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ABSTRACT Controlling the polarization states of transmit waveforms can improve the performance of radar
systems, especially for main lobe jamming suppression applications. In this paper, we consider the design
of optimal transmit polarizations for deceptive jamming suppression in the main lobe using a game theory
framework. We propose a co-located polarization multiple-input multiple-output (MIMO) radar system that
combines the advantages of MIMO radar and those offered by optimally choosing the transmit polarization
to improve the jamming suppression performance. In the polarization MIMO radar, polarization diversity
is employed in the transmit array, and 2-D vector sensors are adopted in the receive array to separately
measure the horizontal and vertical components of the received signals. Furthermore, based on the concepts
and advantages of game theory, we formulate a polarization design problem for this radar system as a two-
player zero-sum (TPZS) game between the radar and jammers. Additionally, we propose two designmethods
for different cases: a unilateral game for dumb jammers, and a strategic game for smart jammers. The optimal
strategy and Nash equilibrium solution for two cases are presented. The simulation results demonstrate that
jamming can be effectively suppressed with the proposed radar configuration and that improved jamming
suppression performance can be achieved when the transmit polarization scheme is designed using the game
theory approach.

INDEX TERMS Game theory, MIMO radar, deceptive jamming, jamming suppression, polarization design,
unilateral game, strategic game.

I. INTRODUCTION
With the rapid development of digital radio frequency mem-
ory (DRFM) technology [1], a DRFM repeated jammer can
intercept radar transmit waveforms and generate replicas
(false targets) in random range bins and Doppler cells to con-
fuse the radar system. Because the jammer is usually located
in the main lobe of the radar system, these false targets cannot
be easily discriminated and suppressed in a single domain,
such as the time, frequency, or space domain. Therefore, main
lobe deceptive jamming has become a serious threat to radar
systems [2], [3].

The associate editor coordinating the review of this article and approving
it for publication was Yunlong Cai.

To enhance radar performance, jamming suppression tech-
nology has been widely studied, and many jamming sup-
pression methods have been proposed by radar researchers.
The traditional adaptive beamforming method is can achieve
effective performance in side lobe jamming. However, for
main lobe jamming, adaptive beamforming methods result
in the distortion of the main lobe and an increase in the
side lobe level [4]. In recent years, with the rapid develop-
ment of multiple-input-multiple-output (MIMO) radar the-
ory, polarization information processing technology has been
applied to MIMO radar systems (distributed and co-located)
to improve the system performance [5]–[16].

Distributed polarization MIMO radar systems combine
the advantages offered by polarimetric and spatial diversity
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and outperform conventional radar systems [5]–[9]. In [5],
a polarization MIMO radar system with distributed antennas
for target detection was proposed. The target detection perfor-
mance was improved by using the optimal design of transmit
polarization. The problems associated with detecting differ-
ent targets and backgrounds using the distributed polarization
MIMO radar system were studied in [6]–[9]. The direction-
of-departure (DOD), direction-of-arrival (DOA) and polar-
ization parameter estimation methods for the co-located
polarization MIMO radar system were explored in [10]–[13].
However, few studies have focused on the potential capacity
of polarization MIMO radar systems to counter deceptive
jamming. A statistical method for target discrimination in an
active-decoy scenario was explored in [14]. The improved
target discrimination performance was achieved by opti-
mizing transmit and receive polarization. In [15], trans-
mit polarization optimization with co-located polarization
MIMO radar for main lobe interference suppression was
studied. With the optimal polarization, improved discrimina-
tion performance and interference suppressionwere obtained.
Furthermore, a polarization optimization method based on
oblique projection for main lobe interference suppression
in a co-located polarization MIMO radar system was pro-
posed in [16], and improved jamming suppression perfor-
mance was achieved with the optimal transmitter and receiver
polarizations.

To further enhance the deceptive jamming suppression per-
formance, we proposed a special polarization and frequency-
diverse MIMO (PFD-MIMO) radar system in [17] that
combines the advantages of the traditional MIMO radar
system and polarization-range domain coupling; the system
exhibited better performance in deceptive jamming suppres-
sion than did a frequency-diverse arrayMIMO (FDA-MIMO)
radar system [18] and a polarization MIMO radar. Further,
we developed a polarization and frequency increment design
scheme for this radar system to improve the deceptive jam-
ming suppression performance.

However, there are some problems among these polariza-
tion design approaches. First, these approaches are mostly
aimed at dumb jammers because they all assume that the
polarization properties of the jamming signal (false targets)
are fixed and unchanged in several coherent processing inter-
vals (CPIs). Second, these approaches rely on obtaining accu-
rate estimates of the jamming polarization properties from
the measured data. The improvement in radar performance
is very sensitive to the accuracy of these estimates. Hence,
accurate estimations require a significant amount of training
data, which can be expensive. Finally, as shown in [14]–[16],
the effect of the transmit polarization diversity on the ampli-
tude of the false targets is not considered.

In addition, advances in digital signal processing and
computing technology have resulted in the emergence of
increasingly adaptive jamming systems. For these smart jam-
mers, the polarization characteristics of the jamming signal
can be changed as needed. In this situation, the approaches

mentioned above become invalid. Consequently, the task of
suppression in such systems remains a notable challenge.

To date, game theory methods have been applied in a
wide variety of fields, such as communications, economics,
and political science [19]–[21]. However, game theory has
seldom been studied in the context of radar signal process-
ing, especially in jamming suppression applications. A game
theory design approach for distributed polarization MIMO
radar target detection was proposed in [22], and the perfor-
mance advantage of this approach was demonstrated using
numerical simulations. The interaction between a smart target
and a smart MIMO radar was investigated from a game
theory perspective in [23]. The interaction was modeled as a
two-player zero-sum (TPZS) game. A game theory frame-
work for the joint design of amplitudes and frequency-
hopping codes for frequency-hopping waveforms was
studied and two joint design algorithms (noncooperative
scheme and cooperative scheme) were proposed in [24].
In [25], noncooperative game theory was applied to analyze
the dynamic interaction between two adversarial adaptive
control systems – a radar and a jammer.

In this paper, we propose a co-located polarization MIMO
radar system that combines the advantages of a MIMO
radar system with the advantages offered by optimizing the
transmitting waveform polarization for main lobe deceptive
jamming suppression. In the transmit array of polarization
MIMO radar, a polarization diversity scheme is adopted.
Additionally, 2-D vector sensors are employed in the receive
array to measure the horizontal and vertical components of
the received signal separately. Furthermore, based on the
concepts and advantages of game theory, we formulate the
polarization design problem for this proposed radar system
as a TPZS game between the radar and the jammers and
propose two design methods for different cases: one is a
unilateral game with asymmetrical information for dumb
jammers, and the other is a strategic game with symmetri-
cal information for smart jammers. We present the solution
methods of the optimal strategy and the Nash equilibrium for
two cases in this paper. Based on this game theory design for
the transmit polarization, an improved jamming suppression
performance can be achieved in the polarization MIMO radar
system.

The remainder of the paper is organized as follows.
In Section II, we give a brief introduction to the polarization
MIMO radar system and present the signal models for the
target and jamming. Then, the jamming suppression method
based on the adaptive beamforming technique and output
signal-to-interference-plus-noise ratio (SINR) analysis are
presented in Section III. In Section IV, we formulate and solve
the polarization design problem for MIMO radar jamming
suppression using a game theory framework. Next, we use the
numerical simulation results to demonstrate the performance
improvement of the radar system by employing the proposed
design mechanism in Section V. Finally, the conclusions are
drawn in Section VI.
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FIGURE 1. Illustration of the polarization MIMO radar system.

II. POLARIZATION MIMO RADAR SIGNAL MODEL
A. JAMMING-FREE MODELING
Without loss of generality, we consider a co-located MIMO
radar system with M transmit antennas and N receive anten-
nas in uniform linear arrays (ULAs), as shown in Fig. 1.
Each of the transmitters is capable of transmitting awaveform
of any arbitrary polarization, and each receiver employs a
2-D vector sensor to separately measure both the horizontal
and vertical components of the received signal. The polariza-
tion vector of the mth transmit antenna is defined as tm =[
tmh , t

m
v
]T , where ‖tm‖ = 1; each entry is a complex number;

the subscripts h and v denote the horizontal and vertical
components of the polarization vector, respectively; and the
superscript T represents the transpose operation. The radiated
signal of the mth transmit antenna is defined as

sm(t) = gm(t) exp(j2π ft)tm, 0 ≤ t ≤ T (1)

where sm(t) is a 2-D column vector consisting of the horizon-
tal and vertical components and gm(t) is the complex envelope
of themth transmit antenna.We assume that all these complex
envelopes are orthonormal to each other at all mutual delays.
f is the carrier frequency,T is the radar pulse duration, and t
is the quick time index for the radar pulse.

Considering a far-field stationary point target located at the
azimuth angle θt and range rt . The time delay of the signal
that is transmitted by the mth antenna reflected by the target
and received by the nth antenna is written as

τnm =
2rt
c
−
dT (m− 1) sin θt + dR(n− 1) sin θt

c
(2)

where c is the speed of light and dT and dR are the interspaces
of the transmit and receive antennas, respectively.

After target reflection, the signal transmitted by the mth
antenna and received by the nth antenna is expressed using a
formulation similar to that presented in [15], [16].

xtnm(t) = αtSt tmgm(t − τnm) exp(j2π f (t − τnm)) (3)

where αt is a complex constant related to the transmitted
power, the attenuation during propagation, and other factors,

and St is the polarization scattering matrix (PSM) of the
target, which can be expressed as follows.

St =
[
shh shv
svh svv

]
(4)

After matched filtering with gm(t − τnm) exp(j2π ft), the
output signal of the target can be expressed as

xtnm
= αt exp(−j2π f τnm)St tm

= βt exp(j2π
dT (m−1) sin θt

λ
) exp(j2π

dR(n−1) sin θt
λ

)St tm

(5)

where βt = αt exp(−j4π f rt
/
c) and λ = c

/
f is the wave-

length. N × M of these vectors are obtained, and they are
arranged into a single vector

xt = [xTt11, x
T
t12, · · · , x

T
t1M , · · · , x

T
tN1, x

T
tN2, · · · , x

T
tNM ]T

= βtaR(θt )⊗ [H t (aT (θt )⊗ 1)]
= βtbt (6)

where ⊗ denotes the Kronecker product, H t = diag(ht )
is a diagonal matrix, ht = [St t1;St t2; · · · ; St tM ] is the
target polarization information vector, and 1 = [1, 1]T .
aR(θt ) ∈ CN×1 and aT (θt ) ∈ CM×1 are the receive and
transmit steering vectors, respectively. These vectors have the
following forms.

aR(θ ) = [1, exp(j2πdR sin θ
/
λ), · · · ,

exp(j2πdR(N − 1) sin θ
/
λ)]T (7)

aT (θ ) = [1, exp(j2πdT sin θ
/
λ), · · · ,

exp(j2πdT (M − 1) sin θ
/
λ)]T (8)

Therefore, the received jamming-free snapshot of the
polarization MIMO radar system can be expressed as

y = xt + n (9)

where n is a white noise with zero mean and covari-
ance matrix σ 2

n I2MN . Additionally, σ
2
n and I2MN represent

the noise power and a 2MN dimensional identity matrix,
respectively.

B. DECEPTIVE JAMMING MODELING
In practice, radar systems often face deceptive electronic
countermeasures (ECMs). A false target generator (FTG)
can capture, store and repeat the transmitted radar signal to
deceive the radar system. We consider an FTG located at
the azimuth angle θj and range rj. Let hjt and hjr denote the
transmit and receive polarization vectors of the FTG antenna,
respectively. The definitions of hjt and hjr are the same
as those for tm. The signal transmitted by the polarization
MIMO radar system and captured by the FTG is

J (t) =
M∑
m=1

hTjr tmgm(t −
τj

2
− τjm) exp(j2π f (t −

τj

2
− τjm))

(10)
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where τj = 2rj
/
c and τjm = −dT (m− 1) sin(θj)

/
c. The FTG

can generate a false target in any range binwith an appropriate
delay time. Suppose that the delay time is τ0. Then, the signal
radiated by the FTG and received by the nth antenna of the
radar is

xjn(t − τjn − τ0)

= αj(t)hjt
M∑
m=1

hTjr tm

× gm(t − τj − τjm − τjn) exp(j2π f (t − τj − τjm − τjn))

(11)

where τjn = −dR(n− 1) sin(θj)
/
c and αj(t) is the modulation

signal. αj(t) includes the amplitude and velocity modulation
by the FTG. Similarly, after matched filtering with gm(t−τj−
τjm − τjn) exp(j2π ft), the output signal of the false target can
be expressed as

xjnm = βj exp(j2π
dT (m− 1) sin θj

λ0
)

× exp(j2π
dR(n− 1) sin θj

λ0
)Sj tm (12)

where βj = αj exp(−j4π f rj
/
c) is a complex constant related

to the modulation and matched filtering gain. Sj = hjthTjr is
called the PSM of the false target (the FTG).

The output signals corresponding to the false target range
bin are combined into the following vector:

xj = [xTj11, x
T
j12, · · · , x

T
j1M , · · · , xTjN1, x

T
jN2, · · · , x

T
jNM ]T

= βjaR(θj)⊗
[
H j
(
aT (θj)⊗ 1

)]
= βjbj (13)

where H j = diag(hj) is a diagonal matrix and hj =
[Sjt1;Sjt2; · · · ; SjtM ] is called the false target polarization
information vector in this paper.

We consider the test scenario with one true target and K
false targets. In this scenario, the false targets are placed in
the same range bin as the true target by the FTGs. Mathe-
matically, the polarization MIMO radar signal model can be
modified as follows.

y = xt + xj + n

= βtbt +
K∑
k=1

βjkbjk + n (14)

III. JAMMING SUPPRESSION PERFORMANCE ANALYSIS
In this section, we use the adaptive beamforming technique to
suppress jamming [26]. The output SINR after beamforming
can be expressed as

SINR =
wHRtw
wHRjnw

(15)

where w ∈ C2MN×1 is the weight vector, the superscript H
represents the Hermitian transpose operation, and Rt and Rjn

are the covariance matrixes of the target signal and the jam-
ming plus noise signal, respectively. Obviously, equation (15)
is a generalized Rayleigh quotient problem. According to the
Rayleigh-Ritz theorem, we can obtain the output SINR after
optimal beamforming as follows.

SINRout = λmax

{
R−1jn Rt

}
(16)

where λmax is the largest eigenvalue of R−1jn Rt .
For the scenario with one true target and K false targets,

Rt = σ 2
t btb

H
t , where σ

2
t = E[|βt |2] represents the true target

signal power. Then, equation (16) can be modified as follows.

λmax

{
R−1jn Rt

}
= λmax

{
R−1jn · σ

2
t btb

H
t

}
= σ 2

t b
H
t R
−1
jn bt (17)

The inverse of the matrix Rjn can be expressed as

R−1jn =
1
σ 2
n

[
I2MN −

K∑
k=1

µk − σ
2
n

µk
ukuHk

]
(18)

where µk is the eigenvalue corresponding to the kth jam-
ming and uk is the eigenvector of the covariance matrix Rjn.
In general, the jamming power is usually much greater than
the noise power; therefore,

µk − σ
2
n

µk
≈ 1. (19)

Then, equation (16) can be simplified as follows.

SINRout ≈
σ 2
t

σ 2
n

[
‖bt‖2 −

K∑
k=1

∣∣∣bHt uk ∣∣∣2
]

=
σ 2
t

σ 2
n

[
N ‖ht‖2 −

K∑
k=1

∣∣∣bHt uk ∣∣∣2
]

(20)

IV. POLARIZATION DESIGN USING GAME THEORY
To improve the jamming suppression performance, we should
design the transmit polarization t1, t2, · · · , tM to maximize
the output SINR. Thus, we can formulate the following opti-
mization problem.

max
t1,t2,··· ,tM

SINRout (21)

According to (20), the optimization problem can be
rewritten as follows.

max
t1,t2,··· ,tM

N ‖ht‖2 −
K∑
k=1

∣∣∣bHt uk ∣∣∣2 (22)

When the matrix Rjn is a row full rank matrix, the jamming
subspace spanned by the K eigenvectors is the same as the
subspace spanned by the jamming steering vectors, i.e., span
{u1,u2, · · · ,uK } = span

{
bj1, bj2, · · · , bjK

}
, and the cost

function can be represented as follows.

N ‖ht‖2 −
K∑
k=1

∣∣∣bHt bjk ∣∣∣2 (23)
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In this section, we apply game theory concepts to the
radar jamming suppression problem for transmit polarization
design. Game theory is explained in detail in [29], [30], and
a brief overview of the two-person finite strategy game is
given in [20]. Therefore, we do introduce the game theory
background in this paper and instead focus on the polarization
design problem.

In our radar design problem, we have only two players:
player 1 is the FTGs who choose the polarization characteris-
tics of the false targets to effectively deceive the radar system,
and player 2 is the MIMO radar system, which selects the
transmit polarizations to improve the jamming suppression
performance. This is a TPZS game [31] in which one player’s
gain is the other’s loss. We propose two design methods: one
is a unilateral game with asymmetrical information for dumb
jammers, and the other is a strategic game with symmetrical
information for smart jammers. Better jamming suppression
performance can be achieved in the MIMO radar system with
both methods for dumb and smart jammers.

We emphasize that in this paper, we do not consider the
parameter estimation algorithms introduced in [27], [28].
Moreover, in the following analysis and simulations,
the angles of the target and jammers are all set to known
values, as are the PSM of the true target and the polarization
vectors of all the jammers. In practice, all the parameters
noted above should be estimated in advance.

A. UNILATERAL GAME
This subsection considers the extreme case in which player 2
can intercept player 1’s strategy and the latter does not notice
that it is happening, i.e., the smart radar counters dumb jam-
mers. In this case, the available information for the two play-
ers is asymmetric. Therefore, player 2 can always choose the
best response, and the TPZS game is reduced to a unilateral
game.

If the MIMO radar system knows the FTG strategy,
the game is simplified to a classical radar waveform optimiza-
tion problem [15]–[17] in which the radar strategy is selected
to maximize the output SINR. Mathematically, this problem
is formulated as

max
t

SINRout s.t. ‖ht‖ = ct (24)

where t = [tT1 , t
T
2 , · · · , t

T
M ]T and ct is a constant. According

to (23), we can obtain the following optimization problem.

min
t

K∑
k=1

∣∣∣bHt bjk ∣∣∣2
s.t. ‖ht‖ = ct (25)

According to matrix theory, we can obtain the following
transformation

b = aR(θ )⊗ [H (aT (θ )⊗ 1)]

= aR(θ )⊗ diag (aT (θ )⊗ 1)h

= A(θ )B(S)t (26)

where A(θ ) , aR(θ )⊗ diag (aT (θ )⊗ 1) and B(S) , IM ⊗S.
Thus,

‖bt‖ = ‖A(θt )B(St )t‖ (27)∥∥bjk∥∥ = ∥∥A(θjk )B(Sjk )t∥∥ (28)∣∣∣bHt bjk ∣∣∣ = ∣∣∣tHBH (St )AH (θt )A(θjk )B(Sjk )t∣∣∣ . (29)

With the above discussion, the optimal problem can be re-
expressed as follows.

min
t

K∑
k=1

∣∣∣tHBH(St )AH(θt )A(θjk )B(Sjk )t
∣∣∣2

s.t. ‖ht‖ = ct (30)

In this case, we define

Pk = BH (St )AH (θt )A(θjk )B(Sjk ). (31)

Notably, the optimal strategy t̂ satisfies the following
equation. ∣∣∣t̂HPk t̂∣∣∣ = 0, k = 1, 2, · · · ,K (32)

Defining Q =
K∑
k=1

PkPHk , the eigen decomposition of Q can

be expressed as Q = UQ6QUH
Q, where 6Q and UQ are the

eigenvalue matrix and eigenvector matrix, respectively. Note
that the diagonal elements of eigenvalue matrix 6Q include
M small eigenvalues and M large eigenvalues, as shown in
the simulation. Moreover, each eigenvector only contains two
nonzero elements. Under this condition, we can obtain the
optimal strategy t̂ composed of the nonzero entries of the
eigenvectors corresponding to the M small eigenvalues.

In conclusion, the major steps in the transmit polarization
design process can be summarized as follows.
Step 1: Select the initial transmit polarization for the polar-

ization MIMO radar system, decompose the received signals
with the matched filters, and estimate the angles and PSMs
of all the targets.
Step 2: Construct Pk according to (31).

Step 3: Construct Q =
K∑
k=1

PkPH
k and perform the eigen

decompose of Q as Q = UQ6QUH
Q.

Step 4: The optimal strategy t̂ is obtained from the nonzero
entries of the eigenvectors corresponding to the M small
eigenvalues in UQ.

B. STRATEGIC GAME
In the above analysis, the true strategies of the FTGs are
assumed to remain unchanged and be accurately known by
the MIMO radar system in advance, and the FTGs are not
aware of this scenario. However, with advances in digital
signal processing and computing technology, adaptive jam-
ming systems usually have multiple jamming strategies and
can flexibly choose these strategies according to the working
strategy of the radar system. In such circumstances, the radar
does not know the true strategy of the FTGs in advance, and
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vice versa, so the polarization design method proposed in the
previous subsection will fail. Therefore, in this subsection,
we study the polarization design problem for a smart radar
system and smart jammers.

In practice, although each player does not know the true
strategy of the other, they can obtain knowledge of all pos-
sible strategies of the other through long-term observations
in advance. In the proposed radar design problem, the polar-
ization parameters of the jamming signal (false targets) are
dependent on the transmit and receive polarization vectors
of the FTGs. In general, when the FTG receives the radar
signal, the polarization vector of the FTG antenna is fixed,
but when the FTG transmits the signals to generate the
false targets, the polarization vector of the antenna can be
changed as needed to improve the jamming effect. Therefore,
we assume that the receive polarization vectors of all FTGs
remain unchanged and that each FTG has R optional transmit
polarization vectors.

9 = {h1jt ,h
2
jt , · · · ,h

R
jt } (33)

Further, we assume that each transmitter of the MIMO radar
system has L optional transmit polarization vectors

� =
{
t1a, t

2
a, · · · , t

L
a

}
(34)

where the definitions of h(·)jt and t(·)a are the same as those
for tm. Each FTG of player 1 can independently select one of
the R possible transmit polarization vectors. Similarly, each
transmitter of player 2 can independently choose one of the
L possible transmit polarization vectors. Therefore, for the K
FTGs and the MIMO radar system withM transmit antennas,
there are NJ and NR possible pure strategies without order
consideration, respectively, where

NJ =
(R+ K − 1)!
(R− 1)!K !

(35)

NR =
(L +M − 1)!
(L − 1)!M !

. (36)

We have now formally defined the players and their pure
strategies. The next step is to define the payoff functions of
both players for the NJ × NR possible profiles of strategies.

We assume that the payoff functions of both players sum
to zero. This is a reasonable assumption because the players
having opposing goals. Player 1 tries to select the transmit
polarization vectors that make the false targets difficult to
suppress, and player 2 designs transmit polarization vectors to
improve the jamming suppression performance. Such games,
i.e., zero-sum games, have been widely discussed in the game
theory literature [20], [29]. In our radar design problem,

u1(t iJ , t
j
R) = −u2

(
t iJ , t

j
R

)
, ∀i = 1, · · · ,NJ ; j=1, · · · ,NR

(37)

where t iJ , [h(i)jt1;h
(i)
jt2; · · · ; h

(i)
jtK ]

T , t jR, [t(j)a1; t
(j)
a2; · · · ; t

(j)
aM ]T ,

and h(i)jtk and t(j)am are independently selected by player 1 and
player 2 from the corresponding lists of all optional transmit
polarization vectors9 and �, respectively.

According to (26), the inner product of bt and bjk can be
represented as follows.

bHt bjk = hHt A
H (θt )A(θjk )hjk (38)

Since jamming is settled in the main lobe, we have
AH(θt )A(θjk ) ' I2M , which indicates that the spatial corre-
lation between the true target and jamming is approximately
equal to 1. Thus, for a conventional phase array radar and the
MIMO radar, main lobe jamming cannot be effectively sup-
pressed. However, for the polarization MIMO radar, equation
(38) can be approximated as bHt bjk ' hHt hjk . In this case,
the target steering vector and the jamming steering vector are
mainly related to the polarization correlation. Jamming can be
suppressed in the polarization domain using the polarization
difference between the target and jamming signal. When the
target polarization information vector ht and the false target
polarization information vector hjk are strongly correlated,
the suppression performance worsens, and vice versa. There-
fore, we define the utility function for player 1 as

u1
(
t iJ , t

j
R

)
=

K∑
k=1

∣∣∣bHt bjk ∣∣∣2 ' K∑
k=1

∣∣∣∣(hjt)H hijjk ∣∣∣∣2 (39)

where hjt = B(St )t
j
R, h

ij
jk = B(Sijk )t

j
R and Sijk = h(i)jtkh

T
jrk .

If the players choose the mixed-strategy profile (P1,P2),
the corresponding utility function becomes

u1 (P1,P2)=
∑

i=1,··· ,NJ
j=1,··· ,NR

P1(t iJ )P2(t
j
R)

K∑
k=1

∣∣∣∣(hjt)H hijjk ∣∣∣∣2.
(40)

From (37)-(40), the utility function is only related to the
FTGs’ transmit polarization t iJ and the MIMO radar trans-
mit polarization t jR when the receive polarization vectors of
all FTGs hjrk (k = 1, 2, · · · ,K ) remain unchanged. These
expressions for the utility functions reflect the polarimetric
correlation between the target and jamming signal. Note
that hjt and hijjk are functions of the strategy t jR chosen by
player 2.Minimizing the polarimetric correlation between the
target and jamming signal improves the jamming suppression
performance. This result is the goal of player 2. However,
player 1 has the opposite goal, i.e., maximizing the polari-
metric correlation between the target and jamming signal to
enhance the jamming efficiency. Therefore, the utility func-
tion of player 2 is defined as the additive inverse of the utility
function of player 1, thereby leading to a zero-sum game.

We have expressed the problem of polarization design
for polarization MIMO radar as a TPZS game. Different
approaches can be used to solve this problem. As noted
in [29], we can follow the procedure of iterated strict dom-
inance to find the dominant strategy. If this procedure does
not provide a solution, we can search for the possible Nash
equilibria for this game and pick a solution from the corre-
sponding solution set [31]. For finite games, the existence
of a Nash equilibrium has been shown in the literature [32].
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Furthermore, computing the Nash equilibrium of any TPZS
game can be formulated as a linear programming problem;
hence, algorithms to solve this problem in polynomial time
exist [33]. Thus, we can always find at least one equilibrium
solution to this design problem.

This proposed strategic game design method does not
require accurate estimations of jamming properties from
measured data. Furthermore, this method is a one-time offline
computational process implemented before radar scanning.
The complexity of game theory design is typically low when
compared with the dimensions of the training data required
by conventional approaches. Hence, our approach is easy to
implement in practice without high costs, unlike the conven-
tional approaches discussed above.

V. NUMERICAL SIMULATIONS
In this section, we will present numerical examples to demon-
strate the performance of the proposed polarization MIMO
radar system and game theory designmechanismwith respect
to deceptive jamming suppression in the main lobe.

Consider a polarization MIMO radar system in which two
ULAs with M = N = 3 antennas and half-wavelength
spacing between adjacent antennas are used for transmitting
and receiving. The test scenario includes one true target and
two FTGs. The azimuth angle and range bin of the true
target are 0◦ and 100, respectively, and the signal-to-noise
ratio (SNR) is 5 dB. The azimuth angles of the two FTGs
are 3◦ and −1◦. The jamming-to-noise ratios (JNRs) of the
two FTGs are 25 and 30 dB. The false targets generated by
FTG 1 are in range bins 60, 100, and 140, and those of FTG 2
are in range bins 85, 100, and 115. The results reported in
this section correspond to the average of 200 Monte Carlo
simulations.

A. EXAMPLES FOR THE UNILATERAL GAME
This subsection concentrates on the unilateral game. In the
simulations, the PSM of the true target is as follows.

St =
[
0.3+ 1.5j −1.9j
−1.4j −0.2

]
Additionally, the initial transmit polarization of the polariza-
tion MIMO radar system is randomly selected. The transmit
polarization vectors are as follows.[

cos 60◦ cos 78◦ cos 52◦

sin 60◦ej45
◦

sin 78◦ej60
◦

sin 52◦

]
The transmit and receive polarization vectors of two FTGs

are as follows.

hjr1 =
[

cos 13◦

sin 13◦ej60
◦

]
hjt1 =

[
cos 55◦

sin 55◦ej45
◦

]
hjr2 =

[
cos 78◦

sin 78◦ej60
◦

]
hjt2 =

[
cos 52◦

sin 52◦

]
Fig. 2 shows the eigenvalues of the matrix 6Q, which

is composed of 3 small eigenvalues and 3 large eigen-
values. This structure is consistent with that discussed in

FIGURE 2. Eigenvalues of the matrix 6Q.

FIGURE 3. The output SINR versus the input SNR for the polarization
MIMO radar and conventional MIMO radar systems.

subsection 4.1. The eigenvectors corresponding to the 3 small
eigenvalues constitute the optimal transmit polarization, and
output SINR improvement is demonstrated in the following
experiments with the optimal transmit polarization.

Next, we examine how the optimal design of the trans-
mit polarization improves deceptive jamming suppression.
Fig. 3 shows the output SINR versus the input SNR in
the polarization MIMO radar system. For ease of reference,
the output SINR versus the input SNR for the conven-
tional MIMO radar system (denoted as conventional MIMO,
where the transmit and receive polarizations are horizontally
polarized) is included. A significantly higher SINR is
achieved in polarization MIMO radar compared to that for
the conventional MIMO radar system. Thus, the polarization
MIMO radar provides better interference robustness than the
conventionalMIMO radar when tackling main lobe deceptive
jamming problems. This gain is expected because the pro-
posed polarization MIMO radar combines the advantages of
both the polarization diversity and MIMO radar. Addition-
ally, the transmit polarization optimization is useful for the
polarization MIMO radar.
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FIGURE 4. The output SINR versus the input JNR for the polarization
MIMO radar and conventional MIMO radar systems.

Fig. 4 shows the output SINR versus the JNRs of the two
FTGs (SNR is fixed to 5 dB) for the polarizationMIMO radar
and the conventional MIMO radar systems. From this figure,
we can observe that the output SINR of the polarization
MIMO radar is significantly higher than the output SINR of
the conventional MIMO radar at a JNR greater than 0 dB.
However, as the JNR decreases, the performance difference
between the polarizationMIMO radar with the original polar-
ization and the conventional MIMO radar tends to decrease,
and the two curves eventually coincide. This observation
agrees with the fact that the polarization MIMO radar and
the conventional MIMO radar have the same performance in
this simulation scenario when the JNR is less than -20 dB,
i.e., the jamming power can be neglected compared to the
noise power. Additionally, this figure also shows that the
optimal polarization design of the transmit waveforms pro-
vides a significant performance improvement for the polar-
ization MIMO radar for all JNR values compared with the
performance of systems that transmit the original polarized
waveforms.

Fig. 5a shows the output power as a function of the range
bin for the polarization MIMO radar system before and after
beamforming with the original and optimal transmit polariza-
tions. Fig. 5b shows an enlarged view around the true target.
The figures clearly show that all false targets are effectively
suppressed, and the true target can be detected by the polar-
izationMIMO radar system after beamforming. Furthermore,
a higher target power is achieved by the polarization MIMO
radar systemwith the optimal transmit polarization compared
to that for the original polarization.

B. EXAMPLES FOR THE STRATEGIC GAME
This subsection demonstrates the performance of the pro-
posed strategic game design method for the polarization
MIMO radar system and compares the system with purely
horizontally or vertically polarized radar systems. First,
we present an example (denoted as case 1) that gives a pure

FIGURE 5. Power of signals before and after beamforming with the initial
and optimal transmit polarizations: (a) Original view and (b) Enlarged
view around the true target.

strategy Nash equilibrium solution to the design game. Later,
we will also discuss a scenario (denoted as case 2) in which
the only possible Nash equilibrium solution is a mixed
strategy.

It should be noted that the proposed strategic game is a
finite game in which players have a finite strategy set to
choose from. Furthermore, in the following simulation, for
simplicity and clarity of exposition, we suppose that there are
only three optional transmit polarization vectors for each FTG
and for each transmitter of the MIMO radar system.

In the simulation, we define the PSM of the true target as
follows.

St =
[

1 0.5j
−0.2j 0.9

]
Additionally, the initial transmit polarization vectors of the
polarization MIMO radar are as follows.[

cos 10◦ cos 38◦ cos 52◦

sin 10◦ej45
◦

sin 38◦ej60
◦

sin 52◦

]
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The receive polarization vectors of the two FTGs are given as
follows.

hjr1 =
[

cos 13◦

sin 13◦ej60
◦

]
hjr2 =

[
cos 78◦

sin 78◦ej60
◦

]
For each FTG, we assume the following three optional

transmit polarization vectors.

h1jt = [1, 0]T h2jt = [0, 1]T h3jt =
[√

0.5,
√
0.5
]T

In other words, the transmit antennas of each FTG can work
in the horizontal polarization state, the vertical polarization
state, or a 45◦ linear polarization state. Moreover, we assume
that each of the transmitters of the MIMO radar system has
the following three optional transmit polarization vectors.

t1a = [1, 0]T t2a = [0, 1]T t3a =
[√

0.5,
√
0.5
]T

Therefore, there are 6 and 10 possible pure strategies without
order consideration for player 1 and player 2, respectively.

t1J = [0, 1, 0, 1]T

t2J = [1, 0, 1, 0]T

t3J = [
√
0.5,
√
0.5,
√
0.5,
√
0.5]T

t4J = [1, 0, 0, 1]T

t5J = [1, 0,
√
0.5,
√
0.5]T

t6J = [
√
0.5,
√
0.5, 0, 1]T

t1R = [1, 0, 1, 0, 1, 0]T

t2R = [0, 1, 0, 1, 0, 1]T

t3R = [
√
0.5,
√
0.5,
√
0.5,
√
0.5,
√
0.5,
√
0.5]T

t4R = [1, 0, 1, 0, 0, 1]T

t5R = [0, 1, 0, 1, 1, 0]T

t6R = [
√
0.5,
√
0.5,
√
0.5,
√
0.5, 1, 0]T

t7R = [
√
0.5,
√
0.5,
√
0.5,
√
0.5, 0, 1]T

t8R = [1, 0, 1, 0,
√
0.5,
√
0.5]T

t9R = [0, 1, 0, 1,
√
0.5,
√
0.5]T

t10R = [1, 0,
√
0.5,
√
0.5, 0, 1]T

In reality, the radar system does not know which of these
different possible transmit polarization strategies corresponds
to the actual jamming signal. Hence, the radar must con-
sider all the possible jamming strategies before designing
the transmit polarizations. Given the above sets of possible
strategies for each player, the next step in defining the game
is computing the utility functions for different profiles. There
are 6 × 10 = 60 profiles in this problem, and we compute
the utility functions for both the players using the expressions
given in the previous section.

The utility function of this game is presented in Table 1,
where we specify the utilities corresponding to player 1. The
utilities for player 2 are easily obtained using the zero-sum
property of this game. It should be noted that in order to make
the tablemore concise, the values in the table are given to only
two decimal places.

TABLE 1. Utility function of the game (CASE 1).

For this high-dimensional problem, it is difficult to itera-
tively find the dominant strategies and obtain the solution.
In such a situation, we can directly compute the Nash equi-
libria for the game. Using the Gambit software tools [34] for
game theory, we observe that only one equilibrium profile(
t4J , t

5
R

)
exists for this game. Note that this is a pure strategy

profile.

FIGURE 6. The output SINR versus the input SNR (Case 1).

After obtaining the transmit waveform polarizations using
game theory design, the improvements in the radar jamming
suppression performance associated with this design mech-
anism are shown in Figs. 6 and 7. We observe that in the
polarization MIMO radar the game theory design for the
transmit waveform polarizations yields a significant improve-
ment in the output SINR when compared with the SINRs of
systems that transmit only horizontal, vertical, or 45◦ linearly
polarized waveforms. Furthermore, the proposed polarization
MIMO radar has better SINR performance after transmit
polarization design compared to conventional MIMO radar.
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FIGURE 7. The output SINR versus the input JNR (Case 1).

It should be noted that in this example, the performance of
the polarization MIMO radar system, which transmits purely
horizontally polarized waveforms, is equivalent to that of the
conventional MIMO radar system. This result is specific to
this choice of the simulation parameters and is not always the
case.

In the above problem, the Nash equilibrium solution to the
game involved pure strategies for both players. However, this
approach may not be true for all other choices of simulation
parameters for the radar system and FTGs. Thus, we will
study a problem that does not have pure strategy equilibrium
solutions. For example, assume that the receive polariza-
tion vector of the second FTG in the previous problem is
changed to

hjr2 =
[

cos 50◦

sin 50◦e−j30
◦

]
.

This change affects the utilities corresponding to this game.
The utility function of this modified game is described
in Table 2. Due to the modified utilities of the players, this
zero-sum game does not have a pure strategy Nash equi-
librium. Thus, the solution to this game is a unique mixed-
strategy Nash equilibrium that is given as follows.

P1 =
{
0, 0, 0,

27
154

,
127
154

, 0
}

P2 =
{
0,

3
77
, 0, 0,

74
77
, 0, 0, 0, 0, 0

}
Player 1 assigns non-zero probabilities to pure strategies t4J
and t5J , whereas player 2 assign non-zero probabilities to pure
strategies t2R and t5R. This assignment shows that the other
pure strategies of player 2, namely, t1R, t

3
R, t

4
R, and t

6
R through

t10R , are dominated by the strategies t2R and t5R. Hence, these
strategies can be eliminated from the design problem.

In this problem, it is not straightforward to plot the per-
formance curves because the value of the output SINR
will vary for the different nondominant pure strategy pairs.

TABLE 2. Utility function of the game (CASE 2).

FIGURE 8. The output SINR versus the input SNR (Case 2).

FIGURE 9. The output SINR versus the input JNR (Case 2).

We have four such pairs here; hence, we compute the follow-
ing constituent SINRs: SINRout| (t4J , t

2
R), SINRout| (t4J , t

5
R),

SINRout| (t5J , t
2
R), and SINRout| (t5J , t

5
R). Based on the mixing
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probabilities of the Nash equilibrium, we define

SINRout =
∑
i=4,5

∑
j=2,5

P1(t iJ )P2(t
j
R)SINRout

∣∣∣ (t iJ , t jR). (41)

Using this definition, we plot the output SINR versus the
input SNR in Fig. 8, from which we observe that the system
with the mixed-strategy polarimetric design outperforms the
radar systems with only horizontal, vertical, or 45◦ linear
polarizations. Further, Fig. 9 shows the output SINR versus
the input JNR of the two FTGs. We note that the mixed-
strategy equilibrium solution has a higher SINR for all values
of the input JNR than do the other solutions when the input
JNR is greater than 0 dB.

VI. CONCLUSION
In this paper, we explore the co-located polarization MIMO
radar configuration and study the polarization design problem
for deceptive jamming suppression in the main lobe from
a game theory perspective. Instead of using identical trans-
mit polarizations, the polarization vector of each element in
the transmit array is determined to improve jamming sup-
pression performance. Inspired by the concepts and advan-
tages of game theory, we formulate the polarization design
problem for a co-located polarization MIMO radar system
as a TPZS game between the radar and the jammers and
propose two design methods for different cases. With the
designed transmit polarizations, improved jamming suppres-
sion performance can be achieved. Real radar data will be
used to validate the results presented above in the future.
Furthermore, an optimal polarization design algorithm for
jamming suppression without prior knowledge of targets and
interference will be studied.

In practice, the target polarization scattering characteristics
will vary with time, which is not considered in this work.
When the possible polarization state of the target is a finite
set, we can consider the combination of real target and FTGs
as one player and the radar system as the other player in the
game, and then the polarization design problem can also be
solved following the method presented in this paper. How-
ever, when the number of strategies possible for one (each)
player is an infinite set, the game will become complex, and
some other solutions must be used to solve this problem, such
as the ε-equilibrium, Stackelberg equilibrium, and saddle-
point equilibrium [31], which will be studied in future work.
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