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ABSTRACT Mutually complementary bases are crucial to secure quantum key distribution (QKD).
By aiming at free-space QKD with use of spatially structured photons, the effect of turbulence on the
mutual unbiasedness of two complementary bases relevant to photonic orbital-angular-momentum (OAM)
modes is modeled theoretically, with novel insightful expressions and physical explanations yielded. For
two complementary bases constructed from Laguerre–Gaussian (LG) modes with a fixed radial index of
zero, it is shown that the superposed joint-two-LG-mode (JTLGM) correlation function plays a fundamental
role in determining the turbulence-induced mutual-unbiasedness decay. The mutual information between the
sent and detected photonic states is used as a metric to quantify the degree of turbulence-induced mutual-
unbiasedness decay. It is found that the degree of turbulence-induced mutual-unbiasedness decay depends
on the scaled atmospheric coherence width, anisotropy of turbulence and contents of the complementary
bases, and it can become non-negligible in certain cases.

INDEX TERMS Mutual unbiasedness, complementary bases, photonic spatial-mode state, quantum key
distribution, atmospheric turbulence, anisotropy.

I. INTRODUCTION
Over the years, quantum key distribution (QKD) has become
one of the important research fronts in the area of quan-
tum information science and technology. Traditional QKD
schemes generally employ qubits, i.e., two-dimensional
quantum systems, for encoding information. However,
recently higher-dimensional QKD schemes have also been
experimentally demonstrated by utilizing the photonic spa-
tial degrees of freedom. For instance, twisted photons car-
rying orbital angular momentum (OAM) have been treated
as alphabets in experiments of QKD with qudits [1]–[3].
Indeed, photonic OAM-mode states with various quantum
numbers span a discrete infinite-dimensional Hilbert space
and are a good option for implementing qudits. Secure QKD
protocols, irrespective of using qubits or qudits, necessitate
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complementary bases, i.e., the mutually unbiased bases [2].
For QKD with use of photonic spatial degrees of freedom,
a specific set of photonic OAM-mode states can be utilized
as a primary encoding basis, which we designate as the
standard basis for later ease of description, and its comple-
mentary bases can be further yielded by performing proper
linear combination of the photonic OAM-mode states [1], [2].
An approach to constructing a d-dimensional basis mutually
unbiased with respect to a standard basis in dimension d is to
adopt the following superposition of all the elements in the
standard basis [4]

|ψn〉 =
1
√
d

d−1∑
m=0

exp
(
i 2πnm
d

)
|φm〉 , (1)

where |φm〉 denotes themth element in the standard basis, and
n ∈ {0, 1, · · · , d − 1}. Here and hereafter, Dirac’s ‘‘bra-
ket’’ notation is used to describe an element in a photonic
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state basis in an abstract manner. For later convenience of
description, from now on, we refer to the d-dimensional basis
{|ψn〉} defined by (1) as the Hadamard basis.
The said standard and Hadamard bases are two comple-

mentary bases and can keep mutually unbiased upon prop-
agation in vacuum [1]; this nature is crucial to effective
recognition of an attack in QKD applications [4]. On the
other hand, it is known that when QKD with use of spatially
structured photons is operated in free-space optical channels
through the earth’s atmosphere, turbulence therein will distort
the propagating photonic wave fields, hence disturbing the
propagated photonic spatial-mode states. With this in mind,
a natural problem that then arises is how atmospheric tur-
bulence affects the mutual unbiasedness of complementary
bases relevant to propagated photonic spatial-mode states.
However, to our best knowledge, there are, up to now, very
few published works with respect to the problem. This may
seem quite surprising if one recalls how much effort has
already been put into examination of turbulence-induced
OAM intermodal crosstalk in both quantum and classical con-
texts (see, e.g., [5]–[10]). Unlike these existing researches,
our work is intended to fill the deficiency in the understanding
of changes in the mutual unbiasedness of complementary
bases associated with photonic spatial-mode states propagat-
ing through atmospheric turbulence.

In what follows, we first theoretically formulate, in Section
II, the average probability of detecting a photon, initially
prepared in theHadamard basis, by using the standard basis as
the measurement basis in the presence of turbulence-caused
distortion. With the help of the developed formulae, we sub-
sequently quantify, in Section III, the turbulence-induced
mutual-unbiasedness decay of the standard and Hadamard
bases by using the mutual information between the sent and
detected photonic states as a metric. Finally, conclusions are
drawn in Section IV.

II. AVERAGE PROBABILITY OF DETECTING A PHOTON
PREPARED IN HADAMARD BASIS WITH STANDARD
BASIS USED AS MEASUREMENT BASIS
Here we assume that a photon associated with a spatial-mode
state in a d-dimensional Hadamard basis propagates along the
positive z-axis from the transmitting plane at z = 0 to the
receiving plane at z = L. The coordinate-space wave function
of the photonic state at the receiving plane can be explicitly
expressed by

ψ (L)
n (r) , 〈r|ψn〉 =

1
√
d

d−1∑
m=0

exp
(
i 2πnm
d

)
φ(L)m (r), (2)

where r = (r , θr ) represents a two-dimensional position
vector in the receiving plane,

φ(L)m (r) = 〈r|φm〉 = R(m)(r,L) exp (ilmθr ) /(2π )1/2, (3)

and the superscript ‘‘L’’ in parentheses indicates the depen-
dence of the associated quantity on the parameter L; 〈r| is
the ‘‘bra’’ vector that corresponds to the ‘‘ket’’ vector |r〉,

which is an element in the spatial coordinate basis related to
a two-dimensional plane; R(m)(r , L) is the radially-dependent
part of the coordinate-space wave function of the state |φm〉
and

∫
∞

0 |R
(m)(r,L)|2rdr = 1; lm is the OAM index of

the state |φm〉. In this paper, we always use the lowercase
letter ‘‘l’’ with a subscript to denote the OAM index of a
state in the standard basis, and the subscript represents the
basis index associated with the state. This notation usage will
be utilized later without further explicit explanation. Here
we emphasize that, despite the one-to-one correspondence
between the OAM index lm and the basis index m, lm may
take on a value different from that of m. We note that, except
for plane or spherical waves, it is often very difficult to
develop insightful mathematical expressions for fluctuation
statistics of optical waves propagating in moderate-to-strong
atmospheric turbulence. Furthermore, free-space QKD sys-
tems with use of spatially structured photons may not work
normally under moderate-to-strong turbulence conditions.
Thus, in what follows, we confine our consideration to weak-
turbulence cases; more specifically, the role of turbulence is
reasonably modeled by a single phase screen. It is noted that
many researchers [5], [8]–[12] have done theoretical studies
of optical OAM-mode propagation in turbulence under this
consideration. In addition, numerous experimental demon-
strations relevant to optical OAM transmission [13]–[15]
have also used a single phase screen displayed by a spatial
light modulator to simulate the turbulence-induced distortion
in laboratory.

The mutually unbiased relation between the aforemen-
tioned standard and Hadamard bases implies | 〈φm | ψn〉 |2 =
1/d for ∀ m, n ∈ {0, 1, · · · , d − 1} in the absence of
turbulence. When there is turbulence distortion along the
propagation path, the pure state |ψn〉 evolves into a new super-
posed state

∣∣ψn,tur〉 with its coordinate-space wave function
given by

ψ
(L)
n, tur (r) =

1
√
d

d−1∑
m=0

{
φ(L)m (r) exp

[
i
2πnm
d
+ iϕ(r,L)

]}
(4)

for a given random turbulence realization, where ϕ(r, L)
denotes the phase perturbation induced by the turbulence real-
ization, which is physically represented via a random phase
screen thereinafter. If we carry out projective measurement
of the photon associated with the state

∣∣ψn,tur〉 for a given
turbulence realization in the d-dimensional standard basis at
the receiving plane, the probability of finding the photon in
the state |φm〉 (m ∈ {0, 1, · · · , d − 1}) can be formulated by

pm|n =
∣∣〈φm|ψn,tur〉∣∣2 = ∣∣am,n∣∣2 = am,na∗m,n, (5)

where the asterisk denotes the complex conjugate, and

am,n =
∫ ∫

∞

−∞

ψ
(L)
n,tur (r) φ

(L)∗
m (r) d2r. (6)
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FIGURE 1. Distribution pattern of the weighting factor exp[−Dϕ (rd )/2]
with different ζe, where rd = (rd ,x , rd ,y ), α = 11/3, r0 = 5 cm. (a) ζe = 1;
(b) ζe = 10.

The ensemble average of pm|n over different random
turbulence realizations is found to be

pm|n =
〈
am,na∗m,n

〉
tur , (7)

where 〈·〉tur stands for the ensemble averaging operation over
the statistics of atmospheric turbulence.

To evaluate p̄m|n, one needs to specify the spatial power
spectrum of refractive-index fluctuations for the atmospheric
turbulence. Statistical isotropy has been often considered
valid for turbulence in the atmosphere. However, there are
experimental observations demonstrating the existence of
statistical anisotropy of the turbulence in some portions of
the atmosphere (see, e.g., [16], [17]). It has been shown that
the anisotropy of the turbulence has an important impact on
optical-wave propagation [18], [19]. In fact, the wave field of
the spatial-mode states in the Hadamard basis may feature a
non-circularly-symmetric pattern, viz., may exhibit obvious
direction-dependence (see, e.g., Fig. 1 in [2]). This may
arouse one’s curiosity about whether anisotropy of turbulence
plays a role in decaying the mutual unbiasedness of comple-
mentary bases relevant to propagated photonic spatial-mode
states. To deal with this issue, below we choose a turbulence
spectrum taking the following form [18]

8n(K) = A(α)C̃2
n ζ

2
e

(
ζ 2e κ

2
x + κ

2
y + ζ

2
e κ

2
z

)−α/2
, (8)

where K = (κx , κy, κz) is the vector wave number,
A(α) = 0(α−1)cos(απ /2)/(4π2), 0(·) represents the gamma
function, ζe denotes the effective anisotropy factor, α is
the spectral index, 3 < α < 4, and C̃2

n is the generalized
refractive-index structure constant in units of m3−α . We point
out that the above spectrum is obtained from (20) in [18] by
assuming an inner scale l0 of zero and an outer scale L0 of
infinity for the turbulence whose anisotropy exists in planes
perpendicular to the z-axis, i.e., the propagation axis. The
turbulence spectrum with l0 →0 and L0 → ∞ is proper for
many cases and used widely in the literature [3], [10], [11].
Incidentally, the above spectrum becomes isotropic if ζe = 1
and reduces to the canonical Kolmogorov spectrum if α =
11/3.

To proceed further, here we use a set of Laguerre-Gaussian
(LG) spatial modes with a fixed radial index of zero to
construct the standard basis relevant to photonic OAM-mode

states, implying that R(m)(r , L) appearing in φ(L)m (r) should
be expressed by [20], [21]

R(m)(r,L) =
2
wL

√
1

(lm|)!

(
r
√
2

wL

)|lm|
exp(−i2)

× exp

[
−
r2

w2
L

+
ikr2L

2
(
L2 + z2R

)] , (9)

where k is the optical wavenumber, 2 = (|lm| + 1) arctan
(L/zR) is the Gouy phase, zR = kw2

0/2 is the Rayleigh range,
wL = w0[(L2 + z2R)/z

2
R]

1/2 is the fundamental-Gaussian-
beam radius at the receiving plane, and w0 represents the
beam-waist radius of a fundamental-Gaussian-beam field; for
ease of description, later we also denote the mode φ(L)m (r) by
LGlm

0 . Substitution of (6) into (7) leads to

pm|n =
1
d

d−1∑
s1=0

d−1∑
s2=0

exp
[
i
2πn (s1−s2)

d

] ∫∫
∞

−∞

d2r1

×

∫∫
∞

−∞

d2r2U (m)
s1 (r1)U (m)∗

s2 (r2)M (r1, r2) , (10)

where

U (m)
s (x) = φ(L)s (x)φ(L)

∗

m (x), (11)

M (r1, r2) = 〈exp [iϕ (r1,L)−iϕ (r2,L)]〉tur
= exp

[
−Dϕ (r1 − r2)/2

]
, (12)

Dϕ(x) with x being a two-dimensional column vector
represents the structure function of the random phase screen
ϕ(r, L). We note that U (m)

s (·) stands for a joint two-LG-
mode (JTLGM) field defined as the product of the mode
LGls

0 and the complex conjugate of the mode LGlm
0 . In arriv-

ing at the second step of (12), it is assumed that ϕ(r, L)
is a Gaussian random process. For atmospheric turbulence
statistically modeled by (8), it follows that [18]

Dϕ(x) = 2×
[
2.1ζ 1/(α−2)e |Iax| /r0

]α−2
, (13)

where r0 = 2.1ρpl is the Fried’s plane-wave atmospheric
coherence width, ρpl
= [−23−απ20(1−α/2)A(α)C̃2

nLk
2/0(α/2)]1/(2−α), and

Ia =
[
ζ−1e 0
0 1

]
. (14)

By making the change of variables R = (r1+ r2)/2 and rd =
r1− r2, (10) can be rewritten as follows:

pm|n =
1
d

d−1∑
s1=0

d−1∑
s=0

exp
[
i
2πn (s1−s2)

d

] ∫∫
∞

−∞

d2rd

× exp
[
−Dϕ(rd )/2

] ∫∫ ∞
−∞

d2RU (m)
s1

(
R+

rd
2

)
×U (m)∗

s2

(
R−

rd
2

)
. (15)

If we further let R′ = R + rd /2 in (15), it is easy to find
that the integration over R′ therein is actually equivalent to
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the two-dimensional correlation integral betweenU (m)
s1 (·) and

U (m)
s2 (·). With this in mind, one can obtain

pm|n =
1
d

∫∫
∞

−∞

exp
[
−Dϕ (rd )/2

]
3(m)
n (rd ) d2rd , (16)

where

3(m)
n (rd ) =

d−1∑
s1=0

d−1∑
s2=0

{
γ (m)
s1,s2 (rd ) exp [i 2πn (s1−s2) /d]

}
,

(17)

γ (m)
s1,s2 (x) = F−1

{
Ũ (m)
s1 (κ)Ũ (m)∗

s2 (κ)
}
, (18)

Ũ (m)
s (κ) = F

[
U (m)
s (x)

]
, and κ = (κ , θκ ) represents

the spatial circular frequency vector; F and F−1 denote the
Fourier transform and inverse Fourier transform, respectively.
We emphasize once again that γ (m)

s1,s2 (·) is obtained by employ-
ing the correlation theorem and actually denotes the correla-
tion function between U (m)

s1 (·) and U (m)
s2 (·). Note that, 3(m)

n (·)
is a linear superposition of various γ (m)

s1,s2 (·); hence, later we
will refer to it as the superposed JTLGM correlation func-
tion. In accordance with the asymmetric form of the Fourier
transform [22], based on (3), (9) and (11), the expression for
the Fourier transform of U (m)

s (·) can be developed to give

Ũ (m)
s (κ)

=
πC (m)

s
[
sgn(ls−lm)

]ls−lm
ils−lm (|ls−lm|)!

(
wL
√
2

)|ls|+|lm|+|ls−lm|+2(κ
2

)|ls−lm|
× 1F1

[
|ls−lm|+|ls|+|lm|+2

2
, |ls−lm|+1,−

(
wLκ

2
√
2

)2
]

×0

(
|ls−lm|+|ls|+|lm|+2

2

)
exp [i (ls−lm) θκ ] , (19)

where 1F1(·) is the confluent hypergeometric function of the
first kind, sgn(·) is the signum function, and

C (m)
s =

1√
π2 (|ls|)! (|lm|)!

(
2

w2
L

)(|ls|+|lm|)/2+1
× exp [−i (|ls| − |lm|) arctan (L/zR)] . (20)

When ls ≡ lm ≡ 0, one finds that U (m)
s (x) = 2(πw2

L)
−1

exp(−2|x|2/w2
L) and Ũ (m)

s (κ) = exp(−w2
Lκ

2/8). Hence, it
is easy to verify that (19) is certainly the Fourier trans-
form of U (m)

s (x) if both ls and lm are equal to zero. For
other cases, we have verified (19) by comparing the results
calculated according to it with those computed via a fast-
Fourier-transform (FFT) algorithm.With the help of (19), it is
straightforward to calculate γ (m)

s1,s2 (·) by using an inverse FFT
algorithm.

Equations (16) − (19) show one of our theoretical con-
tributions in this work. According to (16), it is noted that
p̄m|n is simply a weighted integration of the superposed
JTLGM correlation function with the turbulence-related term
exp[−Dϕ(rd )/2] acting as a weighting factor. Furthermore,
it is easy to find from (17) and (18) that, for given standard and

FIGURE 2. Amplitude and phase patterns of various 3(m)
n (rd ), where

rd = (rd ,x , rd ,y ), L = 5 km, w0 = 5 cm, and k = 2π/λ with λ = 800 nm.
The standard basis comprises {LG−1

0 , LG0
0, LG1

0}. The first, third, and fifth

columns correspond to the amplitude scaled by 3(m)
n (0); the second,

fourth, and sixth columns correspond to the phase.

Hadamard bases, the superposed JTLGM correlation func-
tion is completely determined by the basis indices m and n,
irrespective of atmospheric turbulence. The role of turbulence
distortion in examination of the mutual-unbiasedness relation
between the standard and Hadamard bases is completely
played by the weighting factor, which is equal to 1 if there is
no turbulence, i.e., if r0→∞. Fig. 1 illustrates the weighting
factor with various effective anisotropy factor ζe. It is seen
from Fig. 1 that ζe determines the shape of the weighting
factor’s distribution pattern; specifically, the weighting factor
possesses a circle- and ellipse-shaped distribution pattern,
respectively, when ζe = 1 and 10. The physical explanation
of this behavior is as follows: ζe 6= 1 means the turbulence is
anisotropic, resulting in that the weighting factor’s distribu-
tion pattern has different scale sizes in the x and y directions.
In addition, it is easy to infer that, with fixed ζe, the scale size
of the weighting factor’s distribution pattern is completely
determined by r0, and a larger r0 induces a distribution pattern
with a greater scale size. The said properties of the weighting
factor produce important effects on the decay of the mutual
unbiasedness of the standard and Hadamard bases, which will
be further elucidated in the following.

Now we examine the characteristics of the superposed
JTLGM correlation function 3(m)

n (rd ). Figs. 2 and 3 exem-
plify the amplitude and phase patterns of various super-
posed JTLGM correlation functions. It is found by comparing
Figs. 2 and 3 that the content of the standard basis has a
significant impact on 3(m)

n (rd ). Standard bases consisting of
different OAM-mode-state elements lead to different ampli-
tude and phase patterns of the superposed JTLGM correla-
tion function. Moreover, it is straightforward to find from
Figs. 2 and 3 that, even with the same standard basis,3(m)

n (rd )
may vary with changing m; indeed,3(0)

n (rd ) 6= 3(1)
n (rd ) 6=

3(2)
n (rd ) for the cases of both Figs. 2 and 3. Nevertheless,

with a given standard basis, it can be proved that∫∫
∞

−∞

3(m)
n (rd ) d2rd ≡ 1 (21)
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FIGURE 3. Amplitude and phase patterns of various 3(m)
n (rd ), where

rd = (rd ,x , rd ,y ), L = 5 km, w0 = 5 cm, and k = 2π/λ with λ = 800 nm.
The standard basis comprises {LG0

0, LG1
0, LG3

0}. The first, third, and fifth

columns correspond to the amplitude scaled by 3(m)
n (0); the second,

fourth, and sixth columns correspond to the phase.

for ∀m ∈ {0, 1, · · · , d − 1}, which is consistent with the
fact that the standard and Hadamard bases are mutually unbi-
ased in the absence of turbulence. Further, 3(m)

n (rd ) is often
complex-valued, whereas one can find that

3(m)
n (0) =

d−1∑
s=0

γ (m)
s,s (0) (22)

is real-valued with

γ (m)
s,s (0) = (2π )−1

∫
∞

0
r
∣∣∣R(m)(r,L)R(s)(r,L)∣∣∣2 dr . (23)

We point out that (22) is obtained by recognizing that
γ
(m)
s1,s2 (0) ≡ 0 if s1 6= s1.
Indeed, the aforementionedweighting factor exp[−Dϕ(rd )/

2] plays a role of changing the spatial structure of3(m)
n (rd ) in

evaluation of the integration in (16); evidently, the resultant
degree of change in the spatial structure of 3(m)

n (rd ) depends
on two factors: one is the relative scale sizes of the distribution
pattern of exp[−Dϕ(rd )/2] and the amplitude pattern of
3(m)
n (rd ); the other is the variation behavior of 3(m)

n (rd ) with
changing rd . By keeping these inmind, one can infer that p̄m|n
may take on a value different from that of p̄m′|n if 3(m)

n (rd )
and 3(m′)

n (rd ) have different spatial variation behavior, and
hence the weighting factor exp[−Dϕ(rd )/2] causes different
changes in the spatial structure of 3(m)

n (rd ) and 3(m′)
n (rd ).

This implies that when a photon initially prepared in the nth

spatial-mode state of the Hadamard basis is propagated via
atmospheric turbulence, the average probability of finding
the photon in the mth OAM-mode state of the standard basis
may be different from that of finding the photon in the m′
th OAM-mode state of the standard basis; in other words,
the mutual unbiasedness of the standard and Hadamard
bases is somewhat decayed by the turbulence. Based on
the above analysis, the most fundamental reason for the
mutual-unbiasedness decay is that, for a given propagated
photon initially in a spatial-mode state of the Hadamard basis,
various state elements in the measurement basis, here namely

the standard basis, correspond to superposed JTLGM corre-
lation functions that may possess different spatial-structure
features due to the dependence of the JTLGM fields on the
measurement basis index m.

As a comment, here we point out that LG modes are
characterized by both their OAM index (i.e., azimuthal index)
and their radial index. Theoretically speaking, the said stan-
dard basis can also be constructed by using a set of LG
modes with a fixed OAM index and different radial indices.
In fact, (16)–(18) remain valid for a standard basis consisting
of LG modes with a fixed OAM index and different radial
indices. Of course, (19) is only applicable to a standard basis
comprising various LG modes with a fixed radial index of
zero. Because published reports concerning QKDwith use of
spatially structured photons [3], [12], [14], [15] have widely
considered the cases of employing LG modes with a fixed
radial index of zero to construct the standard basis, we only
deal with, in this paper, the standard bases comprising LG
modes described by (3) and (9).

III. QUANTIFICATION OF TURBULENCE-INDUCED
MUTUAL-UNBIASEDNESS DECAY OF STANDARD
AND HADAMARD BASES
To quantify the turbulence-caused decay of mutual unbiased-
ness of the standard and Hadamard bases, in this section
we examine the mutual information between the sent and
detected photonic states, given by

IHS=
d−1∑
n=0

[
PH ,n

d−1∑
m=0

(
Pm|n log2 Pm|n

)]
−

d−1∑
m=0

(
PS,m log2 PS,m

)
,

(24)

where PH ,n denotes the probability of sending a photon in
the state |ψn〉, Pm|n represents the conditional probability of
detecting a photon in the state |φm〉 given a sent photon in the
state |ψn〉, and

PS,m =
d−1∑
n=0

Pm|nPH ,n. (25)

It is known that turbulence-induced random scattering may
transform propagated photons out of the spatial-mode mea-
surement basis, resulting in a null event in the detection
output, which causes

∑d−1
m=0 p̄m|n < 1. In QKD applications,

time frames with the said null event are eliminated in the
procedure of basis reconciliation. For this reason, below we
let

Pm|n = pm|n
/ d−1∑

m′=0

pm′|n. (26)

To facilitate the subsequent analysis, we suppose a uniform
probability for sending d states of the Hadamard basis, i.e.,
PH ,n ≡ 1/d . It is evident that IHS = 0 in the absence of
turbulence. Themagnitude of IHS quantitatively characterizes
the degree of mutual-unbiasedness decay of the standard and
Hadamard bases.
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FIGURE 4. IHS in terms of r0/wL with various ζe, where L = 5 km, w0 = 5
cm, and k = 2π/λ with λ = 800 nm; S1 and S2 in the legend denote
different standard bases. (a) S1 = {LG0

0, LG3
0} and S2 = {LG−2

0 , LG2
0};

(b) S1 = {LG0
0, LG1

0, LG3
0} and S2 = {LG−3

0 , LG0
0, LG3

0}; (c) S1 = {LG0
0, LG1

0,
LG2

0, LG3
0} and S2 = {LG−4

0 , LG−1
0 , LG1

0, LG4
0}.

We note that the mutual information has been treated in
the existing literature (see, e.g., [10], [23]) for understand-
ing the channel capacity of OAM-photon-based communi-
cations. However, it should be emphasized that the mutual
information given by (24) is different from that dealt with
by [10], [23]; specifically, (24) is used to calculate the mutual
information for the cases where photons initially prepared in
the Hadamard basis are eventually measured in the standard
basis, whereas the authors of [10], [23] did not consider this
kind of preparation and measurement of photons.

Fig. 4 illustrates the variation behavior of IHS under differ-
ent conditions. Examination of Fig. 4 reveals that the degree
of mutual-unbiasedness decay has dependence on the scaled
atmospheric coherence width r0/wL , effective anisotropy fac-
tor ζe and the specific LG modes chosen for a standard basis,
and can become non-negligible under certain conditions,
in which IHS may grow larger than 0.1 bits per photon. It is
seen from Fig. 4(a) that IHS ≡ 0 for the case of the standard
basis {LG−20 , LG2

0}. The underlying reason for this fact is
that 3(0)

n (rd ) ≡ 3(1)
n (rd ) for a two-dimensional standard

basis {LG−l0 ,LGl
0} with any nonzero integer l. For a given

standard basis, when r0 is small enough, viz., the peak of
the term exp[−Dϕ(rd )/2], centered at rd = 0, is so sharp
that 3(m)

n (rd ) does not change appreciably within the region
where exp[−Dϕ(rd )/2] takes on a nontrivial value, it follows
that

pm|n ∼
1
d
3(m)
n (0)

∫∫
∞

−∞

exp
[
−Dϕ (rd )/2

]
d2rd . (27)

As a result, when r0 is small enough,

Pm|n ∼ 3(m)
n (0)/

d−1∑
m′=0

3
(m′)
n (0), (28)

regardless of the turbulence parameters. This is the funda-
mental reason why two curves related to the same standard

basis in Fig. 4 gradually merge together and approach a
specific value when r0/wL decreases below a small enough
level. Although, as can be seen in Fig. 4, the asymptotic values
of IHS with r0/wL tending to zero under many conditions are
nonzero, it is apparent that IHS necessarily approaches zero
when r0/wL tends to infinity, i.e., the turbulence vanishes.
It is seen from Fig. 4 that the curves except those associated
with S2 in the subplot (a) and S1 in the subplot (c) have a
noticeable peak within the range [0.3, 2] of r0/wL ; hence,
the degree of mutual-unbiasedness decay does not necessar-
ily enlarge monotonically with increasing turbulence-caused
phase distortion. Additionally, one finds from Fig. 4 that ζe
has a complicated impact on IHS and whether increasing ζe
enlarges the degree of mutual-unbiasedness decay depends
largely on the specific value of r0/wL .

As a final comment, because we have considered hitherto
only the cases where photons are initially prepared in the
Hadamard basis and eventually measured in the standard one,
it is unclear whether our previous formulae are applicable
to those cases where photons are initially prepared in the
standard basis and eventually measured in the Hadamard one.
In what follows, we briefly address this issue. Similar to
the preceding treatment, the coordinate-space wave function
at the receiving plane for a photon initially prepared in the
standard basis in the presence of turbulence-caused distortion
can be expressed by

φ
(L)
m, tur (r) = φ

(L)
m (r) exp[iϕ(r,L)], (29)

where the subscriptm ∈ {0, 1, · · · , d−1} denotes the standard
basis index. Following a procedure analogous to that used
to derive (10), the average probability of finding the photon
in the state |ψn〉 (the Hadamard basis index n ∈ {0, 1, · · · ,
d−1}) can be developed to give

pn|m =
1
d

d−1∑
s1=0

d−1∑
s2=0

exp
[
i
2πn (s1−s2)

d

] ∫
∞

−∞

d2r1

×

∫∫
∞

−∞

d2r2U (m)
s1 (r1)U (m)∗

s2 (r2)M (r2, r1) . (30)

The only difference between (10) and (30) exists in the term
M (·); more specifically, (10) containsM (r1, r2), whereas (30)
involvesM (r2, r1). Nevertheless, it is noted thatM (r1, r2) is
actually equal to M (r2, r1) due to the mathematical forms
shown by (12) and (13). Hence, it is evident that p̄m|n ≡ p̄n|m
for ∀m, n ∈ {0, 1, · · · , d − 1}. With this in mind, we can
infer that our previous results can certainly be applied to the
cases where the standard and Hadamard bases are used as the
preparation and measurement bases, respectively.

IV. CONCLUSION
In this paper, by focusing on free-space QKDwith use of spa-
tially structured photons and taking the turbulence-induced
distortion into account, the average probability of detecting a
photon initially prepared in a given basis and eventually mea-
sured in its complementary basis is formulated analytically;
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it is simply an integration of the superposed JTLGM corre-
lation function weighted by the factor exp[−Dϕ(rd )/2] for
two complementary bases relevant to photonic OAM-mode
states. Based on the obtained formulations, the decay of the
mutual unbiasedness of two complementary bases relevant
to photonic OAM-mode states propagating in atmospheric
turbulence has been analyzed theoretically, and the degree
of mutual-unbiasedness decay has been quantified by using
the mutual information between the sent and detected pho-
tonic states as a metric. It was found that the scaled atmo-
spheric coherence width, effective turbulence-anisotropy fac-
tor and specific contents of the bases play a crucial role in
determining the degree of mutual-unbiasedness decay, which
may become non-negligible under certain conditions. Our
results are useful for examining the security aspect of QKD
with spatially structured photons operated in atmospheric
free-space optical channels.
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