
Received July 4, 2019, accepted July 20, 2019, date of publication July 29, 2019, date of current version August 14, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2931714

Further Stability Analysis for Time-Delayed
Neural Networks Based on an Augmented
Lyapunov Functional
WENYONG DUAN 1,2, YAN LI3, AND JIAN CHEN1
1School of Electrical Engineering, Yancheng Institute of Technology, Yancheng 240051, China
2Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
3Undergraduate Office, Yancheng Biological Engineering Higher Vocational Technology School, Yancheng 240051, China

Corresponding author: Wenyong Duan (dwy1985@126.com)

This work was supported in part by the National NSF of China under Grant 61603325, in part by the NSF of Jiangsu Province under Grant
BK20160441, and in part by the Jiangsu Government Scholarship for Overseas Studies, Outstanding Young Teacher of Jiangsu ‘Blue
Project’ and the Yellow Sea Rookie of Yancheng Institute of Technology.

ABSTRACT In this paper, the stability of time-delayed neural networks (DNN) is further analyzed. First,
an augmented N -dependent Lyapunov–Krasovskii functional (LKF) is designed, where the non-integral
terms are augmented with delay-dependent items and some additional state variables, and the integrated
vector in the single-integral terms is also augmented by adding some integral interval-dependent items. The
novel LKF complements some coupling information between the neuron activation function and other state
variables. Second, a new delay-dependent stability criterion is proposed via the above LKF application.
Third, in order to further demonstrate the advantages of the new LKF, two corollaries are also given under
other simplistic LKFs. Finally, some common numerical examples are presented to show the effectiveness
of the proposed approach.

INDEX TERMS Lyapunov–Krasovskii functional, neural networks, stability analysis, time delay.

I. INTRODUCTION
Neural network is very popular at present, because the appli-
cation of neural network involves many aspects, such as
image recognition, artificial intelligence, associative mem-
ory, algorithm optimization, signal processing and other sci-
entific problems [1]. As we all know, the most important
premise for the control design and other studies of the neural
network is that it usually has to be stable. However, engi-
neering practice has proved that time delays are inevitable,
especially time-varying delays, for example, in the commu-
nication process between neurons, in the amplifier switching
speed, and so on. Moreover, the existence of time delays
has a major impact on the stability or other performances
of neural networks [2]. And it is generally accepted that the
higher the upper bound of the maximum permissible delay
is, the higher endurability of neural network to transmission
delay is. Therefore, the stability analysis of DNN is always
a hot topic, and the main purpose is maximizing the delay
upper bound as soon as possible for stable DNN. To analyze

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhiguang Feng.

the stability problem of DNN based on the Lyapunov
theorem, the main efforts are concentrated on the follow-
ing several directions, one is finding an appropriate LKF,
for example, LKF with augmented terms [3]–[7], LKF with
delayed partitioning method [8], [9], LKF with triple-integral
and quadruple-integral terms [10]–[14], LKF with delay-
dependentmatrices [15]–[17] and so on. The other is reducing
the upper bounds of the time derivative of LKF as much as
possible by developing various inequality techniques, such as
Wirtinger-based inequality and reciprocally convex inequal-
ity [18]–[22], second order Bessel-Legendre inequality
[23]–[25], integral inequality based on a nonorthogonal
polynomial sequel [26], [27], and so on. Besides, further
increasing the freedom of solving LMI, additional free-
weighting-matrix technique is frequently introduced into the
derivatives of LKF [28]–[32]. In conclusion, with the continu-
ous augment of LKF and the development of integral inequal-
ity techniques, many good stability results are obtained and
the conservatism of stability criteria becomes smaller and
smaller.

Recently, based on the second order Bessel-Legendre
inequality and reciprocally convex inequality techniques, two
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novel LKFs are constructed with some augmented vectors
in [33], [34], where less conservative stability criteria than
some previous ones were given for the stability of DNN.
Zhang Zhang et al. [35] obtained a hierarchical type stability
criteria for DNN via the N -dependent LKF and the affine
Bessel-Legendre inequality, where some internal compar-
isons of [35] shown that the affine Bessel-Legendre inequal-
ity can further reduce the conservatism of stability criteria
than Bessel-Legendre inequality. However, among [33], [34],
there are still some shortcomings that can be improved, for
example, using the affine Bessel-Legendre inequality instead
of using Bessel-Legendre inequality inspired by [35], fur-
ther augmenting their LKFs with delay-dependent matrices
in non-integral terms, further augmenting integrated vec-
tors in single-integral terms of LKFs via integral interval
decomposition method, avoiding introducing the terms with
h2(t), and so on. In addition, although the LKF of [35] is
N -dependent, the non-integral terms and the integrated vec-
tors in the single-integral terms are usual. So, we may com-
bine the above potential improvement of [33], [34] and the
idea of N -dependent LKF to further reduce the conservatism
of stability criteria for DNN.

Inspired by the above analysis, this paper will construct
an augmented LKF and the following ideas of deriving an
enhanced stability criteria for DNN should be addressed as:
• Based on [22], [23], [34]–[36], some additional infor-
mation has been added into the non-integral terms and
single-integral terms, such as adding integrals of the
neuron activation function over the delay interval into
the non-integral terms, augmenting the usual integrated
vectors of the single-integral term with

∫ b
a ẋ(u)du-type

integral terms. This not only increases some coupling
information between state variables, but also increases
the coupling information between some necessary vari-
ables of the affine Bessel-Legendre inequality.

• Inspired by [6], [26], [33], two different integrand vec-
tors in the single-integral terms of the LKF are further
augmented by supplementing

∫ s
t−h(t) ẋ(u)du,

∫ t
s ẋ(u)du

and
∫ t−h(t)
s ẋ(u)du,

∫ s
t−h ẋ(u)du corresponding to differ-

ent integral intervals, respectively. From the domain of
integration, the whole integral domain of

∫ t
t−h(t) ẋ(u)du

and
∫ t−h(t)
t−h ẋ(u)du are just the sum of the two integral

domains of the integral items
∫ s
t−h(t) ẋ(u)du,

∫ t
s ẋ(u)du

and the sum of the two integral domains of the integral
items

∫ t−h(t)
s ẋ(u)du,

∫ s
t−h ẋ(u)du, respectively. Thus,

the two supplementary integral items can be seen
as the decompositions and complements to the terms∫ t
t−h(t) ẋ(u)du and

∫ t−h(t)
t−h ẋ(u)du.

• To avoid introducing the terms with h2(t) involved in
[33], [34], the

∫ b
a ẋ(u)du-type integral items are chosen

in two different integrand vectors of the single-integral
terms, respectively, which leads to solve the corre-
sponding linear matrix inequalities (LMIs) of stability
results conveniently by using the convexity of LMIwith-
out introducing any additional inequality constraints.

This may be another contribution to expand the feasible
region of the corresponding LMIs.

This paper is organized as follows. Section 2 represents
a brief statement of the research problem and some nec-
essary and important definitions, assumptions and lemmas.
Section 3 presents the main stability criteria for DNNs,
including theorems and corollaries. Section 4 shows some
numerical examples based on the results of the previous
section. See Section 5 for conclusions.

Notation: The matrix P is a positive definite matrix if
P > 0, vice versa. I and 0 represent corresponding dimen-
sion unit matrix and zero matrix. The diagonal matrix is
represented by diag {· · · }, and ei (i = 1, . . . ,m) are block

entry matrices with eT3 =

0 0 I 0 · · · 0︸ ︷︷ ︸
m−3

 , where m is

the length of the vector ξ (t) in theorems and corollaries. ∗
denotes the symmetric terms in a block matrix. F[h(t), d(t)],
G[x(t)] denote F , G are the function of h(t), d(t) and x(t),
respectively. Sym{B} = B+ BT .

II. PROBLEM FORMULATION AND PRELIMINARY
The following DNN system descriptions are given:

ẏ(t) = −Ay(t)+W0f (W2y(t))+W1f (W2y(t − h(t)))+ J .

(1)

Here, y(t) = [y1(t) y2(t) · · · yn(t)]T is the neuron state vec-
tor of the above DNN. The positive definite diagonal matrix
A ∈ Rn×n denotes the feedback gain; W0, W1, W2 ∈ Rn×n

represent the constant matrices of interconnection weight
and J ∈ Rn represents a constant input vector. f (y) =
[f1(y) f2(y) · · · fn(y)]T denotes the neuron activation func-
tion (NAF); h(t) represents the corresponding time-varying
delay and satisfies some constraints hypothesis described as
follows:

0 ≤ h(t) ≤ h, |ḣ(t)| ≤ µ, ∀t ≥ 0 (2)

with two nonnegative constant boundaries h and µ.
Suppose the nonlinear function, that is NAF, f (y) satisfies

the following hypothesis [37], [38].

k−i ≤
fi(y1)− fi(y2)
y1 − y2

≤ k+i , ∀y1 6= y2, i = 1, 2, · · · , n.

(3)

The two real scalars k−i and k+i could be arbitrary. As noted
in [39], when k−i = 0 and k+i > 0, assumption (3) describes
a globally Lipschitz continuous and monotone nondecreasing
case. And when k+i > k−i > 0, the assumption repre-
sents the case of globally Lipschitz continuous and monotone
increasing.

For the sake of simple mathematical analysis of the stabil-
ity analysis for the DNN (1), we first let e(·) = y(·)− y∗ and
g(e) = f (e+y∗)− f (y∗), then the equilibrium point y∗ can be
shifted to the origin. Thus, the DNN (1) can be redescribed
as the following system.

ė(t) = −Ae(t)+W0g(W2e(t))+W1g(W2e(t − h(t))) (4)
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with the transformed NAF g(·) with gi(0) = 0 satisfying

k−i ≤
gi(α1)− gi(α2)

α1 − α2
≤ k+i ,

∀α1 6= α2, i = 1, 2, · · · , n, (5)

which derive the following conditions for α2 = 0

k−i ≤
gi(α)
α
≤ k+i , i = 1, 2, · · · , n. (6)

The most important work to be dealt with in this paper is
to obtain a less conservative stability condition than some
recent results for the DNN (1) based on constraints (2)-(3)
via Lyapunov stability theory. The following main lemmas
are necessary for this purpose.
Lemma 1 [36]: For given matrices R(∈ Rn×n) > 0, X

with appropriate dimensions, ξ ∈ Rm and a continuous and
differentiable function {x(s) ∈ Rn

| s ∈ [a, b]}, the following
integral inequality holds for all integer N ≥ 0

−

∫ b

a
ẋT (s)Rẋ(s)ds ≤ 2ζ TN 0

T
NX

T ξ + (b− a)ξTXR−1N XT ξ,

(7)

where

ζN =



[
xT (b) xT (a)

]T
,

N = 0,[
xT (b) xT (a)

1
b− a

2T
0 · · ·

1
b− a

2T
N−1

]T
,

N > 0,

0N =
[
πTN (0) π

T
N (1) · · · π

T
N (N )

]T
,

πN (k) =

{
[I − I ] , N = 0,[
I (−1)k+1I θ0Nk I · · · θ

N−1
Nk I

]
, N > 0,

θ
j
Nk =

{
(2j+ 1)((−1)k+j − 1), j ≤ k,
0, j > k,

2k =

∫ b

a
Lk (s)x(s)ds,

Lk (s) = (−1)k
k∑
l=0

[
(−1)l

(
k
l

)(
k + l
l

)](
s− a
b− a

)l
,

RN = diag {R, 3R, · · · , (2N + 1)R} .

Remark 1: It is obvious that the inequality (7) will reduce to
the Jensen’s free-matrix-based inequality when N = 0, so to
further reduce the conservatism of the stability criteria, the N
is always assumed to be N ≥ 1 in the following derivations.
In addition, letting ξ =

[
xT (b) xT (a) λT1 λ

T
2 · · · λ

T
N

]
with

λi =
∫ b
a

(s−a)i−1

(b−a)i x(s)ds, (i = 1, 2, · · · ,N ), the inequality (7)
can be rewritten as the following inequality.

−

∫ b

a
ẋT (s)Rẋ(s)ds ≤ ξT

[
4T
N0

T
NX

T
+ X0N4N

]
ξ

+ (b− a)ξTXR−1N XT ξ, (8)

where 4N can be found at the bottom of this page.

III. MAIN RESULTS
In this section, a new stability criterion for the DNN (1)
based on an augmented LKF is proposed at first. Besides, for
detailed comparison, two stability criteria based on the same
inequality techniques but different LKFs (including the LKF
removed the nonlinear items in the non-integral terms and the
LKF removed the augmented part of the integrated vectors in
the single-integral terms) are also given.

To simplify the representation of vectors and matrices in
the theorem and corollaries, use the following notations:

hd = 1−ḣ(t), ht = h(t),
h̄t = h− h(t), i = 1, 2, · · · ,N ,

αi(t)=
∫ t

t−ht

(s− t + ht )i−1

hit
eT (s)ds,

βi(t)=
∫ t−ht

t−h

(s− t + h)i−1

h̄it
eT (s)ds,

v1(t)=
∫ t

t−ht
gT (W2e(s))ds,

v2(t)=
∫ t−ht

t−h
gT (W2e(s))ds,

ζ TN (t) =
[
eT (t) eT (t − ht ) eT (t − h)

v1(t) v2(t) htCt h̄t C̄t
]
,

ζ T1N (t) =
[
eT (t) eT (t − ht ) eT (t − h) v1(t) Ct

]
,

ζ T2N (t) =
[
eT (t) eT (t − ht ) eT (t − h) v2(t) C̄t

]
,

Ct = [α1(t)α2(t) · · · αN (t)] ,
C̄t = [β1(t)β2(t) · · · βN (t)] ,

4N =



I 0 0 0 · · · 0
0 I 0 0 · · · 0

0 0 (−1)0
(
1
0

)(
1+ 0
0

)
I 0 · · · 0

0 0 (−1)1
(
1
0

)(
1+ 0
1

)
I (−1)2

(
1
1

)(
1+ 1
1

)
I · · · 0

...
...

...
...

. . .
...

0 0 (−1)N−1
(
1
0

)(
1+ 0
0

)
I (−1)N

(
N − 1

1

)(
N − 1+ 1

1

)
I · · · (−1)2N−2

(
N − 1
N − 1

)(
N − 1+ N − 1

N − 1

)
I
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ξT (t) =
[
eT (t) eT (t − ht ) eT (t − h)

ėT (t) ėT (t − ht ) ėT (t − h) gT (W2e(t))
gT (W2e(t − ht )) gT (W2e(t − h))

v1(t) v2(t) Ct C̄t
]
,

ηT1 (t, s) =
[
eT (s) ėT (s) gT (W2e(s))

∫ t

s
ėT (u)du∫ s

t−ht
ėT (u)du

∫ t−ht

t−h
ėT (u)du

]
,

ηT2 (t, s) =
[
eT (s) ėT (s) gT (W2e(s))

∫ t

t−ht
ėT (u)du∫ t−ht

s
ėT (u)du

∫ s

t−h
ėT (u)du

]
,

K1 = diag
{
k+1 , k

+

2 , · · · , k
+
n
}
,

K2 = diag
{
k−1 , k

−

2 , · · · , k
−
n
}
.

A. AN AUGMENTED LKF
When analyzed the stability of the DNN, the main aim is
reducing the conservatism of stability criteria via LKFs with
broader form and much tighter integral inequality techniques
application. It is foreseeable that broader LKFs or much
tighter integral inequality techniques may reduce the
conservatism. The purpose of this paper is to construct an
augmented LKF to reduce the conservatism of stability cri-
teria under the latest and much tighter inequality technique.
So. firstly, we give this improved LKF described as follows:

V (t) =
5∑
j=1

Vj(t) (9)

with

V1(t) = ζ TN (t)PN ζN (t)+ htζ
T
1N (t)PaN ζ1N (t)

+ h̄tζ T2N (t)PbN ζ2N (t),

V2(t) =
∫ t

t−ht
ηT1 (t, s)Q1η1(t, s)ds

+

∫ t−ht

t−h
ηT2 (t, s)Q2η2(t, s)ds,

V3(t) = 2
n∑
i=1

∫ W2ie(t)

0

[
h1i(gi(s)− k

−

i s)

+ h2i(k
+

i s− gi(s))
]
ds

+ 2
n∑
i=1

∫ W2ie(t−ht )

0

[
h3i(gi(s)− k

−

i s)

+ h4i(k
+

i s− gi(s))
]
ds

+ 2
n∑
i=1

∫ W2ie(t−h)

0

[
h5i(gi(s)− k

−

i s)

+ h6i(k
+

i s− gi(s))
]
ds,

V4(t) =
∫ 0

−h

∫ t

t+θ
ėT (s)Rė(s)dsdθ,

V5(t) = h
∫ 0

−h

∫ t

t+θ
gT (W2e(s))Zg(W2e(s))dsdθ,

where PN ∈R(5+2N )n×(5+2N )n, (PaN , PbN ∈R(4+N )n×(4+N )n),
(Q1, Q2 ∈ R6n×6n), (R, Z ∈ Rn×n) are positive definite
matrices, hpi > 0 (p = 1, 2, · · · , 6).
Remark 2: The novelties of the LKF (9) lie in the following

three aspects and these modified measures are a major con-
tribution to reducing the conservatism of stability criteria for
the DNN.
• It is different from the ones in [22], [23], [34], [35]
due to V1(t) and V2(t). Some additional information
has been added into V1(t), such as v1(t), v2(t) and
delay-dependent terms, where more coupling informa-
tion between some states and NAF is described by
the Lyapunov matrices PN , PaN and PbN . Especially,
the usual integrated vectors of the single-integral term,
ηT (s) =

[
eT (s) ėT (s) gT (W2e(s))

]
, are augmented as

two different integrated vectors dependent on the dif-
ferent integral ranges, that is η1(t, s) and η2(t, s). This
not only increases some coupling information between
some system variables, but also increases the coupling
information between some necessary variables of the
inequality lemma 1.

• When N = 2, compared with the ones in [26], where
the quadratic term eT (t)Pe(t) is merged into the single
integral term, that is, there were no non-integral terms.
Indeed, Chen et al. [40] pointed out that the conser-
vatism can be further reduced by combining an extended
non-integral terms with the LKF of [26]. Therefore,
the augmented non-integral terms V1(t) is added into
the new LKF proposed in (9). Moreover, based on
[6], [26], [33], two different vectors η1(t, s) and η2(t, s)
are further augmented by supplementing

∫ s
t−ht

ė(u)du,∫ t
s ė(u)du and

∫ t−ht
s ė(u)du,

∫ s
t−h ė(u)du corresponding

to different integral intervals, respectively. From the
domain of integration, the whole integral domain of∫ t
t−ht

ė(u)du and
∫ t−ht
t−h ė(u)du are just the sum of the two

integral domains of the integral items
∫ s
t−ht

ė(u)du and∫ t
s ė(u)du and the sum of the two integral domains of the
integral items

∫ s
t−h ė(u)du and

∫ t−ht
s ė(u)du, respectively.

Thus, the two supplementary integral items can be seen
as the decompositions and complements to the terms∫ t
t−ht

ė(u)du and
∫ t−ht
t−h ė(u)du.

• Based on the N -dependent generalized free-matrix-
based integral inequality lemma 1, the LKF (9) is also
N -dependent, so the stability criteria derived via the
LKF are also hierarchy of LMI conditions, that is,
the conservatism of the stability criteria decreases as N
increases.

B. STABILITY CRITERIA
The following theorem and corollaries will give some stabil-
ity criteria for the DNN (1) satisfying the conditions (2)-(3).
Theorem 1: The DNN (1) with the conditions (2)-(3)

is globally asymptotically stable for given non-negative
scalars of h, µ, if there exist positive definite matrices
PN ∈ R(5+2N )n×(5+2N )n, (PaN , PbN ∈ R(4+N )n×(4+N )n),
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(Q1, Q2 ∈ R6n×6n), (R, Z ∈ Rn×n), positive definite
diagonal matrices Hp = diag{hp1, hp2, · · · , hpn}, (Λjk ,
Θjr ∈ Rn×n) and any matrices (S1, S2, Ul ∈ Rn×n), (X ,
Y ∈ R(N+2)n×(N+1)n), (p = 1, · · · , 6; j, r = 1, 2; k =
1, 2, 3; l = 1, · · · , 4) such that LMIs (10)-(11) hold for all
N ∈ N: �[0,ḣt ] e10S2 hE2Y

∗ −Z 0
∗ ∗ −hR̄N

 < 0, (10)

�[h,ḣt ] e11ST1 hE1X
∗ −Z 0
∗ ∗ −hR̄N

 < 0, (11)

where

�[ht ,ḣt ] = Sym
{
51[ht ,ḣt ]

}
+52[ht ,ḣt ] +53[ht ,ḣt ],

51[ht ,ḣt ] = 11PN1T
1i +12PaN1T

2i +13PbN1T
3i

+14Q11
T
4d +15Q21

T
5d +�1[h(t)] +�2[ḣ(t)],

52[ht ,ḣt ] = ḣt12PaN1T
2 − ḣt13PbN1T

3 + he4Re
T
4

+ h2e7ZeT7 +16Q11
T
6 + hd17(Q2 − Q1)1T

7

−18Q21
T
8 ,

53[ht ,ḣt ] = E1
[
XHN + HT

NX
T
]
ET1

E2
[
YHN + HT

N Y
T
]
ET2 − E354ET3 ,

E1 = [e1 e2 e12 · · · e11+N ],

E2 = [e2 e3 e12+N · · · e11+2N ],

E3 = [e10 e11],

54 =

[
(2− ρ)Z (1− ρ)S1 + ρS2
∗ (1+ ρ)Z

]
, ρ =

ht
h
,

11 = [e1 e2 e3 e10 e11 hte12 · · · hte11+N
h̄te12+N · · · h̄te11+2N

]
,

12 = [e1 e2 e3 e10 e12 · · · e11+N ],

,13 = [e1 e2 e3 e11 e12+N · · · e11+2N ],

11i = [e4 hde5 e6 e7 − hde8 hde8 − e9 111i 112i],

12i = [hte4 hthde5 hte6 ht (e7 − hde8)

1011 · · · 101N ],

13i = [h̄te4 h̄thde5 h̄te6 h̄t (hde8 − e9)

1021 · · · 102N ],

111i = ḣte11+i +101i,

112i = −ḣte11+i+N +102i,

101i =

{
e1 − hde2 − ḣte12, i = 1,
e1 − (i− 1)hde10+i − iḣte11+i, i > 1,

102i =


hde2 − e3 + ḣte12+N , i = 1,
hde2 − (i− 1)e10+N+i
+iḣte11+N+i, i > 1,

14 = [hte12 e1 − e2 e10
ht (e1 − e12) ht (e12 − e2) ht (e2 − e3)] ,

14d = [0 0 0 e4 − hde5 hde5 − e6] ,

15 =
[
h̄te12+N e2 − e3 e11
h̄t (e1 − e2) h̄t (e2 − e12+N ) h̄t (e12+N − e3)

]
,

15d = [0 0 0 e4 − hde5 hde5 − e6] ,

16 = [e1 e4 e7 0 e1 − e2 e2 − e3] ,

17 = [e2 e5 e8 e1 − e2 0 e2 − e3] ,

18 = [e3 e6 e9 e1 − e2 e2 − e3 0] .

R̄N = diag {R, 3R, · · · , (2N + 1)R} ,

HN = 0N4N ,

�1[h(t)] =

3∑
j=1

[
e6+j − ejW T

2 K
T
2

]
·

(
ht
h
Λ1j +

h̄t
h
Λ2j

)[
K1W2eTj − e6+j

]
+

2∑
j=1

[
(e6+j − e7+j)− (ej − e1+j)W T

2 K
T
2

]
·

(
ht
h
Θ1j +

h̄t
h
Θ2j

)[
K1W2(ej − e1+j)T

− (e6+j − e7+j)T
]
,

�2[ḣ(t)] =

[
e7 − e1W T

2 K
T
2

]
H1W2eT4

+

[
e1W T

2 K
T
1 − e7

]
H2W2eT4

+ hd
[
e8 − e2W T

2 K
T
2

]
H3W2eT5

+ hd
[
e2W T

2 K
T
1 − e8

]
H4W2eT5

+

[
e9 − e3W T

2 K
T
2

]
H5W2eT6

+

[
e3W T

2 K
T
1 − e9

]
H6W2eT6 .

Proof: Calculating the derivative of V (t) along the solu-
tion of the DNN (1) yields

V̇1(t) = 2ζ TN (t)PN ζ̇N (t)+ ḣtζ
T
1N (t)PaN ζ1N (t)

− ḣtζ T2N (t)PbN ζ2N (t)+ 2htζ T1N (t)PaN ζ̇1N (t)

+ 2h̄tζ T2N (t)PbN ζ̇2N (t),

V̇2(t) = ηT1 (t, t)Q1η1(t, t)

− hdηT1 (t, t − ht )Q1η1(t, t − ht )

+ hdηT2 (t, t − ht )Q2η2(t, t − ht )

− ηT2 (t, t − h)Q2η2(t, t − h)

+ 2
∫ t

t−ht
ηT1 (t, s)Q1

∂η1(t, s)
∂t

ds

+ 2
∫ t−ht

t−h
ηT2 (t, s)Q2

∂η2(t, s)
∂t

ds,

V̇3(t) = 2gT (W2e(t))(H1 − H2)W2ė(t)

+ 2eT (t)W T
2 (K1H2 − K2H1)W2ė(t)

+ 2hdgT (W2e(t − h(t)))(H3

−H4)W2ė(t − h(t))

+ 2hdeT (t − h(t))W T
2 (K1H4
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−K2H3)W2ė(t − h(t))

+ 2gT (W2e(t − h))(H5

−H6)W2ė(t − h)

+ 2eT (t − h)W T
2 (K1H6

−K2H5)W2ė(t − h),

V̇4(t) = hėT (t)Rė(t)−
∫ t

t−h
ėT (s)Rė(s)ds,

V̇5(t) = h2gT (W2e(t))Zg(W2e(t))

− h
∫ t

t−h
gT (W2e(s))Zg(W2e(s))ds.

Notice that

ḣtCt = ḣtξT (t) [e12 e13 · · · e11+N ] ,
˙̄htCt = −ḣtξT (t) [e12+N e13+N · · · e11+2N ] ,

ht Ċt = ht [α̇1(t) α̇2(t) · · · α̇N (t)] ,

h̄t
˙̄Ct = h̄t

[
β̇1(t) β̇2(t) · · · β̇N (t)

]
,

ht α̇i(t) =


ξT (t)[e1 − hde2 − ḣte12], i = 1,
ξT (t) [e1 − (i− 1)hde10+i
−iḣte11+i

]
, i > 1,

h̄t β̇i(t) =


ξT (t)[hde2 − e3 + ḣte12+N ], i = 1,
ξT (t) [hde2 − (i− 1)e10+N+i
+iḣte11+N+i

]
, i > 1,

d
dt
(htCt ) = ḣtCt + ht Ċt ,

d
dt
(h̄t C̄t ) = −ḣtCt + h̄t ˙̄Ct ,

ζ̇ TN (t) =
[
ξT (t) [e4 hde5 e6 e7 − hde8

hde8 − e9]
d
dt
(htCt )

d
dt
(h̄t C̄t )

]
,

ζ̇ T1N (t) =
[
ξT (t) [e4 hde5 e6 e7 − hde8] Ċt

]
,

ζ̇ T2N (t) =
[
ξT (t) [e4 hde5 e6 hde8 − e9]

˙̄Ct
]
,

ηT1 (t, t) = ξ
T (t) [e1 e4 e7 0 e1 − e2 e2 − e3] ,

ηT1 (t, t − ht ) = η
T
2 (t, t − ht ) = ξ

T (t) [e2 e5 e8
e1 − e2 0 e2 − e3] ,

ηT2 (t, t − h) = ξ
T (t) [e3 e6 e9 e1 − e2 e2 − e3 0] ,∫ t

t−ht
ηT1 (t, s)ds = ξ

T (t) [hte12 e1 − e2 e10 ht (e1 − e12)

ht (e12 − e2) ht (e2 − e3)] ,∫ t−ht

t−h
ηT2 (t, s)ds = ξ

T (t)
[
h̄te12+N e2 − e3 e11

h̄t (e1 − e2) h̄t (e2 − e12+N )

h̄t (e12+N − e3)
]
,

∂η1(t, s)
∂t

= ξT (t) [0 0 0 e4 − hde5 hde5 − e6] ,

∂η2(t, s)
∂t

= ξT (t) [0 0 0 e4 − hde5 hde5 − e6] .

It can be obtained from lemmas 1 and 2 that

−

∫ t

t−h
ėT (s)Rė(s)ds ≤ ξ (t)TE1

[
XHN + HT

NX
T

+ htXR̄
−1
N XT

]
ET1 ξ (t)

+ ξ (t)TE2
[
YHN + HT

N Y
T

+ h̄tY R̄
−1
N Y T

]
ET2 ξ (t), (12)

− h
∫ t

t−h
gT (W2e(s))Zg(W2e(s))ds

= −h
∫ t

t−ht
gT (W2e(s))Zg(W2e(s))ds

− h
∫ t−ht

t−h
gT (W2e(s))Zg(W2e(s))ds

≤ −
h
ht
ξT (t)e10ZeT10ξ (t)−

h

h̄t
ξT (t)e11ZeT11ξ (t)

≤ −ξT (t)

[
eT10
eT11

]T [
(2− ρ)Z (1− ρ)S1 + ρS2
∗ (1+ ρ)Z

]

×

[
eT10
eT11

]
+ (1− ρ)ξT (t)e10S2Z−1ST2 e

T
10ξ (t)

+ ρξT (t)e11ST1 Z
−1S1eT11ξ (t). (13)

For any appropriately dimensioned matrices Ū = [UT
1 UT

2
UT
3 UT

4 ]
T
∈ R4n×n, it is true that

0 = 2ξT (t) [e1 e4 e7 e8] Ū [−AeT1 +W0eT7
+W1eT8 − e

T
4 ]ξ (t). (14)

If the nonlinear constraint conditions (5) and (6) are parti-
tioned according to time-varying delay, we can obtain

λk (s) , 2 [g(W2e(s))− K2W2e(s)]T
(
ht
h
Λ1k

+
h̄t
h
Λ2k

)
[K1W2e(s)− g(W2e(s))] ≥ 0, (15)

δi(s1, s2) , 2 [g(W2e(s1))− g(W2e(s2))

−K2W2(e(s1)− e(s2))]T
(
ht
h
Θ1j +

h̄t
h
Θ2j

)
× [K1W2(e(s1)− e(s2))− g(W2e(s1))
+ g(W2e(s2))] ≥ 0, (16)

where Λrk and Θrj (j, r = 1, 2; k = 1, 2, 3) are positive
definite diagonal matrices.

Thus, the following inequalities hold

λ1(t)+ λ2(t − ht )+ λ3(t − h) ≥ 0, (17)
δ1(t, t − ht )+ δ2(t − ht , t − h) ≥ 0. (18)

Finally, from the above derivation, we have

V̇ (t) ≤ ξT (t)
{
�[ht ,ḣt ] + htE1XR̄

−1
N XTET1

+ h̄tE2Y R̄
−1
N Y TET2

}
ξ (t)

+ ξT (t)
{
(1− ρ)e10S2Z−1ST2 e

T
10

+ ρe11ST1 Z
−1S1eT11

}
ξ (t). (19)
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Therefore, LMIs (10)-(11) hold, which implies that
V̇ (t) < 0 by the transformation of Schur complement
equivalence. This shows that the DNN (1) is stable from
Lyapunov stability theory, which completes the proof.
Remark 3: Recently, some improved stability criteria for

DNNs via a new augmented LKF were given in [33], [34],
where the LKFs with

∫ b
a e(u)du-type integral in η1(t, s)

and η2(t, s) were constructed, which was aimed at coordi-
nating with the second-order B-L integral inequality with
the

∫ b
a e(s)ds-type and

∫ b
a

∫ b
θ
e(s)dsdθ -type integral items.

However, they had to introduce the terms with h2(t) when
bounding the derivative of the LKFs, which led to adding
some additional inequality constraints into the main results.
This narrowed the feasible region of the corresponding LMIs.
In this paper, the coupling relationship between the neces-
sary integral items for lemma 1 are already included in the
derivative of V1(t). Thus, to avoid introducing the terms with
h2(t), the

∫ b
a ė(u)du-type integral items are chosen in η1(t, s)

and η2(t, s), respectively, which can be solved conveniently
by using the convexity of LMI without introducing any addi-
tional inequality constraints, which is also another contri-
bution to expand the feasible region of the corresponding
LMIs.
Remark 4: The second-order B-L integral inequality was

used in [22], [33] to bound the integral item
∫ b
a ė

T (s)Rė(s)ds.
However, an affine version of the B-L integral inequality was
widely used in a lot of literature, such as [23], [35], [36], [41],
and inspired by them, the affine version is not only affine
with respect to the length of the integral interval but also
can further reduce the conservatism of stability criteria. Thus,
the generalized free-matrix-based integral inequality lemma 1
is used to bound the derivative of V̇4(t) instead of using the
B-L integral inequality in this paper.
Remark 5: As described in the literature [35], the stabil-

ity criteria proposed in this paper form a hierarchy of LMI
conditions, that is the conservatism of the stability criteria
decreases as N increases, which can also be seen from the
comparison of the numerical examples in the next section.
However, the number of decision variables will increase as N
increases. So, we just solve the corresponding LMIs with N
from 1 to 3 in the numerical examples.
Remark 6: To illustrate the effectiveness of augmenting

the LKF with augmented η1(t, s) and η2(t, s), the following
corollary can be obtained by removing the

∫ b
a ė(u)du-type

integral items in η1(t, s) and η2(t, s), that is, letting η1(t, s) =
η2(t, s) = [eT (s) ėT (s) gT (W2e(s))]. And the proof of
Corollary 1 is omitted here.
Corollary 1: The DNN (1) with the conditions (2)-(3)

is globally asymptotically stable for given non-negative
scalars of h, µ, if there exist positive definite matrices P ∈
R(5+2N )n×(5+2N )n, (Pa, Pb ∈ R(4+N )n×(4+N )n), (Q1, Q2 ∈

R3n×3n), (R, Z ∈ Rn×n), positive definite diagonal matrices
Hp = diag{hp1, hp2, · · · , hpn}, (Λjk , Θjr ∈ Rn×n) and any
matrices (S1, S2, Ul ∈ Rn×n), (X , Y ∈ R(N+2)n×(N+1)n),
(p = 1, · · · , 6; j, r = 1, 2; k = 1, 2, 3; l = 1, · · · , 4) such

that LMIs (20)-(21) hold: �̃[0,ḣt ] e10S2 hE2Y
∗ −Z 0
∗ ∗ −hR̄N

 < 0, (20)

 �̃[h,ḣt ] e11ST1 hE1X
∗ −Z 0
∗ ∗ −hR̄N

 < 0, (21)

where
�̃[ht ,ḣt ] = Sym

{
5̃1[ht ,ḣt ]

}
+ 5̃2[ht ,ḣt ] +53[ht ,ḣt ],

5̃2[ht ,ḣt ] = ḣt12PaN1T
2 − ḣt13PbN1T

3 + he4Re
T
4

+ h2e7ZeT7 + 1̃6Q11̃
T
6 + hd1̃7(Q2 − Q1)1̃T

7

− 1̃8Q21̃
T
8 ,

5̃1[ht ,ḣt ] = 11PN1T
1i +12PaN1T

2i +13PbN1T
3i

+�1[h(t)] +�2[ḣ(t)],

1̃6 = [e1 e4 e7] , 1̃7 = [e2 e5 e8] , 1̃8 = [e3 e6 e9] .

Remark 7: To illustrate the effectiveness of augmented
V1(t) in the LKF proposed in this paper, the following corol-
lary can be obtained by choosing the LKF removed v1(t) and
v2(t) in V1(t). And the proof of Corollary 2 is omitted here.
Corollary 2: The DNN (1) with the conditions (2)-(3)

is globally asymptotically stable for given non-negative
scalars of h, µ, if there exist positive definite matrices P ∈
R(3+2N )n×(3+2N )n, (Pa, Pb ∈ R(3+N )n×(3+N )n), (Q1, Q2 ∈

R6n×6n), (R, Z ∈ Rn×n), positive definite diagonal matrices
Hp = diag{hp1, hp2, · · · , hpn}, (Λjk , Θjr ∈ Rn×n) and any
matrices (S1, S2, Ul ∈ Rn×n), (X , Y ∈ R(N+2)n×(N+1)n),
(p = 1, · · · , 6; j, r = 1, 2; k = 1, 2, 3; l = 1, · · · , 4) such
that LMIs (22)-(23) hold: �̄[0,ḣt ] e10S2 hE2Y

∗ −Z 0
∗ ∗ −hR̄N

 < 0, (22)

 �̄[h,ḣt ] e11ST1 hE1X
∗ −Z 0
∗ ∗ −hR̄N

 < 0, (23)

�̄[ht ,ḣt ] = Sym
{
5̄1[ht ,ḣt ]

}
+ 5̄2[ht ,ḣt ] +53[ht ,ḣt ],

51[ht ,ḣt ] = 1̄1PN 1̄T
1i + 1̄2PaN 1̄T

2i + 1̄3PbN 1̄T
3i

+14Q11
T
4d +15Q21

T
5d

+�1[h(t)] +�2[ḣ(t)],

52[ht ,ḣt ] = ḣt1̄2PaN 1̄T
2 − ḣt1̄3PbN 1̄T

3 + he4Re
T
4

+ h2e7ZeT7 +16Q11
T
6

+ hd17(Q2 − Q1)1T
7 −18Q21

T
8 ,

1̄1 = [e1 e2 e3 hte12 · · · hte11+N
h̄te12+N · · · h̄te11+2N ],

1̄2 = [e1 e2 e3 e12 · · · e11+N ],
1̄3 = [e1 e2 e3 e12+N · · · e11+2N ],
1̄1i = [e4 hde5 e6 111i 112i],
1̄2i = [hte4 hthde5 hte6 1011 · · · 101N ],
1̄3i = [h̄te4 h̄thde5 h̄te6 1021 · · · 102N ].
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Remark 8: It is noteworthy that Seuret and Gouaisbaut [42]
pointed that the set of upper and lower bound of delays
and upper and lower bound of delay derivatives constitutes
a polyhedron set, and proposed two main characterizations
of the allowable delay sets, that is a usual set [ht , ḣt ] ∈
H1 = [0, h]× [−µ,µ] and another new allowable delay set
[ht , ḣt ] ∈ H2 = {(0, 0), (0, µ), (h, 0), (h,−µ)}, as depicted
in FIGURE 1. From the figure, we can find that once the
values of h, µ are given, H2 is included in H1. In the next
section of this paper, the two allowable delay setsH1 andH2
will be used to show the effectiveness of Theorem 1.

FIGURE 1. Graphical interpretation of H1 and H2.

Remark 9: Besides, the original forms of inequalities
(10)-(11), (20)-(21) and (22)-(23) are not LMIs due to their
dependence on the two time-varying delay parameters h(t)
and ḣ(t). Indeed, the matrix inequalities in the conditions can
be rewritten as the following form:

Ξ1 + ḣt [Ξ2 + htΞ3] < 0, (24)

where Ξi, i = 1, 2, 3 are time-independent matrix functions.
In the light of the convex combination technique proposed
in [43], the original forms of inequalities (10)-(11), (20)-(21)
and (22)-(23) hold if the following LMIs hold for the above
two allowable delay sets H1 and H2, respectively,

H1 : Ξ1 + ḣt [Ξ2 + htΞ3]{[ht ,ḣt ]=[0,h]×[−µ,µ]} < 0, (25)
H2 : Ξ1+ḣt [Ξ2 + htΞ3]{(ht ,ḣt )={(0,0),(0,µ),(h,0),(h,−µ)}} < 0,

(26)

which implies that the solutions of inequalities (10)-(11),
(20)-(21) and (22)-(23) become the feasibility-checking of
the LMIs.

IV. NUMERICAL EXAMPLES
In this section, we give three examples to show the effective-
ness of the criteria proposed in this paper for the two allow-
able delay setsH1 andH2. Moreover, by comparing maximal
admissible delay upper bounds (MADUBs), the conservatism
of the criteria is checked. And the index of the number of
decision variables (NoVs) is applied to show the complexity
of criteria. ‘–’ in tables denotes the data are not given in the
corresponding papers.
Remark 10: At present, Lyapunov stability theory is the

main method to analyze the stability of systems with time-
varying delays. With the development of the theory, the con-
struction of Lyapunov functional mainly focuses on augment-
ing vectors and introducing various time delay-dependent
terms. As a result, the dimension of Lyapunov matrices and
the variable of LMI are increasing. In addition, in order to
further improve the previous stability results by reducing the
upper bounds of the time derivative of Lyapunov functionals
as much as possible, various inequality techniques with more
and more free-weight matrices are used to increase the free-
dom for checking the feasibility of stable conditions based on
LMI. And the main purpose of this paper is further to improve
the stability criterion based on conventional ideas, and obtain
some larger maximum upper bound of the time delays with
an unavoidable cost of increasing matrix variables and com-
putational complexity. Indeed, the NoVs involved in our sta-
bility criteria can be calculated as (66.5 + 21N + 5N 2)n2 +
(13.5+2N )n for theorem 1, (39.5+21N +5N 2)n2+ (10.5+
2N )n for corollary 1 and (51.5+21N+5N 2)n2+(11.5+2N )n
for corollary 2. Obviously, theorem 1 requires the most deci-
sion variables than the corollaries. However, it is shown from
the numerical examples that the upper bounds of the delays
obtained by theorem 1 are the largest than the corollaries.

How we can remove some redundant matrix variables and
try to reduce the decision variables such that it becomes
simple computation, which will be an important future topic.

A. CONSERVATISM COMPARISON
The system parameters of the examples are as follows.
Example 1:

A =
[
1.5 0
0 0.7

]
, W0 =

[
0.0503 0.0454
0.0987 0.2075

]
,

W1 =

[
0.2381 0.9320
0.0388 0.5062

]
, W2 =

[
1 0
0 1

]
,

K1 =

[
0.3 0
0 0.8

]
, K2 =

[
0 0
0 0

]
, J =

[
0.4
0.2

]
.

Example 2:

A =

 7.3458 0 0
0 6.9987 0
0 0 5.5949

 , W0 = 03,
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TABLE 1. MADUBs h for different µ and delay sets (Example 1).

W1 = I3, W2 =

 13.6014 −2.9616 −0.6936
7.4736 21.6810 3.2100
0.7290 −2.6344 − 20.1300

 ,
K1 =

 0.3680 0 0
0 0.1795 0
0 0 0.2876

 , K2 = 03,

J = [0.4 0.2 0.3]T .

Example 3:

A =


1.2769 0 0 0

0 0.6231 0 0
0 0 0.9230 0
0 0 0 0.4480

 ,

W0 =


−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785
−0.1311 0.3253 −0.9534 −0.5015

 ,

W1 =


0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428
−2.0413 0.5179 1.1734 −0.2775

 ,

K1 =


0.1137 0 0 0

0 0.1279 0 0
0 0 0.7994 0
0 0 0 0.2368

 , K2=04,

W2 = I4, J = [0.1 0.2 0.3 0.5]T .

In Tables 1-3, the MADUBs obtained by Theorem 1 and
Corollaries 1-2 are listed and compared with some recent

results for different constraints of ḣ(t). The following is a
summary of the results.
1) Obviously, the MADUBs calculated by Theorem 1 are

lager for all of the different constraints of ḣ(t) than
some existing literature, which shows that the aug-
mented LKF (9) proposed in this paper can reduce the
conservatism of some recent stability results.

2) Theorem 1 and Corollary 1 are derived by choosing a
related LKF with or without the

∫ b
a ė(u)du-type inte-

gral items in η1(t, s) and η2(t, s). It shows that the
MADUBs based on Theorem 1 are larger than those
based on Corollary 1, which shows that the augmented
LKF with

∫ b
a ė(u)du-type integral items in η1(t, s) and

η2(t, s) is important to improving the stability results.
3) Theorem 1 and Corollary 2 are derived by choos-

ing a related LKF with and without v1(t) and v2(t)
in V1(t) based on the same inequality technique.
However, the MADUBs calculated by Theorem 1 are
larger than the ones calculated by Corollary 2, so the
LKF with additional integral information on NAF is
more effective than the one without the relevant infor-
mation onNAF inV1(t), whichmatches the explanation
in Remark 6.

4) The MADUBs calculated by Corollary 2 are larger
than the ones calculated by Corollary 1, which shows
that the separately augmented V2(t) with the

∫ b
a ė(u)du-

type integral items is more effective than the separately
augmented V1(t) with v1(t) and v2(t) in reducing the
conservatism of stability criteria.

5) The MADUBs calculated by Theorem 1 are larger and
larger with the increasing of N , which shows that the
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TABLE 2. MADUBs h for different µ and delay sets (Example 2).

TABLE 3. MADUBs h for different µ and delay sets (Example 3).

N -dependent stability criteria proposed in this
paper are also hierarchy of LMI conditions as
described in [35]. This matches the explanation in
Remarks 1 and 4.

6) The appropriate selection of the delay set, such as H2,
makes a big difference on increasing the MADUBs,
which matches the description in [42] and Remark 7.

7) It can be known from the comparative analysis of NoVs
in the tables that the conservatism of our criteria is
reduced at the cost of increasing decision variables
compared with some relevant references. However,
when N = 2, the NoVs of our stability criteria are less
than those of [4], [6], [15], [18], [33]–[35].

To confirm the obtained result from Tables 1-3, the simu-
lation result is shown in the following section. As you can see

from FIGUREs 2-4 that the state responses of the DNN (4)
converge to zero, which verifies the DNN (1) is stable at the
equilibrium points.

B. SIMULATION VERIFICATION
DNNs should be stable for the following conditions according
to Tables 1-3.
Example 1: g(e) =

[
0.3tanh(e1)
0.8tanh(e2)

]
, e(t) = [2 − 3]T ,

t ∈ [−70.6579, 0],

h(t) =
70.6579

2
+

70.6579
2

sin
(

0.8t
70.6579

)
;

Example 2: g(e) =

 0.3680tanh(e1)
0.1795tanh(e2)
0.2876tanh(e3)

 ,
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FIGURE 2. The state responses for Example 1.

FIGURE 3. The error state responses for Example 2.

FIGURE 4. The state responses for Example 3.

e(t) = [0.2 0.5 − 0.3]T , t ∈ [−3.4257, 0],

h(t) =
3.4257

2
+

3.4257
2

sin
(

0.2t
3.4257

)
.

Example 3: g(e) =


0.1137tanh(e1)
0.1279tanh(e2)
0.7994tanh(e3)
0.2368tanh(e4)

 ,

e(t) = [2 − 5 − 3 7]T , t ∈ [−5.5577, 0],

h(t) =
5.5577

2
+

5.5577
2

sin
(

0.2t
5.5577

)
.

V. CONCLUSION
In this paper, based on the previous researches, the relevant
LKFs are augmented, and a less conservative stability cri-
terion for a class of DNN than the ones of some existing
literature is obtained according to the modified LKF and two
effective integral inequality techniques. Finally, the effective-
ness of the proposed method is illustrated by comparison and
discussion in numerical examples.

Only the DNN is considered in this paper via a novel LKF
application. Certainly, the novel LKF with delay-dependent
terms and augmented variables proposed in this paper can
be also applied to stability analysis of other time-delayed
systems, for example, delayed Lur’e systems [45], delayed
neutral-type systems [46], networked control systems [47],
multi-agent systems [48], and so on, which may be also the
future topics.
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