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ABSTRACT In this paper, the stability of time-delayed neural networks (DNN) is further analyzed. First,
an augmented N-dependent Lyapunov—Krasovskii functional (LKF) is designed, where the non-integral
terms are augmented with delay-dependent items and some additional state variables, and the integrated
vector in the single-integral terms is also augmented by adding some integral interval-dependent items. The
novel LKF complements some coupling information between the neuron activation function and other state
variables. Second, a new delay-dependent stability criterion is proposed via the above LKF application.
Third, in order to further demonstrate the advantages of the new LKF, two corollaries are also given under
other simplistic LKFs. Finally, some common numerical examples are presented to show the effectiveness

of the proposed approach.

INDEX TERMS Lyapunov—Krasovskii functional, neural networks, stability analysis, time delay.

I. INTRODUCTION

Neural network is very popular at present, because the appli-
cation of neural network involves many aspects, such as
image recognition, artificial intelligence, associative mem-
ory, algorithm optimization, signal processing and other sci-
entific problems [1]. As we all know, the most important
premise for the control design and other studies of the neural
network is that it usually has to be stable. However, engi-
neering practice has proved that time delays are inevitable,
especially time-varying delays, for example, in the commu-
nication process between neurons, in the amplifier switching
speed, and so on. Moreover, the existence of time delays
has a major impact on the stability or other performances
of neural networks [2]. And it is generally accepted that the
higher the upper bound of the maximum permissible delay
is, the higher endurability of neural network to transmission
delay is. Therefore, the stability analysis of DNN is always
a hot topic, and the main purpose is maximizing the delay
upper bound as soon as possible for stable DNN. To analyze
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the stability problem of DNN based on the Lyapunov
theorem, the main efforts are concentrated on the follow-
ing several directions, one is finding an appropriate LKF,
for example, LKF with augmented terms [3]-[7], LKF with
delayed partitioning method [8], [9], LKF with triple-integral
and quadruple-integral terms [10]-[14], LKF with delay-
dependent matrices [15]-[17] and so on. The other is reducing
the upper bounds of the time derivative of LKF as much as
possible by developing various inequality techniques, such as
Wirtinger-based inequality and reciprocally convex inequal-
ity [18]-[22], second order Bessel-Legendre inequality
[23]-[25], integral inequality based on a nonorthogonal
polynomial sequel [26], [27], and so on. Besides, further
increasing the freedom of solving LMI, additional free-
weighting-matrix technique is frequently introduced into the
derivatives of LKF [28]-[32]. In conclusion, with the continu-
ous augment of LKF and the development of integral inequal-
ity techniques, many good stability results are obtained and
the conservatism of stability criteria becomes smaller and
smaller.

Recently, based on the second order Bessel-Legendre
inequality and reciprocally convex inequality techniques, two
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novel LKFs are constructed with some augmented vectors

in [33], [34], where less conservative stability criteria than

some previous ones were given for the stability of DNN.

Zhang Zhang et al. [35] obtained a hierarchical type stability

criteria for DNN via the N-dependent LKF and the affine

Bessel-Legendre inequality, where some internal compar-

isons of [35] shown that the affine Bessel-Legendre inequal-

ity can further reduce the conservatism of stability criteria

than Bessel-Legendre inequality. However, among [33], [34],

there are still some shortcomings that can be improved, for

example, using the affine Bessel-Legendre inequality instead
of using Bessel-Legendre inequality inspired by [35], fur-
ther augmenting their LKFs with delay-dependent matrices
in non-integral terms, further augmenting integrated vec-
tors in single-integral terms of LKFs via integral interval
decomposition method, avoiding introducing the terms with
h2(1), and so on. In addition, although the LKF of [35] is

N-dependent, the non-integral terms and the integrated vec-

tors in the single-integral terms are usual. So, we may com-

bine the above potential improvement of [33], [34] and the
idea of N-dependent LKF to further reduce the conservatism
of stability criteria for DNN.

Inspired by the above analysis, this paper will construct
an augmented LKF and the following ideas of deriving an
enhanced stability criteria for DNN should be addressed as:

o Based on [22], [23], [34]-[36], some additional infor-
mation has been added into the non-integral terms and
single-integral terms, such as adding integrals of the
neuron activation function over the delay interval into
the non-integral terms, augmenting the usual integrated
vectors of the single-integral term with f ab X(u)du-type
integral terms. This not only increases some coupling
information between state variables, but also increases
the coupling information between some necessary vari-
ables of the affine Bessel-Legendre inequality.

« Inspired by [6], [26], [33], two different integrand vec-
tors in the single-integral terms of the LKF are further
augmented by supplementing fts_h(t))'c(u)du, [! x(uydu
and f;_h(t) X(uydu, [, ¥(u)du corresponding to differ-
ent integral intervals, respectively. From the domain of
integration, the whole integral domain of ftt_ h) x(u)du
and ftt__hh(t))'c(u)du are just the sum of the two integral
domains of the integral items fts_h(t))'c(u)du, /. :)'c(u)du
and the sum of the two integral domains of the integral
items ] =0 3 (wydu, J;, %(u)du, respectively. Thus,
the two supplementary integral items can be seen

as the decompositions and complements to the terms

Sy ¥du and [0 k(uydu,

o To avoid introducing the terms with h2(t) involved in
[33], [34], the f ab X(u)du-type integral items are chosen
in two different integrand vectors of the single-integral
terms, respectively, which leads to solve the corre-
sponding linear matrix inequalities (LMIs) of stability
results conveniently by using the convexity of LMI with-
out introducing any additional inequality constraints.
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This may be another contribution to expand the feasible
region of the corresponding LMIs.

This paper is organized as follows. Section 2 represents
a brief statement of the research problem and some nec-
essary and important definitions, assumptions and lemmas.
Section 3 presents the main stability criteria for DNNs,
including theorems and corollaries. Section 4 shows some
numerical examples based on the results of the previous
section. See Section 5 for conclusions.

Notation: The matrix P is a positive definite matrix if
P > 0, vice versa. I and 0 represent corresponding dimen-
sion unit matrix and zero matrix. The diagonal matrix is
represented by diag{---}, and ¢; (i = 1,...,m) are block

entry matrices with e3T =10 0 I O-- 9 , where m is

m—3
the length of the vector £(7) in theorems and corollaries. *
denotes the symmetric terms in a block matrix. F[h(z), d(t)],
G[x(t)] denote F, G are the function of h(z), d(¢t) and x(¢),
respectively. Sym{B} = B + BT .

Il. PROBLEM FORMULATION AND PRELIMINARY
The following DNN system descriptions are given:

y(@) = —Ay(1) + Wof (Way (1)) + Wif (Way(t — h(1))) +J.
€]

Here, y(t) = [yi(t) y2(t) --- ya(£)]” is the neuron state vec-
tor of the above DNN. The positive definite diagonal matrix
A € R™" denotes the feedback gain; Wy, Wi, W, € R™"
represent the constant matrices of interconnection weight
and J € R” represents a constant input vector. f(y) =
i) HO) - fL0]T denotes the neuron activation func-
tion (NAF); h(t) represents the corresponding time-varying
delay and satisfies some constraints hypothesis described as
follows:

0 <h(t)<h, |ht)<upu,

with two nonnegative constant boundaries 4 and .
Suppose the nonlinear function, that is NAF, f(y) satisfies
the following hypothesis [37], [38].
< FOV =02 _

= i

Y1 —y2

Vi >0 2)

vyl #yz* i=1721"' , n.
3)

The two real scalars k;~ and k;L could be arbitrary. As noted
in [39], when k;” = 0 and k;r > 0, assumption (3) describes
a globally Lipschitz continuous and monotone nondecreasing
case. And when ki‘Ir > k; > 0, the assumption repre-
sents the case of globally Lipschitz continuous and monotone
increasing.

For the sake of simple mathematical analysis of the stabil-
ity analysis for the DNN (1), we first let e(-) = y(-) — y* and
gle) = f(e+y*) —f ("), then the equilibrium point y* can be
shifted to the origin. Thus, the DNN (1) can be redescribed
as the following system.

e(r) = —Ae(r) + Wog(Wae(1)) + Wig(Wae(t — h(2))) (4)
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with the transformed NAF g(-) with g;(0) = 0 satisfying

< gilar) — gi(a) <kt

ki — MM o
o] — a2

l

Yo #a2, i=1,2,---,n, (5

which derive the following conditions for ap = 0

k-_igi(a)f
o

[

kl.+, i=1,2,---,n. 6)

The most important work to be dealt with in this paper is
to obtain a less conservative stability condition than some
recent results for the DNN (1) based on constraints (2)-(3)
via Lyapunov stability theory. The following main lemmas
are necessary for this purpose.

Lemma 1 [36]: For given matrices R(€¢ R™") > 0, X
with appropriate dimensions, £ € R” and a continuous and
differentiable function {x(s) € R" | s € [a, b]}, the following
integral inequality holds for all integer N > 0

b
— / T (9Ri(s)ds < 268 TIXTe + (b — a)eTXRy' X &,

Remark 1: Ttis obvious that the inequality (7) will reduce to
the Jensen’s free-matrix-based inequality when N = 0, so to
further reduce the conservatism of the stability criteria, the N
is always assumed to be N > 1 in the following derivations.
In addition, letting & = [x”(6) xT(a) A] A] --- AJ] with
= “(;2;’,.‘ x(s)ds, i = 1,2, -+, N), the inequality (7)
can be rewritten as the following inequality.

b
—/ T ()Ri(s)ds < &7 [E,EF{,XT + XTy EN] £
a
+(b - g XRy'XTE, (®)
where Ey can be found at the bottom of this page.

Ill. MAIN RESULTS

In this section, a new stability criterion for the DNN (1)
based on an augmented LKF is proposed at first. Besides, for
detailed comparison, two stability criteria based on the same
inequality techniques but different LKFs (including the LKF
removed the nonlinear items in the non-integral terms and the
LKF removed the augmented part of the integrated vectors in
the single-integral terms) are also given.

) To simplify the representation of vectors and matrices in
where the theorem and corollaries, use the following notations:
[ 1" @] ha = 1=h@). b= ),
N =0 h =h—h@), i=12,---,N,
_ T r Los—t4+h)t
N . . 1 . 1 r ai(t)= e’ (s)ds,
|:x (b) x" (a) Oy - —@N_1i| , —h, h
b—a b— t—h; (s_t_i_h)ifl
N >0, /3,~(t)=/ _—ieT(s)ds,
Iy = [nT(O) 2Ty .- nT(N)]T o "
v AR V(D)= f g (Wae(s))ds,
) — [ —-1], N =0, t7fth
ET e g 6] N0, no=[ ¢ (Waets)as,
. . N . t—h
o, = (()2] + D((—=1) 1), J.S i, () = [eT(t) Tt —hy) e (6 — h)
) J> ’ T A
b vi(t) va(t) htCt] )
Ok = f Lix(s)ds, v = [T Tt —hy e —mwn ¢ |,
Li(s) = (1) Xk: [(_1)1 (’l‘) <k ;rl)} (Z— a>l ’ @ = [T T =) =) G .
=0 —a G = i) o) --- an(@)],
Ry = diag{R, 3R, ---, 2N + 1)R}. Co = [B1(®) Ba(t) - -+ BN (D],
[1 0 0 0 0 ]
017 0 0 0
of1 1+0
00 (-1 0 0 1 0 0
oo v (o)(T) ) () :
- N1 1' 1+0 N N—l. N—-1+1 n_a [N —1 'N—1+N—1
oo (o) (50 )r e () () e () ()1
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(1) = [eTm el(t —hpye' (t — h)

Ty et — hy) é7(t — h) g7 (Wae(2))
gT (Wae(t — hy)) g7 (Wae(r — h))

vi(t) va(t) G (Z},

t
nl(t,s) = [eT(s) el (s) g7 (Wae(s)) / el (wydu

s t—hy
f el (u)du / éT(u)dui| ,
t—hy t—h

t
na(t,s) = [eT(S) el (s) g7 (Wae(s)) / . e’ (uydu
—hy

t—hy K
/ el (wydu / éT(u)du} ,
s t—h

Ky = diag [k k), - k),
K, = diag {k; k3, -k, }.

>n

A. AN AUGMENTED LKF

When analyzed the stability of the DNN, the main aim is
reducing the conservatism of stability criteria via LKFs with
broader form and much tighter integral inequality techniques
application. It is foreseeable that broader LKFs or much
tighter integral inequality techniques may reduce the
conservatism. The purpose of this paper is to construct an
augmented LKF to reduce the conservatism of stability cri-
teria under the latest and much tighter inequality technique.
So. firstly, we give this improved LKF described as follows:

5
Vi)=Y Vi) ©)
j=1
with

Vi(®) = ey (OPNEN @) + hiS{y (OPav Ein (©)
+ e &y (OPpN Can (1),

t
Va(t) = f . N1 (¢, $)01ni(t, s)ds
t—nt
t—hy
+ f ) 03 (1, $)Qama(t, s)ds,
t_
n Whie(t)
Vi) =2)" fo [h1i(gi(s) — ki)
i=1
+ hai(ki"s — gi(s))] ds
n Waje(t—he)
+2) fo [h3i(2i(s) — k;”s)
i=1
+ hai(k;"s — gi(s))] ds
n Woie(t—h)
2y /O [si(i(s) — k°s)
i=1

+ hei(k;"s — gi())] ds,

0 t
Va(t) = / / ¢l (s)Ré(s)dsdb,
—h Jt+6

0 t
Vs(t) = h / f g (Wae(5))Zg(Wae(s))dsd®,
—h Jt+6
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where Py eR(S+2N)n><(5+2N)n’ (Pan, Poy eR(4+N)nx(4+N)n)’
(Q1, O € R*6m) (R 7 < R™M) are positive definite
matrices, hp; > 0(p=1,2,---,6).

Remark 2: The novelties of the LKF (9) lie in the following
three aspects and these modified measures are a major con-
tribution to reducing the conservatism of stability criteria for
the DNN.

o It is different from the ones in [22], [23], [34], [35]
due to Vi(¢) and V,(¢). Some additional information
has been added into Vi(¢), such as vi(t), vo(¢) and
delay-dependent terms, where more coupling informa-
tion between some states and NAF is described by
the Lyapunov matrices Py, P,y and Ppy. Especially,
the usual integrated vectors of the single-integral term,
n'(s) = [eT(s) &' (s) g7 (Wae(s))], are augmented as
two different integrated vectors dependent on the dif-
ferent integral ranges, that is 11(¢, s) and n2(¢, s). This
not only increases some coupling information between
some system variables, but also increases the coupling
information between some necessary variables of the
inequality lemma 1.

e When N = 2, compared with the ones in [26], where
the quadratic term e (HPe(r) is merged into the single
integral term, that is, there were no non-integral terms.
Indeed, Chen et al. [40] pointed out that the conser-
vatism can be further reduced by combining an extended
non-integral terms with the LKF of [26]. Therefore,
the augmented non-integral terms Vi(¢) is added into
the new LKF proposed in (9). Moreover, based on
[6], [26], [33], two different vectors n1(z, s) and na (¢, s)
are further augmented by supplementing ff_ht e(u)du,
[l éGuydu and [ euydu, [*, éu)du corresponding
to different integral intervals, respectively. From the
domain of integration, the whole integral domain of
ftt_ p, €(wdu and ftt__;’ é(u)du are just the sum of the two
integral domains of the integral items /;Y—hz e(u)du and

fs ! e(u)du and the sum of the two integral domains of the

integral items [’ , é(u)du and f;_h’ é(u)du, respectively.
Thus, the two supplementary integral items can be seen
as the decompositions and complements to the terms
Sy wdu and [/ éuydu.

o Based on the N-dependent generalized free-matrix-
based integral inequality lemma 1, the LKF (9) is also
N-dependent, so the stability criteria derived via the
LKF are also hierarchy of LMI conditions, that is,
the conservatism of the stability criteria decreases as N
increases.

B. STABILITY CRITERIA

The following theorem and corollaries will give some stabil-

ity criteria for the DNN (1) satisfying the conditions (2)-(3).
Theorem 1: The DNN (1) with the conditions (2)-(3)

is globally asymptotically stable for given non-negative

scalars of h, u, if there exist positive definite matrices

Py € ROH2Nmx(G+2Nm (p . po e RENImx@+Nny
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(Q1, Q2 € RO (R 7 e R™™), positive definite
diagonal matrices H, = diag{hp1, hp2, -, hpn}, (Aj,
®j, € R™") and any matrices (S, $2, U; € R™"), (X,
Y e RWEIVEDY (o = 1. 6 jor = 1,2k =

1,2,3;1 = 1,---,4) such that LMIs (10)-(11) hold for all
N e N:
Q[O,h,] e1052  hEY ]
% -z 0 |<o (10)
* * —hRy |
Qi enSl  hEX]
* -7 0 |<o (11)
* * —hRy |
where
Qi1 = Sy AT, i} + g iy + Mg, -

My i = MIPNAT + AgPay AJ 4+ AsPpy A
+ A401 A% + AsQr AL + Qi + Qi

My, iy = hiBoPay AY — by A3Pyy AL + heyRey,
+herZel + AeQi A + haA7(Q2 — QAT
— AgQrAg,

s, 0 = E1 [XHN +H§XT] El

E» [YHN + H,5YT] El — E3TLET,

Ey=le1 e en e114N 1],
Ey =[ex e3 ennqn er+an],
E3 = [eio e11l,
1'I4=|:(2_’0)Z (1—,0)S1+,052] p=ﬁ7
¥ (1+p)Z h
Ap=ler e e3 en enn Mhepn hiei11+n
il1612+N ;ltell+2N] )
Ay =1[e; e e3 e en e11+N],
Az =le1 e e3 enr en4n er1+2n1;
Ay = [eq hges eg e7 — hges hges — eg Ajy; Aqil,
Agi = [hreqa  hihges hieg (e — hges)
Aot -+ Aoind,
Az = [hes hihges hies  hi(haes — eo)
Apr - Ao,
Ar1i = heerihi + Ao
Argi = —herivivn + Ao2is
e1 — hgey — htelz, i=1,
Aori = ) . .
e; — (i — Dhgejoti — ilveyyi, i>1,
haes — e3 + hrernn, i=1,
Agoi = | haez — (i — Dejotn+i
+ihyeriin-+i, i>1,
Ay = [hern e —ex eqo

hi(er —e1n) hi(ern —ez) hi(ex —e3)],

Ay =10 0 0 eq4 —hges hyes —esl,
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As = [henyn e2—e3 en
hi(er —e2) hi(ex —ernyn) hi(ernin —e3)],

Asq =[0 0 0 e4—hges hges —esl,

Ag=1le1 e4 e7 0 e —er er—e3],
A7 =le; es eg eg—ex 0 ey —es],
Ag=les e e e —er ey—e3 O0].
Ry = diag (R, 3R, --- ,(2N + )R},

Hy =T'yEp,

3
Qiain) = Z [66+j — Wy Ky ] .

j=1
hy hy ;
— A+ — Ay [K1W26j — €6+j]
h h
2
+) [(€6+j —e74)) — (¢ — 61+j)W2TK2T] :
j=1
hy hy ,
h — 0y + W — By [Kl Wa(ej — e14))

T
—(e6+j — e7+)) ] ,

ey = [37

+ [erWI K] — 7| HaWael

— e\ WI K] | Hiwae]

+hy [eg — ey WIKT ] HsWae!
+hy [eZW{ KT - eg] HyWael
+ [es = esWI KT | HsWaef
+ [e3W2T KT - 89] HeWael .

Proof: Calculating the derivative of V (¢) along the solu-
tion of the DNN (1) yields

Vi) = 285 (OPNEN (1) + hy &y (DPan Cin (8)
- hzé“zTN(t)PhNCzN(t) + 2h,C1TN(t)PaN§1N(t)
+2}_lt§2TN(t)PbN§:2N(t)»
Va(t) = ni (t, DO (2, 1)
—han? (t,t — h)OQumi(t, t — hy)
+han} (t,t — h)Qoma(t, t — hy)
— 3 (t.t — WQama(t, t — h)

t
+2/ h a2, )0, L) 8771(t S)
=

t—h,
+2f 0L (1, 50, 22 ) 8”2“ 9 as,
t

—h
Va(t) = 2g" (Wae(t))(H) — Hz)er(t)
+ 2T (W] (K1 Hy — KoHy)Waé(t)
+2hqg" (Wae(t — h(t)))(H3
— Hy)W)é(t — h(t))
+2hgel (t — h(t))W] (K1Hy

104659



l EEEACC@SS W. Duan et al.: Further Stability Analysis for Time-DNN Based on an Augmented Lyapunov Functional

— KrH3)Wae(t — h(t))
+2¢" (Wae(t — h))(Hs
— He)Whe(t — h)
+2¢T (1 — W (K1 Hg
— K>rHs)Wae(t — h),
t
Va(t) = he (1)Ré(t) — / ¢ (s)Ré(s)ds,
t—h
Vs(t) = h*g" (Wae(1))Zg(Wae(t))

t
—h / hgT<er<s>>Zg<er<s>>ds.
[_
Notice that

}:erz = &l (t)[ern e13 -+~ er14n],

hC = —iET (1) [e1nen e13en - ennsan],
hCr = hy [61(1) 62(1) -+ (D],

hCr = hy [Br(0) Ba(t) -+ Bn(D)],

eL(ler — haes — hyern], i=1,
hii(t) = § €T (1) [er — (i — Dhgerosi
—iiltelpri] , i>1,

hBit) = 1 €7(t) [haer — (i — Derosn+i

d . .
E(htct) = h(Cr + Gy,
d - - . _ s
E(htcl) = —h(C; + h(Cy,
L) = [ET(t) le4 hges eq e7 — hyeg
d d - -
hgeg — eg] E(htct) E(htCt)iI s
¢y = [ET(I) le4 hyes eq €7 — hgeg] ét:l ,
Ev® = [67(0)les haes es haes — eo] G ]

ni(t,1) = &T(t)[e1 es e70 €1 — ez €2 — €3],
Nt t—h) =t t —h) =& (t)[e2 es es
e1 —ex0ey —e3],
ma(t,t —h) = E7(1)[e3 eq e9 e1 — €2 2 — €3 0],
t
f nl (¢, s)ds = ET(t) [he1n e1 — ez e10 hy(er — e12)
t—h;
hi(e12 — e2) hy(ex — e3)],
t—hy _
f a5t $)ds = E7(0) [fueraen e — es e
t—h
hi(e1 — e2) hy(ez — e124n)
hi(ei24n — €3)],

an (t,

’“a(l 9 _ ET(1)[000es — hges hges — ec] ,
ana(t, s)
nT = gT(t) [000e4 — hges hges — es] .

104660

eV ()[hger — e3 + hyernin], i=1,

+ihier14n+i] i>1,

It can be obtained from lemmas 1 and 2 that

t
—_ / T (s)Re(s)ds < £(1)TE, [XHN +HIXT
t—h
+ h,XR,;le] ET&(r)
+E0)Es [YHN +HIYT

+ E,YR,;lyT]E{s(z), (12)
t

—h / . " (Wae(s))Zg(Wae(s))ds
l_

t
= —h / . g (Wae(5))Zg(Wae(s))ds
t—h

t—hy
—h / . g (Wae(s))Zg(Wae(s))ds
[_

IA

h h
—h—tsT(oeloZelTos(r) - E—{ﬁ(f)enze{ls(n

IA

ol . (1+p)Z

T
I |:€1To:| [(2 —pZ (L= p)Si+ psz]

T
x |:ZlToi| + (1 = p)ET (1)e108227 1T el (1)
11

+ €T (enS{ 271 S1ef £ (). (13)

For any appropriately dimensioned matrices U = [U] UT
U3T U4T]T € R*>n it is true that

0=2&"(t)[e) es e7 es] U[—Ael + Woel
+Wieg — e} JE(t).  (14)

If the nonlinear constraint conditions (5) and (6) are parti-
tioned according to time-varying delay, we can obtain

N h
A (s) 2 2[g(Wae(s)) — KaWae(s)]T (émk

h
+ ;‘Ay() [K1 Wae(s) — g(Wae(s)] > 0, (15)
8i(s1,52) 2 2[g(Wae(s1)) — g(Wae(s2) _
7 ( he hy
— Ko Wa(e(s1) — e(s2))] (;@y + ;@2/')
x [K1Wa(e(s1) — e(s2)) — g(Wae(s1))
+ g(Wae(s2))] > 0, (16)

where Ay and @, (j,r = 1,2; k = 1,2, 3) are positive
definite diagonal matrices.
Thus, the following inequalities hold

A@) + Aot — b))+ 23t —h) = 0, a7
S1(¢,t —hy) + 62t — by, t —h) > 0. (18)

Finally, from the above derivation, we have
V) < £T4) {Q[h,,iz,] + hEXRy'XTET
+ By YR YTET } £(t)
+&70 [ = pewns2z7s] el
+pens{z ' siel J 5. (19)
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Therefore, LMIs (10)-(11) hold, which implies that
V(t) < 0 by the transformation of Schur complement
equivalence. This shows that the DNN (1) is stable from
Lyapunov stability theory, which completes the proof.

Remark 3: Recently, some improved stability criteria for
DNNs via a new augmented LKF were given in [33], [34],
where the LKFs with fab e(u)du-type integral in n(¢, s)
and n;(t, s) were constructed, which was aimed at coordi-
nating with the second-order B-L integral inequality with
the fah e(s)ds-type and fab feh e(s)dsdf-type integral items.
However, they had to introduce the terms with h%(t) when
bounding the derivative of the LKFs, which led to adding
some additional inequality constraints into the main results.
This narrowed the feasible region of the corresponding LMIs.
In this paper, the coupling relationship between the neces-
sary integral items for lemma 1 are already included in the
derivative of V(¢). Thus, to avoid introducing the terms with
h(1), the fab e(u)du-type integral items are chosen in 7y (¢, s)
and no(t, s), respectively, which can be solved conveniently
by using the convexity of LMI without introducing any addi-
tional inequality constraints, which is also another contri-
bution to expand the feasible region of the corresponding
LMIs.

Remark 4: The second-order B-L integral inequality was
used in [22], [33] to bound the integral item fab éT (s)Ré(s)ds.
However, an affine version of the B-L integral inequality was
widely used in a lot of literature, such as [23], [35], [36], [41],
and inspired by them, the affine version is not only affine
with respect to the length of the integral interval but also
can further reduce the conservatism of stability criteria. Thus,
the generalized free-matrix-based integral inequality lemma 1
is used to bound the derivative of V4(t) instead of using the
B-L integral inequality in this paper.

Remark 5: As described in the literature [35], the stabil-
ity criteria proposed in this paper form a hierarchy of LMI
conditions, that is the conservatism of the stability criteria
decreases as N increases, which can also be seen from the
comparison of the numerical examples in the next section.
However, the number of decision variables will increase as N
increases. So, we just solve the corresponding LMIs with N
from 1 to 3 in the numerical examples.

Remark 6: To illustrate the effectiveness of augmenting
the LKF with augmented (¢, s) and n,(%, 5), the following
corollary can be obtained by removing the fab e(u)du-type
integral items in 11 (¢, s) and n»(¢, s), that is, letting (¢, s) =
mt,s) = [el(s) el (s) g' (Wae(s))]. And the proof of
Corollary 1 is omitted here.

Corollary 1: The DNN (1) with the conditions (2)-(3)
is globally asymptotically stable for given non-negative
scalars of h, u, if there exist positive definite matrices P €
R(5+2N)n><(5+21\7)n’ (Pa’ Ph e R(4+N)n><(4+N)n)’ (Q], Q2 e
R3X3m) (R, Z € R™™), positive definite diagonal matrices
H, = diag{hp1, hp2, - -, hpn}, (Aji, O € R™") and any
matrices (S1, S», Uy € R™"), (X, Y € RW+2nx(N+Dny
p=1---,6;j,r=1,2,k=1,2,3;1=1,---,4)such

VOLUME 7, 2019

that LMIs (20)-(21) hold:

Q[O,hr] e1082 hERY ]
* —Z 0 <0, (20)
* * —hRy i

Qg enS{ REIX ]
* —Z 0 < 0, 21)
* * —hRy |

where
Q[huhr] = Sym {Hl[hnh/]} + Hz[hhih] + H3[huhr]’

l'[z[h,,h,] = izzAzPaN A2T — iz,AngNAg + he4ReZ
+h*erZe] + AgQ1AG +haBA7(Qr — ONAT
— AsOhAY,
ﬁl[h,,h,] = AIPNAT + AoPuv A + AsPpy AL,
+ Qu1pro1 + Lagiy
Aé = [e] e4 e7], A7 = [es e5 eg], Ag = [e3 eg €9] .

Remark 7: To illustrate the effectiveness of augmented
V1(#) in the LKF proposed in this paper, the following corol-
lary can be obtained by choosing the LKF removed v (¢) and
va(t) in Vi(¢). And the proof of Corollary 2 is omitted here.

Corollary 2: The DNN (1) with the conditions (2)-(3)
is globally asymptotically stable for given non-negative
scalars of h, u, if there exist positive definite matrices P €
R(3+2N)nx(3+2N)n’ Py, Py € R(3+N)nx(3+N)n)’ (01, 02 €
RO"x6m) (R, Z e R"™ ™), positive definite diagonal matrices
H, = diag{hp1, hp2, -+ -, Bpu}, (Aji, Ojr € R™") and any
matrices (S1, Sz, U; € R™), (X, Y € RWHDnx(N+Dny
p=1--,6;j,r=1,2,k=1,2,3;1=1,---,4)such
that LMIs (22)-(23) hold:

Q[O,iz,] e10S2 hEyY
* —Z 0 <0, (22)

| * —hRy

[ Qi enS{ hEIX
* —Z 0 < 0, (23)

| * * —hRy

Q[hf’ilf] = Sym {Hl[htjlr]} + HZ[h,,il,] + H3[h,’j1t],
My i = AIPNAT + AgPay AJ + AsPpy AL,
+ A401AL, + As0r AL,

+ S11a1 + agiry)-
Mypp, i) = heB2Pan Ay — by AsPypy AT + hesRey,
+hze7Ze7T + AcQ1A]
+hgA7(Qr — QDAY — AsOr A,
Ay = [e1 ez e3 lyern -+ - heriqn
hierasn -+ hierigan],
Ay =lerereseny -+ erinl,
Az =[e1 ex ez €14y -+ er142n],
A1i = leq hges eg A11j Apail,
AZi = [hieq hihges hieg Aori
A3i = [;lt€4 }_lthde5 Ijzte(, Ap21

< Agin],
- Apn].
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Remark 8: Tt is noteworthy that Seuret and Gouaisbaut [42]
pointed that the set of upper and lower bound of delays
and upper and lower bound of delay derivatives constitutes
a polyhedron set, and proposed two main characterizations
of the allowable delay sets, that is a usual set [/, h,] €
H1 = [0, h] x [—u, ] and another new allowable delay set
(he, ] € Ha = {(0,0), (0, ), (h, 0), (h, —)}, as depicted
in FIGURE 1. From the figure, we can find that once the
values of &, u are given, H, is included in 7. In the next
section of this paper, the two allowable delay sets H; and H>
will be used to show the effectiveness of Theorem 1.

h(t)

» h(t)

A. Graph representing

i)

»h(t)

B. Graph representing ',

FIGURE 1. Graphical interpretation of #£; and H,.

Remark 9: Besides, the original forms of inequalities
(10)-(11), (20)-(21) and (22)-(23) are not LMIs due to their
dependence on the two time-varying delay parameters h(t)
and A(t). Indeed, the matrix inequalities in the conditions can
be rewritten as the following form:

B+ 82+ B3] <O, (24)

where =, i = 1, 2, 3 are time-independent matrix functions.
In the light of the convex combination technique proposed
in [43], the original forms of inequalities (10)-(11), (20)-(21)
and (22)-(23) hold if the following LMIs hold for the above
two allowable delay sets H and H,, respectively,

Hi: Bl “l‘ht[EZ +hfE3]{[h,,iz,]:[0,h]x[—M,u]} <0, (25)
Ha 2 Ev+hl B2 + he B3, iy)=40.0).(0.10).(0.0). .~y < 05
(26)
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which implies that the solutions of inequalities (10)-(11),
(20)-(21) and (22)-(23) become the feasibility-checking of
the LMIs.

IV. NUMERICAL EXAMPLES

In this section, we give three examples to show the effective-
ness of the criteria proposed in this paper for the two allow-
able delay sets | and H>. Moreover, by comparing maximal
admissible delay upper bounds (MADUBs), the conservatism
of the criteria is checked. And the index of the number of
decision variables (NoVs) is applied to show the complexity
of criteria. ‘-~ in tables denotes the data are not given in the
corresponding papers.

Remark 10: At present, Lyapunov stability theory is the
main method to analyze the stability of systems with time-
varying delays. With the development of the theory, the con-
struction of Lyapunov functional mainly focuses on augment-
ing vectors and introducing various time delay-dependent
terms. As a result, the dimension of Lyapunov matrices and
the variable of LMI are increasing. In addition, in order to
further improve the previous stability results by reducing the
upper bounds of the time derivative of Lyapunov functionals
as much as possible, various inequality techniques with more
and more free-weight matrices are used to increase the free-
dom for checking the feasibility of stable conditions based on
LMI. And the main purpose of this paper is further to improve
the stability criterion based on conventional ideas, and obtain
some larger maximum upper bound of the time delays with
an unavoidable cost of increasing matrix variables and com-
putational complexity. Indeed, the NoVs involved in our sta-
bility criteria can be calculated as (66.5 + 21N + 5N2)n® +
(13.5+2N)n for theorem 1, (39.5+ 21N +5N?)n?> 4+ (10.5+
2N )n for corollary 1 and (51.5421N+5N2)n?+(11.5+2N)n
for corollary 2. Obviously, theorem 1 requires the most deci-
sion variables than the corollaries. However, it is shown from
the numerical examples that the upper bounds of the delays
obtained by theorem 1 are the largest than the corollaries.

How we can remove some redundant matrix variables and
try to reduce the decision variables such that it becomes
simple computation, which will be an important future topic.

A. CONSERVATISM COMPARISON
The system parameters of the examples are as follows.
Example 1:

A= 1.5 0 :|’ Wo = [0.0503 0.0454i|7

| 0 07 0.0987  0.2075
[0.2381  0.9320 10
Wi=10.0388 0.5062:|’ Wa= [o 1]’

[03 0 0 0 0.4
Ki=10 0.8]’ KZz[o 0] Jz[o.z]

Example 2:
7.3458 0 0
A= 0 6.9987 0 , Wy =03,
0 0 5.5949
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TABLE 1. MADUBs h for different . and delay sets (Example 1).

Delay Constraint

sets Methods of h(t) 04 a5 03 0355 Novs
[21, Th. 1] h(t) < p 7.6697 6.7287 6.4126 6.2569 15n° + 16n
[30, Th. 1] h(t) < p 83498 73817  7.0219  6.8156 73n2 + 13n
[13, Th. 1] h(t) < 85669  7.6260  7.2809  7.0683 90n2 + 14n
[18, Th. 9] h(t) <p 9.6800 8.5192 8.0535 7.7707 142.5n% 4 16.5n
[10, Th. 3] |h(t)] < 9.7094  7.7523  6.8570  6.2977 42n2 + 27n
[5, Th. 3] h(t) < p 10.1095  8.6732  8.1733  7.8993 46n2 + 42n
[15, Th. 1] h(t) <p 10.2367 9.0586 8.5986 8.3181 79.5n2 4+ 15.5n
[3, Th. 1] h(t) <p 10.4371 9.1910 8.6957 8.3806 128n2 + 20n
H1 [34, Th. 2] |h(t)| <pu 10.5730 9.3566 8.8467 8.5176 244.5n2 4+ 9.5n
[4, Th. 3] ()] < p 16.8020  11.6745  9.9098  9.0062 | 194.5n2 + 10.5n
[30, Th. 3] ()] < p 13.8671  11.1174  10.0050  9.4157 | 79.5n2 + 15.5n
[35, N=2] ()] < p 23.8409 17.6941  14.8593 - 131n2 + 24n
[35, N=3] ()] < p 253564 187688  15.7256 - 191n2 + 26n
Co. 1 N=2 [h(t)] < p 20.8811 145321 104212 94618 | 101.5n2 + 14.5n
Co.2 N=2 |A(t)] < 254616  19.5819 18.8974 163418 | 113.5n2 + 15.5n
Th. 1 N=2 |A(t)] < 26.0397 217601  19.1309  16.5619 | 128.5n2 + 17.5n
Th. 1 N=3 lh(t)] < p 289952 235578 21.1130  17.0019 | 174.5n2 + 19.5n
[35, N=2] [h(t)] < p 774833  46.6448  46.6448 - 131n? + 24n
[35, N=3] |h(t)] < p 120.120  67.9672  49.8307 - 191n2 + 26n
H, | Co.lN=2 lh(t)] < p 455518  43.1109 43.1108  43.1108 | 101.5n2 + 14.5n
Co.2 N=2 [h(t)] < p 50.9984  45.6574  45.6573 456570 | 113.5n2 + 15.5n
Th. 1 N=2 [A(t)] < 535441 475632 475631 47.5630 | 128.5n2 + 17.5n
Th. 1 N=3 [h(t)] < 70.6579 68.9996 68.8888  68.8885 | 174.5n2 + 19.5n
13.6014  —2.9616 —0.6936 results for different constraints of A(¢). The following is a
Wy =0L, W,y=| 74736 21.6810 3.2100 , summary of the results.
0.7290 ~ —2.6344  —20.1300 1) Obviously, the MADUBs calculated by Theorem 1 are
0.3680 0 0 lager for all of the different constraints of h(t) than
K = 0 0.1795 0 , Ky =03, some existing literature, which shows that the aug-
0 0 0.2876 mented LKF (9) proposed in this paper can reduce the
J =104 02 03]7. conservatism of some recent stability results.
2) Theorem 1 and Corollary 1 are derived by choosing a
Example 3: related LKF with or without the fab é(u)du-type inte-
gral items in ni(¢, s) and n2(¢, s). It shows that the
[1.2769 0 0 0 MADUBs based on Theorem 1 are larger than those
A 0 0.6231 0 0 based on Corollary 1, which shows that the augmented
- 0 0 0.9230 0 ’ LKF with f ab e(u)du-type integral items in 5 (¢, s) and
0 0 0 0.4480 na(t, s) is important to improving the stability results.
F—0.0373  0.4852 ~0.3351 0.2336 1 3) Theorem 1 and Corollary 2 are derived by choos-
—1.6033  0.5988 —0.3224  1.2352 ing a related LKF with and without v(¢) and v2(¢)
Wo = 0.3394 —0.0860 —0.3824 —0.5785 |’ in Vi(¢) based on the same inequality technique.
—0.1311 03253 —09534 —0.5015 However, the MADUBs calculated by Theorem 1 are
- 0.8674 _12405 —05325 0.0220 - larger tban the. ones c'alculated. by Cor(?llary 2, s0 thfi
LKF with additional integral information on NAF is
0.0474  —-0.9164  0.0360 0.9816 . . .
W, = , more effective than the one without the relevant infor-
1.8495 2.6117 —0.3788 0.8428 mation on NAF in V;(¢), which matches the explanation
—2.0413 05179 11734 —0.2775 . 10, P
L - in Remark 6.
0.1137 0 0 0 4) The MADUBs calculated by Corollary 2 are larger
K| = 0 0.1279 0 0 . Kr=0y, than the ones calculated by Corollary 1, which shows
0 0 0.7994 0 that the separately augmented V;(¢) with the f ab e(u)du-
0 0 0 0.2368 type integral items is more effective than the separately

Wr =1L, J=1[0.10.20305].

In Tables 1-3, the MADUBs obtained by Theorem 1 and
Corollaries 1-2 are listed and compared with some recent
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augmented Vi(¢) with vi(#) and v,(¢) in reducing the
conservatism of stability criteria.

5) The MADUBs calculated by Theorem 1 are larger and
larger with the increasing of N, which shows that the
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TABLE 2. MADUBs h for different . and delay sets (Example 2).

Dela; Constraint
seis | Methods | o o0 0509 Novs
[5, Th. 3] h(t)y < p 1.8899  1.1115 0.4807 - 46n2 + 42n
[15, Th. 1] h(t) <p | 19261 11205 04614 03963 | 185.5n2 + 21.5n
[30,Th.3] | |h(t)] < | 1.8899 1.1135 0.4922 04701 | 79.5n2 4 15.5n
[4, Th. 1] [a(t)| <p | 1.8899  1.1193 04590 0.3945 | 194.5n2 + 10.5n
[26,Pro. 11 | |h(t)] < p | 1.9349 1.1454  0.5806 - 115n2 + 22n
35, N=2] | |h(t)] <p | 1.9349 11511 0.5836 - 131n2 + 24n
Hy 35, N=3] | |k(t)] <p | 1.9365 1.1554 0.5967 - 191n2 + 26n
[33.Th.2] | |h(t)] < p - 1.3248  0.6323  0.5237 | 172.5n2 + 15.5n
[6, Th. 1] |A(t)] < - 2.0497 09860 0.5831 | 172.5n2 + 15.5n
Co. IN=2 | |h(t)] <pu | 1.8998 1.1516 0.5688 0.4776 | 101.5n2 + 14.5n
Co.2 N=2 | |A(t)| < p | 20006 14746 0.6007 0.4901 | 113.5n2 + 15.5n
Th. 1 N=2 | |A(t)| < p | 33518 19518 0.7259 05579 | 128.5n2 + 17.5n
Th.1 N=3 | |h(t)] < u | 39109 22676 09914 0.5927 | 174.5n2 +19.5n
35, N=2] | |h(t)| <p | 1.9349 19202 1.3348 - 131n2 + 24n
[35, N=3] | |h(t)] <p | 1.9365 19341 15005 - 191n2 + 26n
Co. 1 N=2 \iz(t)| <p | 19202 19123 13503 1.3046 | 101.5n2 + 14.5n
Ha Co.2 N=2 \h(t)| <p | 23559 21129 17726 1.7702 | 113.5n2 4+ 15.5n
Th. 1 N=2 \h(t)| <p | 37893 31059 28793 23125 | 128.5n% 4+ 17.5n
Th. 1 N=3 \h(t)| < | 39947 34257 3.0001 3.0000 | 174.5n2 + 19.5n
TABLE 3. MADUBs h for different x and delay sets (Example 3).
Dela; Constraint
setsy Methods of I ) O‘L.L 5 09 NoVs
[22,Th.5] | |h(t)| <p | 4370  3.187 2907 | 34.5n2+20.5n
[13,Th. 1] | hA(t) <p | 43231 32592 29846 90n2 + 14n
[5, Th. 1] h(t) <p | 43919 34273 32516 51n2 + 42n
[3, Th. 2] h(t) <p | 44530 34929  3.0726 128n? + 11n
[15,Th.1] | h(t) <p | 44873 35330 3.0894 | 184.5n2 + 11.5n
[12,Th.1] | h(t) <p | 49989 3.8038  3.1855 38n2 + 11n
H1 [44,Pro. 1] | |h(t)] < p | 45382 39313  3.4763 60n2 + 22n
[35, N=3] | |h(t)] < p | 45468 4.0253 3.6246 191n2 + 26n
[6, Th. 1] |h(t)] < p | 53384  5.0201 4.9745 25.5n2 + 8.5n
Co. 1 N=2 | |h(t)] < p | 44189 3.8755 3.3476 | 101.5n2 + 14.5n
Co.2 N=2 | |h(t)] < p | 46489 43477 3.8778 | 113.5n2 + 15.5n
Th. 1 N=2 | |A(t)] < p | 5.0485 49348 4.5612 | 128.5n2 + 17.5n
Th. 1 N=3 | |h(t)] < p | 53441 50943 4.9951 | 174.5n2 +19.5n
[35, N=2] | |h(t)|<p | 48116 48116 48116 131n? + 24n
35, N=3] | |h(t)] <p | 48123 48123 4.8123 191n2 + 26n
Ho | Co.1N=2 | [A(t)| <p | 47789 47664 47664 | 101.5n° + 14.5n
Co.2 N=2 | |h(t)] <p | 48002 4.8001 4.8000 | 113.5n2 + 15.5n
Th. 1 N=2 | |A(t)] < p | 53568 52259 52258 | 128.5n2 + 17.5n
Th. 1 N=3 | |h(t)] < p | 55577 55569 5.5569 | 174.5n2 + 19.5n
N-dependent stability criteria proposed in this from FIGURESs 2-4 that the state responses of the DNN (4)

6)

7

paper are also hierarchy of LMI conditions as
described in [35]. This matches the explanation in
Remarks 1 and 4.

The appropriate selection of the delay set, such as H»,
makes a big difference on increasing the MADUBsS,
which matches the description in [42] and Remark 7.
It can be known from the comparative analysis of NoVs
in the tables that the conservatism of our criteria is
reduced at the cost of increasing decision variables
compared with some relevant references. However,
when N = 2, the NoVs of our stability criteria are less
than those of [4], [6], [15], [18], [33]-[35].

To confirm the obtained result from Tables 1-3, the simu-
lation result is shown in the following section. As you can see

104664

converge to zero, which verifies the DNN (1) is stable at the

equilibrium points.
B. SIMULATION VERIFICATION

DNN s should be stable for the following conditions according

to Tables 1-3.

Example 1: g(e) =

Example 2: g(e) =

0.3tanh(ey) _ T
|:O.8tanh(ez):|’ “w=I[ =3I,
t € [-70.6579, 0],
70.6579  70.6579 . 0.8¢
h(t) = sin ;
2 2 70.6579
0.3680tanh(eq)
0.1795tanh(e) |,
0.2876tanh(e3)
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FIGURE 2. The state responses for Example 1.
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FIGURE 3. The error state responses for Example 2.

State value

-6 | |
0 50 100
Time (Sec.)

FIGURE 4. The state responses for Example 3.

et) = [0.20.5 — 0317, te[=3.4257, 0],

h(t) =

3.4257  3.4257 . 0.2t
+ n
2 2 3.4257
0.1137tanh(eq)
0.1279tanh(e;)
0.7994tanh(e3)
0.2368tanh(es)

Example 3: g(e) =

VOLUME 7, 2019

)

150

e)=12 -5 -=37", te[-55577, 0],
55577 5.5577 . ( 0.2t
+ sin .
2 2 5.5577

h(t) =

V. CONCLUSION

In this paper, based on the previous researches, the relevant
LKFs are augmented, and a less conservative stability cri-
terion for a class of DNN than the ones of some existing
literature is obtained according to the modified LKF and two
effective integral inequality techniques. Finally, the effective-
ness of the proposed method is illustrated by comparison and
discussion in numerical examples.

Only the DNN is considered in this paper via a novel LKF
application. Certainly, the novel LKF with delay-dependent
terms and augmented variables proposed in this paper can
be also applied to stability analysis of other time-delayed
systems, for example, delayed Lur’e systems [45], delayed
neutral-type systems [46], networked control systems [47],
multi-agent systems [48], and so on, which may be also the
future topics.
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