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ABSTRACT With the continuous maturity of the automobile industry, the cluster network effect has been
gradually formed among automobile parts’ suppliers. How to carry out reasonable and efficient distribution
in the cluster network has become one of the greatest challenges in today’s automobile manufacturers. In this
paper, we conducted a field survey of a real-world automobile logistics company and collected data. After
analyzing the relevant transportation modes, we concluded that the problem could be classified as a clustered
vehicle routing problem (CluVRP). A CluVRP considers gathering customers according to geographical
proximity on the basis of the classical capacitated vehicle routing problem (CVRP). An accompanying
problem is that there is a hard constraint that all customers in a cluster must be served consecutively by the
same vehicle. Because the CluVRP is NP-hard, a hybridmetaheuristic solution approachwas proposed. First,
the shortest distance best fit decreasing (SD-BFD) algorithmwas used to construct an initial solution. Second,
a clustering feature was considered in order to divide the problem into two levels for optimization: the intra-
cluster level and the inter-cluster level. For the intra-cluster level, the variable neighborhood search (VNS)
was applied; for the inter-cluster level, the Lin–Kernighan (LK) considering dummy point was employed for
optimizing. The computational performances of the hybrid metaheuristic algorithms are tested on three sets
of instances and compared with the results from previous papers and the company’s manually calculated
solutions. The results show that the proposed algorithm is excellent in both the operation time and the
final solution value, which is significant to improve distribution efficiency, reduce transportation costs, and
improve customer satisfaction.

INDEX TERMS Clustered vehicle routing problem, Lin-Kernighan, dummy point, variable neighborhood
search, shortest distance best fit decreasing.

I. INTRODUCTION
The developments of globalization have enabled the busi-
ness scope of companies to expand continuously. To keep
up with the pace of globalization and develop an enterprise
scale rapidly, leaders have paid more attention to the role
of logistics. Reasonable and rigorous transportation route
scheduling not only reduces logistics costs but also improves
customers’ satisfaction. The problem of route scheduling is
called a vehicle routing problem (VRP), which is a classical
combinatorial optimization problem that was first brought
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forward by Dantzig and Ramser [1]. In a VRP, there are
customers each having different demands. A depot provides
services to customers by organizing efficient transportation
routes. Under certain constraints, the goal is to satisfy the
demands of all customers and seek the shortest route distance
simultaneously [2].

The purpose of the study was investigated a variant VRP
derived from a real-world automobile logistics company
in China. In recent years, with the improvement of liv-
ing standards, automobiles consumption has become more
widespread. The increasing sales make a number of automo-
bile companies fiercely compete. It is well known that more
than 3000 parts are needed for assembling an automobile,
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which makes the company cost more in transferring parts
from multiple parts manufacturers. In order to ensure rea-
sonable expenditure while making profits, the leaders have
a strong willingness to find more optimized ways to reduce
transportation costs.

Different from traditional VRP that demand distribution
is relatively scattered and irregular, specific requirements
from the automobile companies led to a particular constraint:
the location of parts manufacturers had already presented a
clustering distribution before planning the route schedule.
By analyzing existing VRP variants, there are two types of
VRPswith clustering features, which are the clustered vehicle
routing problem (CluVRP) and the generalized vehicle rout-
ing problem (GVRP). The original prototype of both models
is the classical capacitated vehicle routing problem (CVRP)
with load constraints proposed by Lenstra andKan [3]. On the
basis of CVRP, they are characterized by clustering customers
in advance according to some specific clustering principles.
These principles are always predefined according to the needs
of researchers and enterprises. The most widely used clus-
tering principle is geographical proximity. In the CluVRP,
customers belonging to the same cluster must be serviced
by the same vehicle. When the vehicle leaves a cluster,
it must have served all customers in the cluster according to
a scheduled sequence. This is a hard constraint. After that,
the vehicle can continue to serve another cluster or return
to the depot. The other model with clustering features is the
GVRP, which was first proposed by [4]. It is characterized by
the fact [5] that a vehicle serves only one customer within a
cluster according to the schedule, and other customers will be
ignored. The difference between the two problems is that all
customers or one customer must be served in each cluster.

In the investigation, we learned that the company divided
all suppliers in China into three subranges according to
geographic position, and the activities of each subrange are
independent. The three subranges include 11, 11 and 24 clus-
ters separately, and Nanjing is the mutual delivery depot.
In addition, all customers in each cluster must be served by
the same vehicle in order. In summary, the transportation
mode of a company can be classified as a CluVRP. Moreover,
the practice of clustered distribution of customers is very
common in the real world, such as for parcel deliveries and
elderly patient transportation and so on [6]–[10].

A. THE PRACTICAL SIGNIFICANCE OF CLUVRP
Why does the CluVRP play an important role in enterprise
logistics? There is one point worth thinking about:Why group
customers? According to the investigation of current logistics
activities in China, the following two typical scenarios are
summarized:

1) MAXIMUM EFFICIENCY
With the rapid development of Chinese logistics, the ranking
of logistics volumes has been first in the world continu-
ously since 2014. The Chinese logistics system has gradually
formed its own characteristics. Instead of adopting circular

delivery, vehicles only run one delivery with the least amount
of time. Therefore, the route schedulers prefer to arrange
vehicles to serve customers that belong to the same area.
From the perspective of the logistics company, the distri-
bution costs are reduced, and the effective compactness of
the route is increased. From the perspective of the drivers,
it is conducive to increasing familiarity with the route and to
speeding up the delivery.

2) RESOURCES LIMITED
Social development has led to increasing logistical require-
ments day by day, but only limited resources, including
human and material resources are available, which often
lead to service providers being unable to meet all needs.
As pointed out by Charon and Hudry [11], it is a good
way to differentiate customers into multiple subranges and
to allow multiple service providers to arrange service in a
timely manner. In addition to these scenarios, there are also
other meaningful scenarios in which the CluVRP can play a
valuable role.

B. RELATED WORKS
Although there are a wide range of practical applications, the
state-of-the-art literature on VRP with clustering features is
quite limited. The CluVRP was first conceived by Sevaux
and Sörensen [12] to optimize parcel delivery for an actual
courier company. After that, related studies appeared one
after another. Barthélemy et al. [13] introduced a positive
infinite M penalty in the inter-cluster distance matrix to
achieve a hard constraint. Through this step, the CluVRP can
be easily converted to CVRP. The problem was solved by
means of the algorithm of Clarke and Wright followed by
hybrid simulated annealing algorithm. Marc et al. [14] pro-
posed the preprocessing of the inter-cluster distancematrix on
Euclidean instances basis and proposed a hybrid algorithm to
solve it. Battarra et al. [15] proposed two CluVRP models.
The first model is based on the two-index vehicle flow for-
mulation from CVRP, in which the edges in a cluster to any
vertex outside the cluster are constrained to two. This model
fails to include the special substructure of the clusters and
thus they introduced a new and more rigorous formulation
model. The authors tried several exact algorithms, including
branch and cut; branch and cut and price [16], [17]. The
experimental results proved that the last option with the best
lower bound, was more reasonable and the performance of
the branch was also better. In addition, the authors provided
a set of benchmark instances with up to 481 vertices that
often mentioned in later literatures. Vidal et al. [18] pro-
vided three metaheuristic algorithms, namely, iterative local
search [19], [20], iterative local search with mixed cluster
constraints, and unified hybrid genetic search for solving the
CluVRP. Because these three algorithms are exact algorithms,
they took a large amount of running time to obtain accurate
results at the same time. Time consumption is mainly used in
pre-calculation of service order in each cluster.
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FIGURE 1. Illustration of the CluVRP with hard constraints. All three
vehicles depart from the depot (red cube) to serve all the eighteen
customers (green triangle cone). Customers in a black rectangular box
belong to the same cluster, and all customers within the same cluster
have to be served consecutively by the same vehicle.

Bowerman et al. [21] were the first to propose a category
of solution termed cluster-first/route-second. They grouped
customers into clusters first and then determined the serv-
ing order in each cluster. The solution of VRP could be
based on clusters rather than customers. Following [21],
Defryn and Sörensen [22] decomposed the CluVRP into a
cluster-level routing problem and a customer-level routing
problem, as illustrated in Figure 1. Figure 1(a) shows a simple
CluVRP solution at the cluster level.Without further planning
routes within each cluster, specific driving directions in each
cluster are uncertain. Figure 1(b) presents a CluVRP solution
at the customer level. The target is to determine the specific
driving directions within each cluster after obtaining the par-
tial solution at the cluster level. Figure 1(a) and Figure 1(b)
illustrated the two separate but successive subtasks in solv-
ing CluVRP. After constructing the first subtask, a partial
solution can be obtained. It will become a complete solution
after performing the second subtask. Following the two-level
decomposition strategy, Expósito-Izquierdo et al. [23] split
the CluVRP into a high-level route and a low-level route. The
high-level route used a record-to-record(RTR) travel algo-
rithm [24]. When solving a low-level route, the authors intro-
duced three approaches: a mixed integer linear programming
approach, the Christofides algorithm, and the Lin-Kernighan
heuristic. Because the solution process was separated into
two levels, it was not ideal to address the cohesive part
of the later solution and only merge the two subproblems.

Defryn and Sörensen [25] used variable neighborhood search
(VNS) [26]–[28] to perform a two-level iterative search. The
VNS not only improved the quality of solutions, but also
accelerated the solution speed. Even for large-scale calcu-
lations, this algorithm could obtain a better upper bound.
In addition, the authors also proposed a practical soft con-
straint. That is, the vehicles, with no need for travel according
to the planned route and the service, can be interrupted in
the middle of the distribution process. The vehicles can then
provide priority service for customers in other clusters and
then return to their own clusters to continue to service.

Hintsch and Irnich [29] divided the CluVRP into three
subproblems: cluster assignment, inter-cluster route planning
and intra-cluster route planning, respectively. First, the stage
of cluster assignment obtained the service order in each clus-
ter. Next, the authors used the Large Multiple Neighborhood
Search to destroy and repair the multiple cluster solutions for
optimization purposes and used the variable neighborhood
descent (VND) to implement postprocessing. Popa et al. [30]
proposed a novel approach to decompose the CluVRP into
two submodels. Among them, a genetic algorithm (GA) was
used to solve the inter-cluster routing problem, and simulated
annealing (SA) was used to solve the intra-cluster routing
problem. Both of these algorithms are excellent heuristics for
solving VRP and the authors made a good connection in the
final route merger.

C. CONTRIBUTION
The trend of clustering in automobile parts suppliers is
gradually obvious, especially in China. As analyzed above,
the related transportation problem can be classified as a
CluVRP problem. Although there are some relevant theoret-
ical researches in the existing literature, however, to our best
knowledge, there is little study on CluVRP extracted from the
real-world background.

The main contribution of this paper can be divided into
two areas: On the one hand, this paper links a realistic sce-
nario with the theoretical CluVRP. We surveyed an automo-
bile logistics company in Nanjing, China, collected relevant
operational data and compared experimental results with the
company’s manually calculated solutions, which uncovers
the practical application value of the CluVRP. On the other
hand, note that in a CluVRP, the visiting sequence of a
vehicle route can be built that consists of two parts: the
inter-cluster sequence and the intra-cluster sequence.We thus
design corresponding optimizing mechanisms to determine
their routes separately on the basis of their distinguishing
characteristics. First, a construction algorithm based on the
Hausdorff distance between clusters, which measures how
far two clusters are from each other, is designed to gener-
ate an overall initial solution. Note that a fixed entry-point
and exit-point of a visiting sequence are given for each
cluster for the intra-cluster routing. Then, an improved Lin-
Kernighan (LK) [31] heuristic was developed by combining
the concept of a dummy point to optimize the intra-cluster
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routing and a VNS [26]–[28] mechanism to achieve the opti-
mization solutions of the inter-cluster routing.

Since the CVRP is an NP-hard problem [32], if each cus-
tomer in the CVRP is considered to be a cluster that contains
only one customer, the CluVRP problem is equivalent to a
CVRP; thus, the CluVRP is still an NP-hard problem.

The structure of this paper is organized as follows.
Section 2 introduces integer programming formulations for
modeling the CluVRP. Subsequently, Section 3 introduces
the solution approach for the problem and describes the
algorithmic design. Section 4 verifies the effectiveness of
the proposed algorithm on three benchmark sets of instances
from previous research and a real-world instance from a
Chinese logistics enterprise. In addition, different parameters
were examined to assess the performance of the algorithm
optimization. Finally, Section 5 presents the main conclusive
remarks and study directions that are worth considering for
future research.

II. MATHEMATICAL MODEL
A. MODEL ASSUMPTION
The CluVRP can be given by a complete directed graph
G = (V ,A). The problem consists of a single distribution
depot denoted as point 0, and a given set of n customer points,
N ={1, 2, 3, . . . , n}. The demand of customer i ∈ N is given
by a scalar qi> 0. The vehicle fleet K ={1, 2, 3, . . . , |K |}
is assumed to be homogeneous, meaning that |K | vehicles
are available at the depot. All vehicles have the same capac-
ity Q > 0. The travel cost of a vehicle moving from i to j
denoted as cij. Let V ={0} ∪N ={0, 1, 2, . . . , n} be the set
of vertices. Whereas the arc set A ={(i, j)∈ V × V : i 6= j}
and arc costs cij for (i, j)∈ A. Assuming the problem has
|R| clusters, and the cluster set R ={1, 2, 3, . . . , |R|}(except
depot), ∀r ∈ R represents a cluster that contains at least
one customer. Each customer i ∈ N belongs to a cluster
ri∈ R. The set of customers in a cluster r is denoted by
N r
={i ∈ N :ri= r} ,∀r ∈ R. Consider S to be any subset

of V that is different from V . Then, the out-arcs of S is
defined as δ+ (S)={(i, j)∈ A : i ∈ S, j /∈ S} and the in-arcs
of S is defined as δ− (S)={(i, j)∈ A : i /∈ S, j ∈ S}. Each
vehicle departs from the distribution depot and comes back
after serving all clusters and customers. The capacity of one
cluster must be less than or equal to the maximum vehicle
capacity. In addition, when the vehicle leaves a cluster, it must
serve all customers belonging to this cluster by scheduled
order.

B. MODEL DEFINITION
Decision Variables

xijk =

{
1, vehicle k travels from vertice i to j

0, otherwise
(1)

yik =

{
1, vertice i is serviced by vehicle k

0, otherwise
(2)

Objective Function

Minimize
∑
(i,j)∈A

∑
k∈K

cijxijk (3)

Subject to∑
k∈K

yik = 1 ∀i ∈ N (4)∑
k∈K

y0k ≤ |K | (5)

y0k ≥ yik ∀i ∈ N , ∀k ∈ K (6)∑
j∈N

xijk =
∑
j∈N

xjik = yik ∀i ∈ V , ∀k ∈ K (7)

∑
i∈V

qiyik ≤ Q ∀k ∈ K (8)∑
i∈S

∑
j/∈S

xijk ≥ yuk ∀S ⊆ N , ∀u ∈ S, ∀k ∈ K (9)

∑
(i,j)∈δ+(N r )

∑
k∈K

xijk=
∑

(i,j)∈δ−(N r )

∑
k∈K

xijk=1 ∀r ∈ R (10)

xijk ∈ {0, 1} ∀(i, j) ∈ A, ∀k ∈ K (11)

yik ∈ {0, 1} ∀i ∈ V , ∀k ∈ K (12)

In the proposed model formulation above, there are two
decision variables xijk and yik . The objective function (3) is
to minimize the total travel cost. Equation (4) ensures that
each customer must be serviced once. Equation (5) specifies
that the total number of vehicles departing from the distri-
bution center will not exceed the total available number of
vehicles. Equation (6) ensures that all vehicles used must
visit the distribution center. Equation (7) guarantees that the
vehicle that arrives at a customer also leaves from the same
customer. Equation (8) specifies that the vehicle capacity
will not be exceeded. Equation (9) states the classical sub-
tour elimination constraints. Equation (10) states that each
cluster is visited only once. Equations (11-12) incorporate
0-1 binary integer variables that represent whether the cus-
tomer is serviced or not and by which vehicle.

III. ALGORITHM DESIGN
The CluVRP problem is a new route planning problem in
reality and its characteristic is that customers present a clus-
tering distribution before designing a solving method. The
main difference between CluVRP and CVRP can be sum-
marized as follows: The definition of clustering in CluVRP
is embodied on the problem-level, while the definition of
clustering in CVRP is embodied on the method-level in the
problem-solving procedure. Specifically speaking, the clus-
tering effect is determined before designing a solving algo-
rithm for CluVRP and geographically close customers are
more likely to be regarded as a cluster. However, the clus-
tering effect is formed during the process of constructing
routes in CVRP. The distinguished difference between two
transportation solutions produced by CluVRP and CVRP can
be seen in Figure 2.
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FIGURE 2. Solution difference between CluVRP and CVRP. Solid
rectangles in (a) represent real customer clustering on problem-level.
Dotted rectangles in (b) represent fictitious clustering on method-level.

CVRP and its variants always consist of two separate but
successive subtasks: a) partitioning of customers; b) routing
of vehicles [33]. They can be regarded as a hybrid of two
well-known combinatorial optimization problems: Bin Pack-
ing Problem (BPP) [34] and Traveling Salesman Problem
(TSP) [35]. The solving procedure of CVRP and its variants
always follows a common two-phase strategy, including the
route construction phase and the followed solution improve-
ment or local search phase [36].

For solving the CluVRP, we also followed the two-phase
strategy. The first phase is to partition formed clusters into
variable vehicles, which was solved through an improved
well-known Best Fit Decreasing (BFD) algorithm [34] con-
sidering the specific factors in CluVRP. Note that, due to the
hard constraint in CluVRP (i.e., Customers belonging to the
same cluster must be serviced by the same vehicle. When
the vehicle leaves a cluster, it must have served all customers
in the cluster according to a scheduled sequence), it is not
necessary to construct the visiting sequence in a cluster in
this phase, thus a cluster, including at least one customer,
can be regarded as a single ‘‘customer’’. While the second
phase is to improve the route sequences of various vehicles at

cluster-level and customer-level respectively, and there exists
a corresponding route improvement process at each level.

In this paper, the overall algorithm design involved three
submodules as follows:
• The cluster assignment can be regarded as a BPP to
construct the initial solution. With the assistance of
Hausdorff, we obtain distance matrix between clusters
and clarify the entry point and the exit point within
the cluster. The matrix and the SD-BFD algorithm can
be used to construct an initial solution with a more
reasonable interpretation.

• After constructing the initial solution, we consider opti-
mizing it on two levels as the two subproblems can then
both be considered TSP. For the cluster level (namely,
inter-cluster routing), all the customer demand in a clus-
ter was summed and the cluster is regarded as a single
‘‘customer’’. The problem is thus transformed into a
CVRP and optimized with VNS. For the customer level
(namely, the intra-cluster route), we introduced the con-
cept of a dummy point because the entry-point and exit-
point are not the same point and apply the LK heuristic
to optimize the service order in each cluster, which is
called the Lin-Kernighan with dummy point (LKDP).
In summary, the complete hybrid algorithm in this paper
is called the VNS-LKDP.

• To balance exploration and exploitation, a perturbation
operator was designed. However, it may destroy the
structure of the solution and prevent realization of target.
Therefore, the redistribution operator to repair a cor-
rupted solution was designed.

FIGURE 3. The system block diagram of VNS-LKDP.

The individual section of the hybrid metaheuristic design is
shown in Figure 3 concretely.
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TABLE 1. Pseudocode of the hybrid metaheuristic approach.

The outline of hybrid metaheuristic approach is shown
in Table 1.

A. CONSTRUCTING INITIAL SOLUTION
As described above, the solving procedure for CluVRP fol-
lowed the two-phase strategy and has two interdependent
subtask. The first subtask is cluster assignment (i.e., parti-
tion clusters into variable vehicles), which can be regarded
as a variant BPP problem. Considering the hard constraint
in CluVRP, individual customers can be ignored and each
cluster with different amount of customers can be regarded
as a single ‘‘customer’’.

As shown in Figure 1(a), for an initial solution of CluVRP,
only the service order at the cluster level was considered
and the specific service order within clusters was ignored.
To construct such initial solutions, an improved BFD heuris-
tic, which is a famous BPP solution algorithm, is proposed.
The BFD ranks item weights in decreasing order and puts
them into fixed size boxes. Under the vehicle’s loading capac-
ity constraint, each item selects the box that suits it best.
The meaning of ‘‘best’’ always represents a higher loading
rate (i.e., a heavier one among candidate items is preferred.)
However, in CluVRP, a better solution not only pursues

a higher loading rate but also a shorter travel distance; there-
fore, it is preferred to arrange for the same vehicle to serve two
ormore geographically close clusters. Themeaning of ‘‘best’’
for CluVRP is defined as the shortest distance between
a current vehicle and its candidate clusters, which called
SD-BFD algorithm.

A simple illustrative description is demonstrated as fol-
lows: suppose that all clusters are sorted by weights in
descending order and denote asCm (m = 1, 2, 3 . . .M) .They
are loaded into VK (k = 1, 2, 3 . . .K ) vehicles successively.
The symbol dmk represents the distance between Cm and VK .
In the beginning, all vehicles are empty and available from the
depot. The biggest cluster C1 can be assigned into any one of
them. Suppose V1 is selected, the current location of V1 will
move from the depot to C1. For m = 2, d2k is calculated
for all in-transit vehicles (including V1). The vehicle with the
shortest distance is selected, and the location of the selected
vehicle will move to C2. Similarly, for m = 3 . . .M , the
cluster assignment operation will be repeated until all clusters
are loaded. It should be noted that the capacity constraintmust
be satisfied in the process of cluster assignment. If there are
multiple vehicles with the same distance, the vehicle with
the minimum idle space is preferred. Moreover, a visiting
sequence of a vehicle also follows the assigned order during
the process of cluster assignment. A small example is shown
graphically in Figure 4. The six sequential subplots describe
the whole process of cluster allocation and initial driving
routes according to the SD-BFD algorithm.

FIGURE 4. A small example illustration on the SD-BFD algorithm. The five
yellow dots represent five clusters sorted by their weights (C1 > C2 >
C3 > C4 > C5). The red rectangle represents depot, the blue triangle
represents vehicle 1 and the green one represents vehicle 2.

To address this process reasonably, appropriate measure-
ment of distances between clusters must be considered.
In CVRP, the distances between customers are symmetrical,
and it is suitable to be calculated by Euclidean distance
method. However, a cluster is a point set, and the distances
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between clusters are preferred to be measured by Hausdorff
distance method.

The Hausdorff distance describes the distance between
two point sets: Suppose there are two point sets A = {a1,
a2, . . . , ap} and B = {b1, b2, . . . , bq}. The Hausdorff dis-
tance is defined as below:

H (A,B) = max(h (A,B) , h (B,A)) (13)

Among them:

h (A,B) = max (a ∈ A)min(b ∈ B) ‖a− b‖ (14)

h (B,A) = max (b ∈ B)min(a ∈ A) ‖b− a‖ (15)

‖·‖ is the distance paradigm between point sets A and B. The
two-wayHausdorff distance chooses the larger value between
h(A,B) and h (B,A) , which measures the maximum degree
of mismatch between A and B. As shown in Figure 5.

FIGURE 5. Hausdorff distance diagram. In the picture above, the red dot
represents point set A, the blue dot represents point set B, and the red
and blue arrows represent the minimum distance of the points in point
sets A and B and the points in the other point set, respectively.

As can be seen, the Hausdorff distance is suitable to
be employed for calculating distances between point sets.
Another advantage is that there exist explicit entry-point and
exit-point when visiting each cluster. Considering the diver-
sity of VNS-LKDP, the parameter sto-distance was set. If the
generated random number was greater than sto-distance, then
the Hausdorff distance was used; if not, two customers were
randomly selected to calculate their distance.

B. OPTIMIZE THE INITIAL SOLUTION
1) INTER-CLUSTER ROUTE OPTIMIZATION
After the execution of the above steps, the initial feasible solu-
tion and the service order of each vehicle were determined.
However, the performance is not very good.

With the development of optimization technology, more
accurate and effective algorithms have been proposed for
solving the VRP and related variants. This paper employed
VNS to achieve gradual optimization at the cluster level.
The VNS algorithm was proposed by [28] and inherited
the relevant heuristic characteristics. The VNS is essentially
an improved local search, and its key is to convert differ-
ent neighborhoods. An alternate search using neighborhood
structures composed of different actions achieves a good
balance between concentration and evacuation. The VNS
consists of two main parts:

First, a VND [28] organizes the framework of the VNS.
When the search operator does not find a better solution,
it will skip to the next neighborhood and continue searching.
As shown by the red line in Figure 6. Otherwise, it will jump
back to the first neighborhood to search again. As shown by
the blue line in Figure 6.

FIGURE 6. VNS optimization process.

Second, the shaking procedure is essentially a perturbation
operator for generating neighborhoods. It is equivalent to
the Nk (k = 1, 2, . . . ,max) neighborhood in Figure 6. The
relevant methods, including exact algorithms and heuristics,
can all play a good role. The above two processes execute
repeatedly until stopping rule is met.

In this paper, VNS was introduced into the solution of the
CluVRP, and shaking of neighborhood, local search operator
and acceptance rules were designed by optimization goals
and metaheuristic strategies.

In a general way, the neighborhood structure construct
includes: the number of neighborhood structure sets; the
order between neighborhood structures; the strategies for
moving between neighborhood structures. The local search
operator design is another core part of the VNS. It introduces
metaheuristics and strategies, such as first/best improvement
strategies. This proposed VNS optimization process used
several local neighborhood search operators as described
in Table 2, and the complexity of per operator is O(M2) [25],
whereM represents the number of clusters.

In addition, we adopted the most common acceptance
rules. The acceptance rule could avoid the algorithm from
falling into local optimum prematurely and ensure the diver-
sity of the solution. Each time the execution reaches the VNS
procedure, all neighborhoods will be checked sequentially.
When the local search operator can find an improvement solu-
tion, the algorithm will jump back to the first neighborhood
to search again. Otherwise, it will skip to the next neigh-
borhood and continue searching. It continues until there’s no
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TABLE 2. Local search operator design.

neighborhood to improve the solution then a local optimum
is reached at the cluster level.

2) INTRA-CLUSTER ROUTE OPTIMIZATION
The best inter-cluster route contains the service order of each
vehicle and fixes the entry point and the exit point within the
cluster. However, the service order within each cluster is still
unknown. The intra-cluster route is similar to a TSP based on
the analysis results. The difference is that in a TSP, vehicles
must return back to the entry-point eventually in order to form
a closed cycle, but for the situation here this is not required.
In other words, the entry-point and the exit-point are not the
same point.

FIGURE 7. The connection feature of a dummy point within a cluster. It is
only connected to entry-point and exit-point and cannot connect to other
customer points.

To remedy this defect, a dummy point was added in each
cluster. The dummy point connects to the entry-point and
exit-point only and the connection distances are all zero.
Other than this, there is no other way to reach the dummy
point. When the incomplete TSP contains a dummy point,
the final result must contain the sequence ‘‘entry-point A→
dummy point O → exit-point G → point F → point E→
point D → point C → point B’’, as shown in Figure 7.

FIGURE 8. The complete path formed by eliminating the dummy point
and reversing partial paths.

Then, we changed the route order, that is, we eliminated
dummy point O and divided the route into two parts: ‘‘entry-
point A’’ and ‘‘exit-point G → point F → point E → point
D → point C → point B’’. Then, we reversed the second
half, so that the order becomes ‘‘entry-point A→ point B→
point C → point D→ point E → point F → exit-point G’’,
as shown in Figure 8. Now, the entry-point and exit-point are
treated as one point, and the model follows the TSP logic.

The Lin-Kernighan heuristic is proposed by Lin and
Kernighan [31], which is one of the efficient heuristic opti-
mization methods for solving symmetric TSP. The strategy
of the candidate solution search is to move nodes from their
own communities to other communities or exchange nodes
between different communities. In the process of each itera-
tion, the algorithm accepts the best candidate solution.

Since the Lin-Kernighan algorithm can obtain a tradeoff
between solution quality and running time for solving large-
scale problems [31], the LKDP was adopted to optimize the
intra-cluster route problem with dummy point. Moreover,
the LKDP was employed for optimizing customers routes in
each cluster and the complexity of this process is O(P2logP),
where P represents the number of customers in a cluster.

C. PERTURBATION AND REDISTRIBUTION
The overall optimal solution was obtained by merging the
inter-cluster route and intra-cluster route results. To balance
exploration and exploitation of VNS-LKDP, the obtained
results also need to be augmented with a diversity control
operation, which consists of a perturbation operator and a
repair operator.

Disturbing customers by a perturbation operation may
destroy the integrity of the cluster. Due to the hard constraint,
a vehicle has to finish servicing all customers in the same
cluster before moving to the next cluster. If the perturba-
tion operation occurs at the customer level, it may lead to
some customers are removed from their formed clusters,
the integrity of the original cluster would be destroyed, which
is contrary to the hard constraint. Therefore, the perturbation
was carried out only at the cluster level, and customer order in
each cluster remained unchanged. The perturbation operator
consists of two parameters, destoryprob1 and destoryprob2.
The destoryprob1 represents the possibility of a cluster being
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destroyed, and destoryprob2 stands for the percentage of
customers removed when a cluster has been destroyed. The
clusters that were removed will be put into a separate table.
The repair operators are required to assign the clusters in a
separate table to the remaining available vehicles. If there is
no suitable vehicle, then redistribution is performed.

After destroying the solution, there may be a situation in
which some clusters can have no vehicle assigned. To ensure
that all clusters are serviced, we constructed a redistribution
operator.

Suppose that there are I vehicles sorted in descending order
of the remaining space Wi(i = 1, 2, 3 . . . I ), each vehicle
has loaded Ni(i = 1, 2, 3 . . . I ) clusters, and the weight of
each cluster is WiQ(Q = 1, 2, 3 . . .Ni). For each vehicle,
we sort WiQ in ascending order. In addition, the weights
of the removed clusters in the separate table are sorted as
Mj(j = 1, 2, 3 . . . J ) in descending order. The goal is to
put all the removed clusters in vehicles, therefore, Mj(j =
1, 2, 3 . . . J ) and Wi(i = 1, 2, 3 . . . I ) are compared in turn.
Firstly, M1 is compared with Wi(i = 1, 2, 3 . . . I ) one by
one and selects the vehicle with the highest loading rate after
loadingM1. If the loading rate reaches 100%, the vehicle will
be removed. After each operation, all vehicles are sorted in
descending order according to their remaining spaces. Next,
Mj(j = 1, 2, 3 . . . J ) are packed in the same way.

FIGURE 9. A small example of redistribution operation with four vehicles.
Values in blue rectangles represent the loaded capacity of vehicles.
Clusters loaded on each vehicle are sorted in ascending order of demand.
Values in red rectangles represent the remaining capacity of a vehicle.
Vehicles are sorted in descending order of remaining capacity. Values in
red filled rectangles represent weights of removed clusters due to
perturbation operations. All removed clusters are arranged in descending
order of according to weight.

Figure 9 is a small example to illustrate the redistribution
operation. For example, at first, M1(weight equals 13) is
considered to be loaded into vehicle 2 instead of vehicle 1,
because vehicle 2 is full after loading M1. All vehicles are
resorted according to the remaining space in descending order
and the order of vehicles becomes 1, 3, 4. Follow the same
operation process, M2, M3 and M4(weights are 12, 8 and 5)
are considered to be loaded into vehicle 1, vehicle 3, and
vehicle 4.

Note that the sum of vehicles capacity in instances is
always greater than the aggregate demand of customers, so all
removed clusters can be loaded. In addition, all clusters in a
separate table are removed from original vehicles. Even for
the cluster with the largest weight in a separate table, there is
still a larger remaining space value.

The redistribution operation will be executed until all clus-
ters are loaded, which can fix the broken solution. In this part,
the parameter converse-prob was set to indicate the possibil-
ity of continuing to optimize by LKDP at the customer level
after redistribution.

IV. COMPUTATIONAL EXPERIMENT
A. INSTANCES DESCRIPTION
The effectiveness of the proposed hybrid algorithm was veri-
fied on instances with different customer sizes. The instances
were divided into three sets:A, B, and C . The reasons for
choosing these three instance sets are as follows: bothA and B
were obtained from the previous relevant literature andC was
a real case data collected from an automobile parts manufac-
turer in China. The set A is an adaptation of CVRP instances
and a seed-based algorithm was used to produce a clustering
effect [15]. The set B is an adaptation of Golden instances
proposed by [23], which has five subsets distinguished by the
different filling percentage of a vehicle. Note that, compared
to the set A, B takes account for the particular characteristic of
‘‘filling percentage’’ on CluVRP when generating the cluster
information.

The first set of instances A consists of 79 small and
medium-sized instances, and they are named according to the
identifier A-n32-k5-C11-V2, where A represents the type of
instance (including five classes: A, B, G, M and P), n rep-
resents the number of customers, k represents the maximum
number of customers in a cluster, C represents the number of
clusters, and V represents the number of vehicles.

The second set of instances B was divided by a parameter
ρ that represents the filling percentage of a vehicle. There
are five different values of ρ (10%, 25%, 50%, 75% and
100%). This parameter constraints the maximum number of
clusters that a vehicle can service. The smaller ρ is, the fewer
customers there are in each cluster, and the more clusters can
be loaded for each vehicle. When ρ equals to 100%, each
vehicle can serve at most one cluster.

The third set of instances C consisted of operational data
collected from a real-world automobile logistics company
in Nanjing, China. The company divided suppliers all over
China into three subareas for convenience of management.
Note that the term ‘‘supplier’’ here denotes ‘‘customer’’ as
mentioned above. The activities of each subarea are inde-
pendent and Nanjing is a common depot. The southwest and
north of Anhui are subarea 1, and the south of Zhejiang
is subarea 2. Jiangsu and Shanghai are relatively impor-
tant and dense subarea 3. In each subarea, the company
divided clusters by geographical location. The three subareas
include 11, 11 and 24 clusters each. The national supplier
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distribution map is shown in Figure 10. In addition, the sup-
ply of each supplier is constantly changing. The company
updates demand at intervals of four days. We surveyed infor-
mation including geographic latitude and longitude coordi-
nates of all suppliers and the demand for each supplier from
September 12 to 24.

B. PARAMETERS TEST
To explore more search space of the algorithm and find more
satisfactory solutions, the various parameters were set, and
the optimal effect of the parameters was analyzed. Lastly,
a total of four parameters were involved in the algorithm. The
parameters and their best values are shown in Table 3.

TABLE 3. Experimental parameters.

The stopping criterion has a direct impact on the global
convergence and timeliness of an algorithm. To achieve
a tradeoff in both solution quality and calculation time,
the algorithm is terminated if no improvement is obtained
after maxNoImprove consecutive iterations in this study.
Through pilot experiments on several types of instances,
maxNoImprove is set to 1000 for all the test instances.
All results are obtained with Intel(R) Xeon(R) CPU
E5-2690 V3@2.60 GHz with 32 GB of RAM.

C. EXPERIMENTAL RESULTS
For instances A and B, the experimental results were com-
pared with [25]. Although the solution approaches of the two
papers are similar, there are still differences in the detailed
analysis and solution algorithm.

The computation results of set A were shown in Table 4.
In, Instance describes identifiers of 79 test instances. VV−L
represents the sum of all transportation route length cal-
culated by VNS-LKDP proposed in this paper, and VC .D
stands for the sum of all transportation route length
obtained by the algorithm proposed in [25]. The best result
between the two algorithms is recorded as Bestknown.
Similarly, the fastest computing time is recorded as
T_Best known. The value of Gap = (VV−L−Best known)

Best known ×

100%,T_Gap = (TV−L−T_Best known)
T_Best known × 100%. In the total

79 instances, the VNS-LKDP algorithm obtained 55 best val-
ues, 47 best computational time; while the algorithm in [25]

TABLE 4. Comparison of the results reposted by Defryn and
Sörensen [25] and VNS-LKDP on set A.
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TABLE 4. (Continued.) Comparison of the results reposted by
Defryn and Sörensen [25] and VNS-LKDP on set A.

FIGURE 10. The parts manufactures distribution of the vehicle logistics
company in China. (The three types of subareas are indicated by different
colors and different shapes: Red four-pointed star belongs to subarea 1,
black triangle belongs to subarea 2, green circle belongs to subarea 3).

FIGURE 11. The number of optimal solutions obtained by VNS-LKDP and
the algorithm proposed by Christof Defryn et al. (2017) in different
classes A, B, M, G and P .

obtained 53 best values, 49 best computational time. In addi-
tion, the value of average Gap is 0.62% and the value of
average T_Gap is 1.57%. Figure 11 shows the number of
optimal solutions obtained by both algorithms on different
types of instances. As can be seen, both algorithms have
similar performance on the instance set A with respect to
the solution quality and computational time, but VNS-LKDP
can obtain more optimal solutions on the first two classes
of A and B.

Next, the experimental results of B were compared
with [25]. As mentioned before, the set B has five subsets
classified by the parameter ρ(i.e. filling percentage), which
is a distinct characteristic of CluVRP. Tables 5 to 9 com-
pared the results obtained by Defryn and Sörensen [25] and
VNS-LKDP on the set B. Every table includes the same
20 subinstances, but the difference lies in the different set-
ting of parameter ρ. The larger ρ means the more customer
demand contained in each cluster, and the fewer clusters a
vehicle can service. Five ρ values were designed: 10%, 25%,
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TABLE 5. Comparison of the results reported by Defryn and
Sörensen [25] and VNS-LKDP on set B with ρ = 10%.

TABLE 6. Comparison of the results reported by Defryn and
Sörensen [25] and VNS-LKDP on set B with ρ = 25%.

50%, 75% and 100%, corresponding to Tables 5 to 9.
In these tables, Id, n+1, Q represents the instances index,
the number of customers, the vehicle capacity, respectively.

TABLE 7. Comparison of the results reported by Defryn and
Sörensen [25] and VNS-LKDP on set B with ρ = 50%.

TABLE 8. Comparison of the results reported by Defryn and
Sörensen [25] and VNS-LKDP on set B with ρ = 75%.

VC .D represents the calculation of the algorithm in [25].
Best known stands for the best results of the two algorithms
andGap = (VV−L−Best known)

Bestknown ×100%.The results showed that
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TABLE 9. Comparison of the results reported by Defryn and
Sörensen [25] and VNS-LKDP on set B with ρ = 100%.

when ρ equals 10%, 25% and 50%, the average high-quality
solution obtained by VNS-LKDP is 8, and the advantage
is not obvious. However, when ρ equals 75%, the algo-
rithm obtained 12 high-quality solutions in 20 instances.
When ρ increases to 100%, the algorithm obtained 14 high-
quality solutions in 20 instances, which is significantly bet-
ter than [25]. We calculated the number of Gap = 0 and
Gap > 0 obtained by VNS-LKDP under different values of
parameter ρ. The results are summarized in Figure 12 and
two trend lines were added to show the change of the calcula-
tion results under different values of parameter ρ intuitively.
As can be seen, as the value of ρ increases, the number of
Gap = 0 increases as well while the number of Gap > 0
decreases, which means the performance of VNS-LKDP is
superior with the increasing of the filling percentage. Note
that the VNS-LKDP also performed in a balanced manner
for different ρ values. Even when ρ was low, it could still
obtain excellent solutions on nearly half of the instances.
It overcomes the problem of high ρ value yielding almost no
high-quality solutions [25].

The reason for better performance is that more cus-
tomers are included in a cluster, which means that the
larger parameter is more significant for large-scale instances.
In such cases, the advantage of the LK algorithm is demon-
strated. When ρ equals 100%, there are 40-50 customers in
a cluster, and one vehicle can service at most one cluster.
The situation is close to that of China’s express delivery.
Regardless of what brand of express delivery, for hierarchical

FIGURE 12. The number of Gap = 0 and Gap > 0 obtained by VNS-LKDP
under different values of parameter ρ.

FIGURE 13. At different times in the three subareas, the improvement
percentage of VNS-LKDP compared to the company’s manual results.

management, they all prefer to build first-level and second-
level sites. Almost all first-level sites must serve dozens of
second-level sites. One second-level site must serve hundreds
of express outlets in a city. If thousands of express outlets
across the country are to be clustered into only two or three
clusters, the efficiency will be low. Therefore, the major
express companies are more inclined to divide 50 or more
express outlets into one cluster and arrange one or more
vehicles for distribution at the same time. The algorithm
designed in this paper is well adapted to the instances with
higher ρ value than [25] and is also more suitable for the real
China logistic background.

Lastly, we extracted a part of company operational data as
instances C. The distribution of parts manufacturers is derived
from the real world of China. The instances of three inde-
pendent subareas were tested by VNS-LKDP and compared
with the company’s manually calculation. For a complete
overview of the detailed results, we can refer to Appendix.
In addition, here we defined Gap = Vm−VV−L

Vm
∗100%,

which represents the improvement percentage of VNS-LKDP
compared to the company’s manual results. The larger the
improvement percentage is, the better the performance of
VNS-LKDP. We summarized Gap for all the three subareas
at different times, which is presented in Figure 13. As can be
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TABLE 10. Comparison of the specific route order obtained by the
VNS-LKDP and company’s manual calculation in subarea 3 on Oct. 2.

seen, the subarea 3 is densest and the improvement is also the
most obvious, which means that the denser the area, the better
VNS-LKDP performs. Table 10 presents a specific example
obtained byVNS-LKDP andmanual result on Oct. 2. Trip0 to
Trip9 represents a total of nine vehicle routes details. For
example, in Trip 0, ‘‘DIST = 104’’ represents the length of
the transport route is 104, and KC148 KC431 KC534 KC562
KC433 KC431CZ1 represents the specific sequence of the
vehicle’s transport route.

Through the analysis of external geographical factors and
internal transport modes, it was found that the distribu-
tion of suppliers is getting denser and each cluster con-
tains more suppliers among the three subareas. As can be
seen in Tables 11-13, the performance of the VNS-LKDP
algorithm is getting better as well when compared with man-
ual results. The reason is that VNS-LKDP has an obvious
advantage in solving CluVRP with large-scale and relatively
dense areas.

TABLE 11. Comparison of the distribution mileage of the ten time
segments in subarea 1 reported by VNS-LKDP and company’s manual
calculation.

In addition, from the perspective of time consumption,
themaximum running time of VNS-LKDP is 4.67 second, but
normally a company’s manual calculation needs 2 to 3 hours.
The scattered distribution of parts manufacturers makes their
distances significantly different, which helps vehicles choose
the next service point. The situation in dense distribution
areas is the opposite, vehicles may spend more time in route
planning. In this case, VNS-LKDP is more advantageous
than manual work. The excellent calculation cost certainly
makes this algorithm has practical application value. Besides,
some of the results obtained by manual calculation were
exactly the same as those byVNS-LKDPwhen solving small-
scale problems. The possible reason is that the suppliers’
distribution in these areas is relatively scattered and it is also
easy to be calculated with manual experience as well. Even
so, VNS-LKDP has incomparable advantages in terms of
computing time.
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TABLE 12. Comparison of the distribution mileage of the ten time
segments in subarea 2 reported by VNS-LKDP and company’s manual
calculation.

V. CONCLUSION
This paper discussed the CluVRP problem derived from a
real-world logistics company, which is a new variant of clas-
sical CVRP. The demand distribution of CVRP is scattered
and irregular, but CluVRP has its particular hard constraint:
the geographical location of parts manufacturers had already
presented clustering distribution before planning the route
schedule and all customers in a cluster have to be served
consecutively by the same vehicle. The CluVRP seems to be
more in line with the current route planning scenario in world.

For solving CluVRP, we followed the two-phase strategy
and disassembled CluVRP into two subproblems. For the
first subproblem of cluster assignment, the SD-BFD heuristic
was developed by combining with the Hausdorff distance
to measure distances between clusters. The second subprob-
lem is to optimize the constructed initial solutions on the

TABLE 13. Comparison of the distribution mileage of the ten time
segments in subarea 3 reported by VNS-LKDP and company’s manual
calculation.
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inter-cluster level and the intra-cluster level successively.
Considering the specific characteristics on each level, VNS
and LKDP were adapted to improve the routes respectively.
Furthermore, to balance exploration and exploitation, a per-
turbation operator and a redistribution operator were devel-
oped to augment the diversification capacity of VNS-LKDP.
The performance of VNS-LKDP has been shown through a
number of computational experiments on the classical bench-
mark instance sets and the real data set from a Chinese
logistics company.

There are still many directions for future research. For
example, delivery vehicles can be heterogeneous because
companies prefer to build multiple models for distribution
activities. Second, time window requirements are becoming
more stringent, and daily distributionmustmeet the supplier’s
time requirements. Third, as proposed in [25], the CluVRP
can meet soft constraints, and vehicles can service customers
in other clusters in the distribution process and then return to
the previous cluster to continue to service. The study of soft
constraints has practical significance and saves transportation
costs. In addition, in terms of solving algorithms, not only
exact algorithms and heuristic algorithms but also design
machine learning and deep learning can be explored.

In addition, the clustering method is a fundamental direc-
tion that can be studied: This paper was based on cluster-
ing, so how is the background of clustering built? There is
no mention of this in previous papers. Is the principle of
geographical proximity truly the most effective, or is the
delineation of cluster boundaries truly as reasonable? There
are many methods for clustering such as K-MEANS, which
is the oldest hierarchical clustering method, and DBSCAN,
which is the most common method and is very popular.
If clustering customers can be reasonably executed before
building the model, the result may also be improved. These
can be expanded into future research directions.

APPENDIX
DETAILED RESULTS
See Tables 11–13.
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