of DM’s preference on different parts of the
objective space, the entire PF is classified into five categories,
and five smooth curves from purple to cyan denote to the
preference degree from high to low. When the evolutionary
algorithm obtains a non-dominated solution closest to the
preferred region, the individual will be represented by the
corresponding curve. Therefore, this method can be used to
reveal whether the algorithm effectively guides the search
process of the solution into the preference region, as well as
the distribution pattern of the solutions in different preference
regions.
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FIGURE 3. Illustration of electromagnetic field visual clustering:
10-objective DTLZ3 problem.

III. PROPOSED ALGORITHM: HMOEA-T
A. OVERVIEW
The framework of the proposed HMOEA-T is described
in Algorithm 1. The aim of HMOEA-T is to guide the
search to the target region and obtain a well-converged and
well-distributed PS within it.

First, the target region is explicitly specified by the lower
and upper bounds on each objective. In step 2-3, the prefer-
ence model is constructed. A set of N uniformly distributed
reference points are generated, which can be denoted as
3 = {λ1, λ2, . . . , λN }. Then, the original reference points
are regulated towards the target region for achieving only the
preferred section of the PF. Next, the initial population P0
with N members is randomly produced. The main loop steps
are iterated until the termination criterion is satisfied. In step
8, the offspring populationQt is produced by using the recom-
bination operator. Then Pt is updated by combining Qt with
the current population. To accelerate the search pace towards
the target region while balancing the diversity and conver-
gence, we propose a tri-level ranking criterion. The Pareto
non-dominated relationship is utilized as the first ranking
criterion, and the population St = ∪τi=1Fi, where Fi is the ith
Pareto non-dominated front of Pt and τ satisfies

∑τ−1
i=1 |fi| <

N and
∑τ

i=1 |fi| ≥ N . Number of the non-dominated solu-
tions is directly proportional to the number of objective,
when the objective number comes to 20, almost all solutions
are mutually non-dominated [5]. So for problems with high
number of objectives, St is almost always equal toF1. At early
phase of the search, no solutions reach to the target region.
In this case, 1st and 3rd criterion work effectively guiding
solutions to the target region. In step 11, all the solutions
are clustered based on the minimum vertical distance to the
reference vector. To attach priority to the solutions close to
the region center, we rank the reference points Rcos based on
the cosine similarity to the region center. Then each solution
in St is assigned a rankR based on its performance rank and
the rank of its corresponding reference point Rcos. In the
following steps, Pt is separated to Pt = Pint ∪P

out
t . If Pint 6= ∅,

the 2nd ranking criterion and adaptive selection works to lead
a uniform distribution on the PF within the region. In the

Algorithm 1 Framework of the Proposed HMOEA-T
Input: maximal number of generations tmax , population
size N , target region T , number of objectivesM .
Output: final population Ptmax
1: /∗ Initialization ∗/
2:

∧
← GenerateReferencePoints()

3:
∧
← RegulateReferencePoints()

4: P0← InitializePopulation()
5: /∗ Main Loop ∗/
6: t ← 0
7: While t < tmax do
8: Qt ← OffspringGeneration(Pt )
9: Pt ← Pt ∪ Qt
10: St ← Pareto-Nondominated_Sort(Pt )

/∗ 1st Criterion ∗/
11: rankR()← ReferencePoints-Guided_Ranking

(T , St )/∗ 3rd Criterion ∗/
12: for Pint ∈ Tdo
13: rankS()← Strengthened Dominance Relation-

Based_Ranking(Pint ) /
∗ 2nd Criterion ∗/

14: Pint+1← Adaptive-Selection(Pint , N
in
t )

/∗N in
t denotes to the size of Pint ∗/

15: end for
16: Pt+1← Reference Points-

Guided_Selection(St ,Pint+1)
17: t← t+1
18: end while

following sections, the key procedures of HMOEA-T are to
be described in detail.

B. PREFERENCE MODEL CONSTRUCTION
Target region is an intuitive and user-friendly form to express
the preference information, while the reference points can
concisely reflect the preference degree to each objective.
In this section, we construct a preferencemodel to take advan-
tages of the both preference articulation method. Firstly, a set
of well-distributed reference points are generated on the unit
hyperplane. Then, the reference points are regulated towards
the target region predefined by the DM, and locate on the
unit hypersphere. In this paper, the canonical simplex-lattice
design method [40] is used to generate the original uniform
reference points on the hyperplane

∑M
i=1 fi = 1. Suppose H

be the divisions on each axis, a set of reference points 3 =
{λ1, λ2, . . . , λN } inM -dimensional space can be obtained by

λi,j ∈ {
0
H
,
1
H
, . . . ,

H
H
},

λi = (λi,1, λi,2, . . . , λi,M ),
M∑
j=1

λj = 1

(6)

where i = 1, 2, . . . ,N with N being the number of uni-
formly distributed points. As suggested in [21], the number
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FIGURE 4. Initial distribution of reference points on the unit hyperplane
in 3-D objective space.

of two-layered reference points can be calculated as

N =
(
H1 +M − 1
M − 1

)
+

(
H2 +M − 1
M − 1

)
(7)

where H1 and H2 denotes the divisions on the boundary and
inner layer respectively. Fig. 4 shows the initial distribution of
the reference points on the unit hyperplane with H1 = 2 and
H2 = 1, the blue lines denotes the corresponding reference
vectors.

Then, the distribution of the reference points are regulated
according to the target region by (8)

λ
temp
i,j = λi,j · LP

(
fj
)
+ xLj (8)

where LP
(
fj
)
= xUj − xLj is the preference range of target

region on jth dimension, xUj and xLj denotes the upper and
lower bound of the preference range, λtempi,j is the regulated
reference point. Then, the corresponding unit reference point
can be obtained by the coordinate transformation (9)

λ
′

i,j =
λ
temp
i,j∥∥∥λtempi,j

∥∥∥ (9)

Finally, under the constraint of target region, λ
′

1, λ
′

2, . . . , λ
′

N
are all located at the hypersphere

∑M
i=1 f

2
i = 1.

Fig. 5 shows the regulated distribution of the reference
points. The blue box denotes the target region and the orange
spherical represents the unit hypersphere. It can be observed
that the initial reference points are transformed towards the
target region and located on the unit hypersphere, hence the
preference model is constructed in combination of the target
region and reference points. The vector from the origin to
regulated boundary reference points corresponds to the lower
bound of the target region. On the other hand, when the regu-
lation is performed under the condition that the preference
range on different objectives is inconsistent, the reference
points are more densely distributed on the objective with a
shorter preference range. It means that the algorithm performs
a fine-grained search on the more strictly required objective,
which in line with the search demand of the decision maker.

FIGURE 5. Construction of preference model in the 3-D objective space.

C. REFERENCE POINTS GUIDED SELECTION
Reference points guided selection mainly works in three
aspects: at the initial phase of the optimization, guiding the
population to search towards the target region; at the middle
phase, accelerating the evolution to the interior of target
region; balancing the convergence and diversity of the solu-
tion set when the target regions have no intersection with true
PF.

1) REFERENCE POINTS RANKING
Let the center of target regions be µ, for a reference point λ
in the regulated reference point set 3

′

, the cosine similarity
between µ and λ can be calculated by (10)

cos
(
θλµ

)
=
〈λ,µ〉

‖λ‖ · ‖µ‖
(10)

Sorted by cosine similarity in descending order, the rank
of the reference point set Rcos =

{
rcos1 , rcos2 , . . . , rcosN

}
is

obtained, where rcosi denotes the rank of reference point λi.
Fig. 6 shows an example of ranking reference points based

on the cosine similarity to the target region center. It can be
seen that the greater the cosine similarity means the lower
deviation degree to the region center, and attaching priority
to the solutions close to these reference points can accelerate
the evolution to the interior of the target region.

2) CLUSTERING OPERATION
Clustering is operated to population St at each generation.
Let λ and µ be the unit vector corresponding to the refer-
ence vector and region center vector, respectively. The value
objective of candidate solution x in M -dimensional space is
f (x) = (f1(x), f2(x), . . . , fM (x)), d1(x) is the distance between
origin and x, d2(x) and d3(x) is the perpendicular distance
from x to λ and µ. They can be computed, respectively, as

d1(x) = ‖f (x) · λ‖ (11)

d2(x) = ‖f (x)‖ · sin θλ (12)

d3(x) = ‖f (x)‖ · sin θµ (13)
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FIGURE 6. An example of ranking reference points based on the cosine
similarity to target region center.

FIGURE 7. Illustration of distances d1(x),d2(x) and d3(x) in 2-D space. λ
and µ denotes the reference vector and target region center vector,
respectively.

where θλ and θµ is the acute angle from x to λ and
µ. Fig. 7 illustrates the distance d1(x), d2(x) and d3(x)
in 2-D space. In clustering operation, only d2 will be consid-
ered. The candidate solution x is assigned to cluster Cj with
the minimum dj,2 value. d1 and d3 will work in the third-level
ranking assignment.

3) THIRD-LEVEL SELECTION
Once each solution in St is associated with a cluster among
the cluster set C in clustering operation, one elitist can be
selected from each cluster for the next generation. Since our
motivation is to find the solution in each cluster that is closest
to the ideal point while converging into the target region,
the following aggregation function is proposed,

Specifically, given a translated reference point in cluster
Cj, the aggregation function value of solution x ∈ Cj can be
calculated by

Fj(x) = d1(x)+ ϕ1d2(x)+ ϕ2d3(x) (14)

The smaller d2(x) means closer distance to the reference
point, which eventually leads to a more uniform distribu-
tion of solution set; the smaller d1(x) under the condition

FIGURE 8. Example of third-level ranking assignment. white and blue
points represents the reference points and candidate solution; the red
and blue number denotes the rank of reference points and solutions,
respectively.

of constant d1(x) reveals better convergence. The combi-
nation of d1(x) and d2(x) can well balance the conver-
gence and distribution of the solution set in the objective
space [42].

However, the outer layer regulated reference points corre-
spond to the lower boundary of the target region. If only d1(x)
and d2(x) are considered, the solution outside the target area
but having relatively small values of d1(x) and d2(x) would
be selected (such as the solution x1 and x2 shown in Fig. 8).
Therefore, a perpendicular distance d3(x) from candidate
solution x to the region center vector µ is introduced. The
introduction of d3(x) makes the population tends to con-
verge toward the region center during the search process. The
smallerFj(x) valuemeans the solution x is closer to the region
center while having better convergence and distribution. And
the clustering operation ensures that the closeness to region
center would not be over-emphasized. Sorted in ascending
order according to the Fj(x) values, the rank of the solution

in each cluster Rcls =
{
rcls1 , rcls2 , . . . , rclsNj

}
is obtained, where

Nj denotes the size of cluster Cj. Hence, the third-level rank
of solutions in population St can be computed as

rankR(x) = Rcos + NC · (Rcls − 1) (15)

In Fig. 8, the red and blue number denotes the rank of
reference points and third-level rank of solution set, respec-
tively. It can be observed that with the introduction of d3(x),
x1 is prior selected than x2 to construct the next generation
population. As suggested in [42], parameter ϕ1 is set to
be 5, and the influence of ϕ2 will be further discussed in
Section IV-D.

The set P2t is used to preserve the solutions selected in
second-level selection, Nt and N S

t represents the size of P2t
and St . The rest N S

t -Nt solutions in St are selected according
to the third-level rank.

Then the population for next generation Pt+1 = P2t ∪ P
3
t

is generated, where P3t denotes solutions selected in third-
level selection. If Pint = ∅, the reference points guided
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selection works to focus the search process towards the target
region; if Pint 6= ∅ ∧ N in

t < N , the selection mechanism
attach priority to the elite solutions located within the prefer-
ence region. As illustrated in Fig. 8, suppose one solution is
obtained in second-level selection, the solutions ranking 1 and
2 would be prior selected, while the solution with rank 3 is de-
emphasized. The combination of second-level and third-level
selection can accelerate the search into the target region in the
middle phase of optimization.

D. STRENGTHENED PARETO RELATION-BASED
SELECTION
In application, the predefined target region usually only has
a limited interaction with the true Pareto optimal front. The
recently proposed strengthened Pareto relation [43] (SDR)
can adapt to various shapes of Pareto fronts without any
aggregation function or weight vector. We use the adaptive
feature of SDR to focus search to the preferred fraction of PF
instead of the entire region.

For the solutions within the target region Pint , a candidate
solution x is said to dominate another candidate solution y
(denoted as x ≺SDR y) if and only if,{

Con(x) < Con(y) θxy ≤ θ

Con(x) · θxy
θ
< Con(y) θxy > θ

(16)

where Con(x) =
∑M

i=1 fi(x) is a metric to measure conver-
gence degree of x, θxy denotes the acute angle between the
objective values of the two candidate solutions and can be
calculated by

θxy = arccos(f (x), f (y)) (17)

and θ is the adaptive niche size estimated according to
the distribution of candidate solution set. In each niche, only
one solution with best performance will be selected. To guar-
antee the environmental selection pressure, we choose half
solutions of the Pint with well convergence and distribution
performance as Pint+1. Hence, the size of θ is set to be the⌊
N
/
2
⌋
-th minimum element of{

min
n∈Pint ∧n/∈{m}

θmn

∣∣∣ m ∈ Pint
}

(18)

where θmn denotes the acute angle between any pair of can-
didate solutions m and n, then the ratio of the non-dominated
solutions in Pint is around 0.5.
Crowding distance is used in [43] to enhance diversity of

the PS, which has been demonstrated ineffective in handing
MaOPs [44]. SDR works in the normalized space, hence we
adapt the diversity enhancement strategy in NSGA-III [21] to
replace the crowding distance.

E. INTERACTIVE APPROACH BASED ON FUZZY THEORY
In practical application, the predefined preference ranges
on each objectives may be too strict or loose due to the
reason that the DM does not know the possibilities and

FIGURE 9. Framework of interactive approach based on fuzzy theory.

limitations of the problem beforehand. Moreover, if the
target region is improperly defined, the population could
not reach into the preferred region, but the final solutions
can still reveal the information of the closest part of true
PF. Therefore, an interactive approach based on fuzzy the-
ory is proposed in this section, whose framework is shown
in Fig. 9.

First, the preference degree on different part of the objec-
tive space is expressed. Then, the distribution of the reference
points is further adapted based on the preference degree,
assigning more computational resource on the sub- region
with higher preference degree. Finally, the final population is
classified based on the fuzzy membership matrix, helping the
DM to select the most satisfied solution. The detailed steps
are described as follows:

1) Input the solution sets and desirability grade

Let the M -dimensional approximate solution set obtained in
previous optimization be Pt = (x1, x2, . . . , xM ), and each
element of Pt contains N solution xi = (xi,1, xi,2, . . . , xi,M ),
i = 1, 2, . . . ,N ; T = {t1, t2, . . . , tP} refers to the P fac-
tors describing each approximate solution; the Q desirability
grade from high to low are denoted by V =

{
v1, v2, . . . , vQ

}
.

2) Membership function matrix construction

Let the fuzzy triangle membership function of factor tp to
desirability grade vq be ap,q =

(
lp,q,mp,q, up,q

)
, where lp,q

and upq is the lower and upper bound of the fuzzy triangle
membership function, respectively. Larger up,q−lp,q refers to
the higher fuzzy degree. Then, the fuzzy membership matrix
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of M objective Ai can be expressed as follows,

Ai =
(
ap,q

)
PQ =


a1,1 a1,2 · · · a1,Q
a2,1 a2,2 · · · a2,Q
...

...
. . .

...

aP,1 aP,2 · · · aP,Q

 (19)

where p = 1, 2, . . . ,P; q = 1, 2, . . . ,Q.
3) Fuzzy preference region based search

To guide the more individuals search towards the
sub-objective space with higher preference degree, the dis-
tribution of reference points in each sub-spaces is fur-
ther adapted. The number of reference points assigned to
each region is N ·

(
1/2, 1/4, . . . 1/2P−2, 1/2P−1, 1/2P−1

)
,

the boundary of preference regions corresponds to the
upper and lower bound of the membership function. The
sub-preference region with higher preference degree is
assigned more reference points, which means more compu-
tational resources are allocated. The number of the solutions
selected in each region is the same to the size of assigned
reference points.

4) Fuzzy evaluation and classification
After the termination criterion is satisfied, the DM deter-
mines whether the current population PC should be output.
If not satisfied, input the adapted fuzzy preference region
and current population for further search; if satisfied, output
the current population as the final population. Then fuzzy
membership function matrix is utilized to classify the final
solutions and help the DM to selected the most satisfied
solution. Based on the value of the candidate solutions in
each objective, the evaluation value to the membership func-
tion matrix is determined. The membership of solution xi to
desirability grade vq can be calculated as

ci,q =

∑P
p=1 ap,q
P

(20)

Finally the fuzzy membership vector of solution xi to
desirability grade set Q is obtained, and denoted by Ci,q ={
ci,1, ci,2, . . . , ci,Q

}
. The maximum membership method is

utilized in this paper to determine the rating grade. Loop this
step until all the solutions in the approximate solution set Pt
are classified.

IV. EXPERIMENTAL DESIGN
This section is devoted to the experimental design for inves-
tigating the performance of the proposed algorithm. Firstly,
the research questions, test problems and metrics used in
our experiments are given. Then we briefly introduce the
algorithms employed for comparison. Finally, the visual and
numerical results are presented.

A. RESEARCH QUESTIONS AND TASK
The research questions are directly related to the assessment
of the improvements aimed at in the design phase of the
algorithm. The main tasks of the experimental design are as
follows:

TABLE 1. Main properties of selected test functions.

• Can the search process be effectively focused on the
target region predefined by the DM?

• Is the interactive approach capable of guiding the search
towards preference regions with different preference
degree?

• Are the results of HMOEA-T competitive to the two
recently proposed preference region-based algorithms
with respect to the convergence, diversity and population
proportion within the region?

• How does value of the introduced parameter in aggrega-
tion function influence the search process?

B. EXPERIMENTAL SETTINGS
As the basis for the comparative study, three benchmark test
suits, DTLZ [40], ZDT [45] and MaF [46] are involved in
the test. These test problems have a variety of characteris-
tics, such as having linear, mixed (convex/concave), multi-
modal, dis-connected PFs, which test different abilities of an
algorithm. Main properties of the selected test functions are
shown in Table 1.

To quantitatively examine and compare the performance of
algorithms, we adapt the inverted generational distance (IGD)
metric and the hypervolume (HV) metric. IGD calculates the
minimumEuclidean distance between the solution set and the
uniformly distributed points on the PF, and the smaller IGD
value means better performance. HV measures both diversity
and convergence of a solution set in a sense, which is strictly
Pareto-compliant [47]. The HV value calculates the volume
of the region dominated by the solution set and bounded by
the reference point. Given a reference point, larger HV value
means better quality.

The calculation of IGD and HV value requires a set of uni-
formly distributed reference points on the entire PF. However,
the preference region-based algorithms are only interested in
a fraction of the PF. Hence, in the following experiments,
we locate the targeted reference points on the PF as suggested
in [21], then only the reference points locatedwithin the target
region are preserved for further evaluation. The modified
metrics are denoted by IGD-T and HV-T. In addition, ratio
of the final population in the target region (PR-T) is used to
show whether the population is effectively guided within the
target region.

VOLUME 7, 2019 117707



M. Xiong et al.: Hybrid Many-Objective Evolutionary Algorithm

FIGURE 10. The distribution of solutions on different types of PF. The different target regions are highlighted in green box, the blue dash line denotes the
true PF, the red and blue points on y axis denotes the proportion of population located within and outside the target region, respectively. (a) 2-D MaF3,
convex Pareto front, (b) 2-D MaF1, linear Pareto front, (c) 2-D DTLZ3, concave Pareto front,(d) 3-D MaF3,{[0.05,0.05,0.2],[0.3,0.3,0.4]} (e) 3-D MaF1,
{[0.6,0.6,0.6],[0.8,0.8,0.8]} (f) 3-D DTLZ3, {[0.2,0.2,0.8],[0.4,0.4,1]}.

The general experimental settings are listed as follows:

• The maximum number of generation (Max Gen) is used
as the termination criterion. The specific number of
evaluations varies due to the different computational
complexity of test problems.

• The simulated binary crossover (SBX) operator and
polynomial mutation (PM) operator are adopted with
default parameter setting of theMOEA framework: SBX
rate is 1.0, SBX distribution index is 15.0, PM rate
is 1/V, where V is the number of decision variables,
PM distribution index is 20.0.

• The initial population is randomly generated, and the
population size are set to be 91, 210, 156, 275 for
3-, 5-, 8-, 10-objective problems.

• To distinguish the statistical difference among the
results, the Wilcoxon signed-rank test [48] is performed
at a 5% significance level. Each algorithm is run 20 times
independently for each test.

• All the experiments are performed on the evolutionary
multi-objective optimization platform PlatEMO [49],
and run on the Intel 2.50 GHz Core processor with
8.0 GB of RAM.

C. ALGORITHMS IN COMPARISON
To verify the proposed HMOEA-T, two target region-based
algorithms and a powerful but non-preference-based algo-
rithm are selected.

1) T-NSGA-III [33]
T-NSGA-III integrates preference into NSGA-III in the nor-
malization phase, where the lower bound and range of the
target region are employed as the ideal point and intercepts,
respectively. The solutions outside the target region would
not be selected until all the solutions within the region are
selected in the order of niche-preservation approach.

2) T-MOEA/D [33]
Similar to T-NSGA-III, T-MOEA/D accelerates the search
process to the target region using the lower bound of target
region as the ideal point. For the solutions within the target
region, their fitness value are calculated and updated after
the coordinate transformation. Then the fitness of solutions
outside the region are added a penalty value, aiming to
attach priority to solution within the region. In this paper,
we employee the PBI approach among the two most com-
monly used methods (TCH and PBI), and the penalty value
of PBI function is set to 5.

3) θ -DEA [42]
It is a reference point-based evolutionary algorithm for many-
objective optimization, which can be regarded as a parameter-
ized extension of NSGA-III. The balance between diversity
and convergence are maintained by selecting only one solu-
tion with best comprehensive performance in each cluster.
In this paper, θ is set to 5 as suggested in [42].
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FIGURE 11. The distribution of solutions when the target regions have no
intersection with the true PF. Target region I ∼ III is located in the
feasible, PF and infeasible fields respectively: ZDT4.

D. VISUALIZATION AND EVALUATION
1) PRINCIPLE VERIFICATION (QUESTION 1):
In this section, the capability of HMOEA-T for focusing on
the target region is visually analyzed. Fig. 10 shows the exem-
plary runs on MaF3, MaF1 and DTLZ3, either for a target
region at the knee or the edge of the PF. The red and blue
square on y axis denotes the proportion of population located
within and outside the target region, respectively. It can be
observed that the final solutions converge to the PF in the
target region with even distribution. The tests in Fig. 10 show
that the target regions can be arbitrary positioned on the
convex, linear and concave PF.

In application, the DM has no idea on the location of the
true Pareto front, hence the predefined target regions may
have no intersection with the true PF. Under this condition,
Pareto dominance and reference points work together guiding
the search towards the target region. The main aim of the
search is on longer obtaining evenly distributed solutions,
but to find solutions closest to the target region on the PF.
The experimental analysis on this case is shown in Fig. 11.
Region II has interception with the PF, in which the final
population successfully reached. When no PF is located in
the PF, it can be observed that the final solutions cluster
around the region center vector, and bordered by the upper
and lower bound of the transformed reference vector. Target
region I and III is located in the feasible and infeasible fields
respectively, and the result indicates that the position of target
region will not hinder the population from converging to
the PF. It means that even the target region is improperly
defined, the algorithm can still reveal the information of
PF closest to the region, which is useful in the interactive
phase.

Next, we select ZDT3 and DTLZ7 to test the perfor-
mance of HMOEA-T on the disconnected and mixed PF.
Fig. 12 shows the representative PF approximations of
HMOEA-T on ZDT3 and DTLZ7. The PF of ZDT3 consists
of five noncontiguous convex parts, and the PF of 2-objective

FIGURE 12. Representative PF approximations of HMOEA-T on
disconnected PF. (a) 2-D ZDT3, disconnected Pareto front, (b) 2-D DTLZ7,
disconnected, multi-modal Pareto front.

DTLZ7 has two disconnected and mixed part of PF. Several
target regions are positioned to have two, none and one
intersection part with the true PF. It can be observed that
HMOEA-T successfully reach to the PF in the target region or
nearest to the region, while obtaining well-distribution. The
disconnection of PF in the region will not result in clustering
to the local optimal solution.

Then, to validate the effectiveness of the proposed method
in high-dimensional space, we select a relatively difficult
8-objective DTLZ3 problem which introduces many local
optima paralleling to the global PF. Moreover, the capability
of the algorithm for handling multiple target regions is also
tested in this experiment.

As listed in Table 2, the DMdefine the preference ranges of
four target regions on objective 1, 3, 6 and 8. The population
size is set to be 176, and 44 reference points are assigned for
each target region.

To intuitively analysis whether the population is effectively
guided into each target region, the visualization method intro-
duced in Section II-D is utilized. As shown is Fig. 13, only
four cluster centers can be observed between pairwise axis,
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TABLE 2. Setting of target regions in multiple regions searching,
preference ranges are shown in (L, U), where ‘L’ and ‘U’ denotes lower
and upper bound on each objective.

FIGURE 13. Representative results of HMOEA-T on 8-objective
DTLZ3 handling four target regions. Solutions in each target are
differently colored, and the solutions outside the target region would be
colored cyan.

and no cyan lines appear in the plot. It means that all the
individuals of the population eventually reach to their targeted
preference region.

Moreover, a biased distribution can be observed on some
objectives in each target region. The reason lies in two
aspects: the final results depend on the preference informa-
tion as well as the trade-off between the objectives. If the
target region is not properly defined, a relative uniform dis-
tribution on certain objectives could sacrifice the diversity on
other preference ranges; the number of approximate solutions
required to describe the PF grows exponentially with the
number of objectives, while only 44 solutions is used in this
experiment, which may be not enough to shape the preferred
PF. Summarizing the results, it can be stated that HMOEA-T
is effective in high-dimensional space, and easy to extend to
handle multiple target regions.

2) INTERACTIVE APPROACH (QUESTION 2):
In practical applications, the DM usually have limited infor-
mation of the location and shape of the true Pareto optimal
front. And the results in the former section shows that the
improperly defined target regions can still reveal the infor-
mation of the PF closest to the region center. The interac-
tive approach makes it possible for the decision maker to
involve in the process, learn about the potential solutions

FIGURE 14. Parallel coordinate plot of the non-dominated solution set
obtained by HMOEA-T on 8-objective DTLZ3. The red polylines denotes to
the bounds of preference region.

TABLE 3. The triangular membership function matrix.

and fine-tune the preference region if needed. In this section,
the experiments is operated on the 8-objective DTLZ3 prob-
lem. Firstly, a rough preference range {[0, 0.1, 0.1, 0], [0.8,
0.9, 0.9, 0.8]} is defined on 2nd, 4th, 5th, 7th dimension,
out of which can be regarded as an unacceptable objective
space. We set population size to be 288, and after 20000
function evaluations, all the solutions converge into the rough
preference region as visualized in Fig. 14.

After all the solutions are guided into the acceptable objec-
tive space, the preference degree of DM on the 1st and 6th

dimension is further specified in the form of triangular mem-
bership function matrix as listed in Table 3. Then the original
preference region is divided into I-IV four sub-preference
regions, and 144, 72, 36, 36 regulated reference points are
assigned to the regions according to the region preference
degree from high to low.

The distribution of solutions in target region I to IV are
sequentially shown from (a) ∼ (d) in Fig. 15, where the red
lines and blue lines represents the solutions inside and outside
the preference region. We can observe that all the solutions
in preference region I, II converge into the preference region.
However, 3/36 and 35/36 of the solutions are located outside
the preference region III and IV. In preference region IV,
the proportion of over 97% of the outside solutions means
the region has little intersection with the true PF. Hence the
DM observe the distribution of the solutions and adapt the
preference information for more reasonable results. It can be
observed that on the 6th objective, all the solutions converge
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FIGURE 15. The distribution of solutions in different preference regions
after first interact. The solutions located within and outside the
preference region are represented in red and blue curves, respectively.
(a) Preference region I; (b) Preference region II; (c) Preference region III;
(d) Preference region IV.

FIGURE 16. The distribution of solutions in preference region IV after
interaction, and the original distribution is shown in upper right corner of
the plot.

into the preference range [0.3, 0.6], while the objective value
varies from 0.6 to 1 on the 1st dimension. Therefore, the DM
loose the lower bound on 1st dimension to 0.6.
With another 500 generation evaluations, all the solutions

reach to the preference region IV, as shown in Fig. 16.
As illustrated in Fig. 17, it can be seen that from preference

region IV to region I, the size of each sub- population is
increasing, indicating that the population has a higher search
and aggregation degree in regions with higher preference, and
its distribution is more uniform. The reason lies in that the
regionswith higher preferences are allocatedmore computing
resources and individuals to approximate the true PF which
locatedwithin the region. The lines O are the three individuals

FIGURE 17. The distribution of solutions in preference region IV after
interaction, and the original distribution is shown in upper right corner of
the plot.

FIGURE 18. Final solution classification based on fuzzy theory.

located outside the preference region III in Fig. 15 (c), which
we reserve for further analysis of how the fuzzy theory help
the DM in decision making phase.

After the population is guided into different fuzzy prefer-
ence regions, the final solutions are classified based on the
fuzzy membership function shown in Table 3. The classified
final solutions are represented in Fig. 18. It can be observed
that the distribution of solutions in Fig. 18 is different from
Fig. 17, where the solutions are classified based on the desir-
ability degree while the latter utilizes the objective value.
Take the three solutions outside the preference region III
for example, they are identified out of the preference region
for the bad performance on the 6th dimension, but they are
still close to the preference region. In fuzzy classification,
the three solutions are classified into cluster IV due to the
good performance on other objectives. Combine with the
electromagnetic field visual clustering, the distribution of
final solution set is intuitively presented to the DM according
to the preference degree.
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TABLE 4. Performance comparison between HMOAE-T, T-NSGA-III, T-MOEA/D and θ -DEA in terms of HV-T, IGD-T and PR-T mean values. Target regions are
shown in {[l], [u]}, where ‘l’ and ‘u’ denotes lower and upper bound of each objective. The best and second best result in each row is shown in bold and
underline respectively.

3) NUMERICAL COMPARISON (QUESTION 3):
In this section, HV-T, IGD-T and PR-T are used to
quantitatively evaluate the algorithms, and two recently
proposed target region-based MOEAs T-NSGA-III and
T-MOEA/D-PBI are selected for comparison. In addition,

the metric value of a non-preference integrated algo-
rithm 2-DEA is used as a baseline to verify the
effectiveness.

Table 4 shows the results of the four algorithms on the
normalized DTLZ1-4 test problems, where the mean metric
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FIGURE 19. The variation of IGD-T value with number of evaluation times
on 8-objective DTLZ3.

values are listed. The best and second best result in each row
is shown in bold and underline respectively.

In terms of IGD-T, it can be seen that HMOEA-T performs
consistently better than other algorithms on all the instances
except for the 5, 8-objective DTLZ2 and 8-objective DTLZ4,
but still ranks the second best on these cases. With regard to
HV-T, the mean value of HMOEA-T outperforms the others
on 11 out of the 16 test cases. But the algorithm shows slightly
worse performance in PR-T comparison. In the cases that not
all the solutions are located in the target region, themagnitude
of standard deviation between the 20 runs are 10−3, which
means that there are always one or two outside solutions in
each operation. We consider the reason is that in HMOEA-T,
only half of the elite solutions are selected, while all the inside
solutions are preferred than the outside solutions in the selec-
tion mechanism of T-NSGA-III and T-MOEA/D. Moreover,
all the three preference-basedMOEAs get better performance
metric results comparing to the 2-DEA without preference.
We can observe that when the number of objectives exceeds 8,
none of the solutions obtained by 2-DEA is located in the
target region.

It should be noticed that T-NSGA-III performs badly
in DTLZ1 and DTLZ3, while the T-MOEA/D has trouble
handling DTLZ4 problem. The proposed HMOEA-T keeps
showing a stable performance among these tests. But for the
3-objective DTLZ4, none of the algorithms could achieve
good performance all the time.

In addition, the variation of IGD-T value with the number
of evaluation times is shown in Fig. 19. For the DTLZ3
problem which introduce a huge number of local PFs, the
convergence speed of T-NSGA-III is much slower than that
of HMOEA-T and T-MOEA/D.

Fig. 20 shows the variation of average run time on
DTLZ1-DTLZ4. It can be observed that T-MOEA/D requires
much more run time among the algorithms. The reason is
that T-MOEA/D relies on the decomposition strategy, and
optimization of each decomposed sub-problem is time con-
suming when the population size is large.

FIGURE 20. The variation of IGD-T value with number of evaluation times
on 8-objective DTLZ3.

FIGURE 21. Representative examination of the influence of ϕ2 on PR-T
for DTLZ3 problem. The figure shows the average value of 20 independent
runs.

4) INFLUENCE OF PARAMETER ϕ2 (QUESTION 4):
In this section, the influence of parameter ϕ2 on the perfor-
mance of the algorithm is investigated. The introduction of
ϕ2 in reference point-guided selection aiming to accelerate
the search process towards the target region, which can be
revealed by the variation of PR-T value. Fig. 21 presents how
the performance varies with the change of ϕ2 value. We can
observe that ϕ2 = 0 converges slowest into the target region.
At early phase of the search process, the overall convergence
speed varies; when the number of evaluations reaches around
55000, all the solutions reach into the target region with the
introduction of ϕ2. In addition, the excessively large ϕ2 may
overemphasis the solution which is away from the reference
point but close to the target region center, and hence lead to
a worse balance between convergence and diversity. In our
experiments, we set the ϕ2 value to be 5.

V. CONCLUSION
In this paper, we have presented a region preference-based
many-objective evolutionary algorithm called HMOEA-T,
whose preference information is articulated in combination
of the target region and reference point. Given a preference
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region predefined by the DM, HMOEA-T is supposed to
focus the search on the target region and maintain well con-
vergence and diversity within the region. To achieve the goal,
a tri-level ranking criterion is introduced into the proposed
algorithm: after the Pareto dominance relation (1st rank) is
considered, the solutions are guided by the regulated ref-
erence points (2nd rank) to search towards target region,
then SDR-based selection adaptively maintaining conver-
gence and diversity within the target region.

In the experimental investigation of HMOEA-T, the results
show that HMOEA-T can effectively converge to the PF
located in the preference region, and easy to extend to han-
dle multiple target regions. The fuzzy theory utilized in the
interactive approach enables the DM to further express the
preference degree during the optimization process, and assign
more computational resource on the more interested part
of the objective space. Combine with the electromagnetic
field visual clustering, the distribution pattern of preferred
solutions is intuitively presented to help the DM analysis and
find the most interested solutions. Quantitative comparison
of HMOEA-T and two state-of-the-art target region-based
algorithms is performed based on threemetrics, which reveals
that the proposed algorithm works well on most of the test
cases, especially the multimodal problems. The HMOEA-T
also show an superior performance with regard to the conver-
gence speed and computation time.

In future studies, we will compare HMOEA-T with other
categories of the preference-based algorithms onmore bench-
mark problems. In some tests, the SDR-based selection
struggles to obtain the diversity on the PF. So a selection
mechanism is required, which can effectively distinguish
the non-dominated solutions identified by SDR. Moreover,
the HMOEA-T should be tested on practical applications.
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