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ABSTRACT Multiaccess edge computing and caching (MEC) is regarded as one of the key technologies
of fifth-generation (5G) radio access networks. By bringing computing and storage resources closer to
the end users, MEC could help to reduce network congestion and improve user experience. However,
deploying many distributed MEC servers at the edge of wireless networks is challenging not only in terms of
managing resource allocation and distribution but also in regard to reducing network energy consumption.
Here, we focus on the latter by assessing the network energy consumption of different cache updating and
replacement algorithms. First, we introduce our proposed proactive caching (PC) algorithm for mobile edge
caching with Zipf request patterns, which could potentially improve the cache hit rates compared to other
caching algorithms such as least recently used, least frequently used, and popularity-based caching. Then,
we present the energy assessment models for mobile edge caching by breaking down the total network
energy consumption into transmission and storage energy consumption. Finally, we perform a comprehensive
simulation to assess the energy consumption of the PC algorithm under different key factors and compare
with that of conventional algorithms. The simulation results show that improving cache hit rates by using
the PC algorithm comes at the expense of additional energy consumption for network transmission.

INDEX TERMS Wireless edge caching, energy consumption, 5G, multiaccess edge computing, proactive
caching.

I. INTRODUCTION
Emerging technologies (e.g., virtual reality, augmented real-
ity, three-dimensional (3D) videos/games, and autonomous
driving) require high bandwidth and extremely low latency
to guarantee quality-of-service (QoS), high user quality
of experience (QoE) [1], [2] and safety. The emergence
of these applications has required rapid development of
fifth-generation (5G) wireless networks. It is expected that
5G precommercial data terminals, smartphones, and other
products will be released in the first half of 2019. By 2020,
telecom operators are expected to realize large-scale deploy-
ments of 5G base stations [3].

In the logical architecture of 5G access networks, the base-
band functionality of a cellular base station (BS) will be

The associate editor coordinating the review of this manuscript and
approving it for publication was Ilsun You.

divided into two parts—a centralized unit (CU) and a dis-
tributed unit (DU) [3], [4]. The DU can be deployed in a
macro or a small cell BS such as the micro, pico or fem-
tocell [3], [4]. This two-level network architecture allows
different deployment scenarios of multiaccess edge comput-
ing and caching (MEC) servers. For example, the MEC data
servers can be deployed in a CU or a DU depending on the
requirements of services and applications as well as usage
patterns of local users [5]. Distributed caches are deployed
very close to the end users, services and content items are
delivered from the wireless edge caches instead of going
through the backbone network to provide high bandwidth
and low latency performance to the end users [6]. Although
the power consumption of a single edge server is relatively
low, a very large number of MEC servers is expected to be
deployed in 5G networks. Therefore, the energy consumption
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of maintaining these caches at the edge of the wireless net-
works is challenging for mobile operators and has yet to be
fully investigated [7], [8].

Because edge storage capacity is relatively small compared
to a cloud data center, only a limited number of content
items can be cached in the wireless edge caches. Thus,
the most popular content items need to be identified and
stored in the MEC servers to improve content request hit
rates [5], [9]. Existing research shows that the popularity
of web content varies by time and geography [10], [11],
which requires high-frequency refreshing of cached content
according to an update and replacement algorithm. However,
the refresh rate and the size of the replacement content items
require additional transmission energy to be consumed by the
network [12]. Therefore, the design of an effective caching
algorithm to minimize the transmission energy consump-
tion while maximizing the cache hit rates remains an open
research question.

To address the above challenges, we first propose a proac-
tive cache updating algorithm for MEC based on a 5G net-
work architecture using big data analysis in our previous
work [13]. To reveal the performance of different algorithms,
we simulate the MEC network architecture and calculate
the cache hit rate and the number of cache content items
in different simulation scenarios by extending our previous
work. We then assess the transmission and storage energy
consumption of edge caching under different configurations.
We make the following contributions to the literature:
• We investigate the performance of different caching
algorithms by analyzing the cache hit rate and the num-
ber of cache content items that need to be transported in
different simulation scenarios.

• We investigate energy consumption of edge caching
under different configurations such as different content
refresh periods and cache size limitations.

• We compare the transmission and storage energy con-
sumption of the conventional algorithms with that of the
proposed algorithm.

The rest of the paper is organized as follows. Section II
discusses relatedwork on the energy consumption of different
networks and caching strategies. In Section III, we present
the CU/DU logical architecture and MEC server deployment
scheme in 5G wireless networks. Section IV first introduces
the conventional content update strategies. We then propose
a proactive cache update and replacement algorithm based
on big data prediction. In Section V, we first compare the
performance of PC to conventional algorithms in different
simulation scenarios. We then simulate the energy consump-
tion of network transmission and storage of caches of our
proposed caching algorithm. Finally, we compare the energy
consumption of the proposed algorithm with that of conven-
tional algorithms. Section VI concludes the paper.

II. RELATED WORK
Despite significant research on resource allocation and dis-
tribution of edge caching, a deeper understanding of what

constitutes an effective and energy-efficient design of edge
caching strategies is necessary. In [7], [8], the authors offered
energy-optimal edge content cache and dissemination designs
for both hot spot and rural areas, respectively. Due to dif-
ferent types of base stations that were deployed in differ-
ent areas with different population densities, different edge
caching strategies were designed to minimize the overall
energy consumption. In [12], the authors considered that
content data can be stored in both base stations and user
devices and analyzed the energy consumption in both back-
haul and access networks under two different caching strate-
gies. Two optimization problems were proposed to minimize
the total energy consumption for these two caching strategies
while satisfying some predefined QoS constraints. To min-
imize the energy consumption of the MEC servers in 5G
cellular networks, the authors in [14] considered the MEC
servers’ energy consumption, backhaul network capacities
and content popularity distributions, and formulated a joint
optimization framework under a given average download
latency. Simulation results showed that the proposed solution
could obtain better performance in terms of energy efficiency
gains compared to conventional caching placement strategies.
The authors in [15] minimized the energy consumption of a
clustered device-to-device caching network under a random
probabilistic caching scheme, where files were independently
cached according to a specific probability distribution.

Another strand of research has investigated the cache
performance of the optimized web caching strategies
compared with the conventional nonpredictive methods
such as least recently used (LRU), least frequently used
(LFU) [16], [17] and popularity-based caching [18]. Simu-
lation results showed that the hit rate of predictive content
update strategies increased under different content request
patterns [17]. Although 5G technology can provide high
bandwidth for high-quality mobile video streaming, mobile
users have to address the challenge of frequent handoffs
between the 5G small cells. Some research proposed proac-
tive content caching at the access edge to effectively main-
tain high-quality mobile video streaming for high-mobility
5G users moving among small cells [19], [20]. In [21],
an integrated proactive content delivery schemewas proposed
by exploiting both the availability of multiple service tiers
and mobile user behavior prediction. The performance of
the proposed scheme was then investigated to reveal the
impacts of proactive window size, service-tier price ratio and
traffic cost. For device-to-device (D2D) enabled networks,
the authors of [22] proposed a proactive caching scheme.
Their numerical results showed that up to 30% more users
could be satisfied using this scheme compared to reactive
caching [22]. In addition, the authors of [23] proposed a fog-
to-fog data caching and selection method based on a data
caching and selection strategy. The corresponding simula-
tion results showed that this method could reduce the data
retrieval latency and increase the file hit rate in 5G [23].
However, the effectiveness of different cache content updat-
ing algorithms to reduce the energy consumption in 5G

VOLUME 7, 2019 104395



M. Yan et al.: Assessing the Energy Consumption of Proactive Mobile Edge Caching in Wireless Networks

edge caching networks still requires more comprehensive
assessments.

In our prior work, we investigated the energy assessment
models of wireless access networks [24] and end-to-end
wireless networks [25]. We proposed an energy model and
assessed the access network energy consumed by different
mobile services based on both the data and signaling traf-
fic generated by those services [24]. We also developed a
comprehensive service-specific end-to-end energy model to
assess the energy consumption of each network segment,
including the end-user devices, wireless access network,
wireline core network and data center [25]. Here, we inves-
tigate the edge cache deployment scheme for 5G network
architectures and extend these energy models to assess the
energy consumption of 5G wireless edge caching with differ-
ent cache content updating strategies.

III. CU/DU LOGICAL ARCHITECTURE AND MEC SERVER
DEPLOYMENT SCHEME IN 5G
In 5G access networks, a CU/DU split is proposed to enable
and enhance the cloud radio access network technology via
several split options (3GPP TR 38.801). This split archi-
tecture provides centralization and distribution of control
and capabilities depending on each situation of wireless net-
works [26]. For a CU/DU structure, a stack partition between
the CU and the DU can also be optimally configured via big
data analytics based on service patterns, fronthaul capability,
frequency bands, user mobility, quality of experience [27].

Different from the fourth generation (4G) radio access
architecture, the CU, DU and radio remote unit (RRU) form
a gNodeB (gNB) BS, as shown in Figure 1. The 5G gNB is
connected to the content delivery network (CDN) server or

FIGURE 1. 5G radio access network architecture and MEC server
deployment scheme.

the data center through the network elements (e.g., routers
and gateways.) in the core network. The CU is a centralized
node, and it is connected with the DUs via a next-generation
fronthaul interface (NGFI) [3]. The DU is connected to the
RRUs via an NGFI. It can implement RF processing and
baseband processing functionalities together with the RRU.
A range of user equipment (UE) (e.g., smartphones, tablets,
and enhanced mobile broadband devices) access the 5G net-
work through these RRUs [26]. Using this architecture, a CU
can support multiple DUs. Most of the control functionalities
are centralized at the CU, while the fast scheduling of the air
interface is performed at the DU [4], [6].

The advantages of the CU/DU two-level architecture are
summarized below:
• The hardware is more flexible than in existing wireless
networks. The CU/DU can be a stand-alone device or
integrated into a baseband unit (BBU) as a software
module;

• The separation of CU and DU facilitates the coordi-
nation of performance and load management as well
as real-time performance optimization. Network func-
tion virtualization (NFV) and software-defined network-
ing SDN) are key technologies that make use of this
architecture;

• Functional partitioning is configurable to meet the needs
of different application scenarios, such as the variability
of transmission delay [4].

The MEC servers can be flexibly configured through tech-
nologies such as SDN and NFV. As shown in Figure 1,
the MEC server can be deployed at the CU level to serve
all DUs connected to this particular CU. Users connected to
these DUs can access the resources provided by this MEC
server deployed at the CU. Alternatively, the MEC server can
also be deployed in theDU.With this solution, eachDUunder
a CU can have its storage scheme, and big data analysis can
be used to provide personalized access services for different
users connected to different DUs.

IV. CONTENT UPDATE STRATEGY OF EDGE CACHING
With the large number ofMEC servers to be deployed inwire-
less networks, due to operational costs, the overall storage
capacity of MEC servers will be lower than that of traditional
data centers. Therefore, it is impractical to replicate all con-
tent items from the data center on the MEC servers. It is well
known that the popularity of network video content follows
the Zipf distribution (i.e., a relatively small number of the top
popular video content items dominate most of the requests
within a certain period of time [15]). Therefore, predictive
analytics can be used to cache the most popular video content
items in the next time period on the corresponding MEC
servers to satisfy user requests (i.e., hit rate).

In practice, updating can be challenging as web content
popularity is expected to change over time. Furthermore, each
video content item has its life cycle: (1) growing in popularity,
(2) reaching a peak, (3) declining in popularity and finally
(4) reaching a low-level long-term equilibrium (i.e., long-tail
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reduction in user requests). In addition, due to the hetero-
geneity of daily mobility patterns of users, the content request
preferences in different regions also change throughout each
day. To guarantee the requested hit rate of the cached contents
and users’ QoE, the cached content items need to be updated
periodically. Different updating algorithms have their advan-
tages and disadvantages. Theoretically, if the updating fre-
quency is higher, the content request hit rate will be higher.
However, a higher updating frequency will result in addi-
tional transmission overheadwith a corresponding increase in
energy consumption. Therefore, designing an effective cache
updating algorithm and balancing the updating frequency
and the corresponding network energy costs remains a major
challenge.

Next, we evaluate the most common caching algorithms,
i.e., LRU and LFU, before introducing our PC caching
algorithm.

A. LEAST RECENTLY USED (LRU) ALGORITHM
The LRU algorithm assumes that the currently requested
content is very likely to be requested in the next time period.
Videos are first sorted according to the chronological order
in which they have been requested in the previous period of
time t . Top content items are cached based on the size of
the cache. In the next time period t1, if any new videos are
requested, the new videos will replace those at the end of the
queue [16].

The advantage of LRU is that the algorithm is simple and
has high efficiency when the access content does not change
much. The shortcoming of LRU is that it is vulnerable to ran-
dom access noise, that is, the random access of the unpopular
content items is mistaken for a large cache value, resulting in
additional data transmission and storage overhead [16].

B. LEAST FREQUENTLY USED (LFU) ALGORITHM
The LFU algorithm eliminates data based on the historical
request frequency of the data. It assumes that if the content
item has been requested multiple times in the past, it will be
requested more frequently in the future [16]. In LFU, each
video content has a request count, all content items are sorted
by their request counts, and content items with the same
reference count are sorted by time.

In general, the efficiency of the LFU algorithm is better
than LRU, and LFU can avoid the problem that the cache hit
rate is reduced due to periodic or sporadic operations. How-
ever, the LFU algorithm needs to record historical request
records of data. Once the data request mode changes, LFU
needs a longer time to apply the new request mode. The
disadvantage of the LFU algorithm is that historical data have
a greater impact on future data; that is, old content that is
no longer requested may accumulate a high frequency of
request. In addition, a queue is required to record the request
records of all content items. Each content needs to maintain
a request count, so the algorithm’s complexity is higher than
for LRU [16].

C. POPULARITY-BASED CACHING ALGORITHM
In a content-centric networking architecture, the content is
cached in the network nodes along its delivery path if caches
are available. To manage the caches of the nodes effectively,
the popularity-based caching strategy has been proposed to
achieve a higher cache hit rate than the default caching
strategy [18].

For popularity-based caching, the number of requests for
each content item is counted by every node. Then, each node
sorts the content items based on local statistics and caches
the most popular content items. At the same time, the node
notifies its neighbors to store the same content items. After
receiving the notification message, the neighboring nodes
determinewhether to cache the content according to their own
caching capabilities and constraints [18].

D. PROACTIVE CACHING (PC) ALGORITHM
To address the technical shortcomings of LRU and LFU,
i.e., both algorithms cannot predict the request rate of new
online content items, and they cannot track the rapid changes
in content popularity, we propose a proactive cache (PC)
updating and replacing algorithm based on a prediction from
big data analytics.When the user behavior of content requests
differs greatly, the PC algorithm considers the prediction
based on historical request behavior to maximize the content
request hit rate while minimizing the cache size requirements.
In other words, PC is proposed to effectively improve the
cache efficiency and minimize the network operating costs.
All symbols and parameters used in the PC algorithm are
described in Table 1.

TABLE 1. Description of symbols and parameters.

As shown in Figure 2, based on the long-term historical
data of user and content requests from the previous time peri-
ods, existing data mining algorithms can effectively predict
the content items that are most likely to be requested during
some future time period [28], [29]. However, two problems
may arise. First, too many content items might be replaced
when the prediction results are directly used to update the
cache content. Second, the cache’s efficiency relies heavily
on the accuracy of the prediction. To address these problems,
our PC algorithm determines the prioritization of the content
items in the caching queue for the next time period based
on the prediction results for future time windows and the
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FIGURE 2. A schematic of the PC algorithm.

corresponding weighting factors. Hence, the PC algorithm
replaces some expired or lowly requested content items with
predicted content items that are expected to have high hit
rates. Therefore, the PC algorithm mainly determines the
priority and discards based on the order of the new content
items that are expected to be requested in the next time period
and the existing content items in the caching queue.

Table 1 denotes the cache refresh period by R. R can by
optimized by mobile operators by changing the duration of
the parameter (e.g., 15minutes or longer). For example, R can
be varied depending on network load requirements, e.g., find-
ing a time window with low network load for transportation
of content items so that it will not disrupt users’ traffic. If the
number of sliding time windows is 4, then the four time win-
dows are {t→ t+R, t+R→ t+ 2R, t+ 2R→ t+ 3R, t+ 3R
→ t + 4R}. We then assume that the weighting factors of the
list of content items to be requested in different time windows
are W1 ∼ W4. Generally, the corresponding weight factor of
a closer time window will be greater due to different caching
values. The weighting factors can be updated with the objec-
tive of reducing content transportation (therefore reducing
transport energy consumption) while at the same maximizing
the hit rates of caches. In our simulation, we set W1 ∼ W4
to 1, 0.75, 0.5, and 0.25. However, it should be noted that
the weight factors are dependent on the length of the time
window, the similarity of user content request patterns, cache
size and network conditions. The dependency of the weight
factor on those factors mentioned above will be investigated
in future work. The content items in the current cache list
and the content items predicted to be requested in different
time windows are combined to calculate the total weight of
all content items, and the content items are rearranged in

descending order relative to the total weight to obtain the new
list. The PC algorithm is shown in Algorithm 1.

Algorithm 1 PC Algorithm
Input:
List of contents in current cache, C : {S1, S2, . . . , Sm};
Content refresh rate,R (15minutes, 30minutes, etc.); Time
windows, {t → t + R, t + R→ t + 2R, t + 2R→ t + 3R,
t + 3R→ t + 4R};
Weighting factors, W1 ∼ W4.
Output:
List of content items in the cache for the next time win-
dow, C ′.
1: Predict the probability of each content item being

requested in the next 4 time windows, and obtain four
lists of scores C1 ∼ C4 (Cj: {Sj1, Sj2, . . . , Sjn});

2: for (j = 1; j <= 4; j++)
3 for (i = 1; i <= n, i++)
4 Si+ = Sji∗Wj;
5: Sort content list in descending order relative to the

total content weight, S1 ∼ Sn;
6: Determine the list of content items with topm scores,

C ′, for the next time window, t → t + R
7: Discard contents that are in the cache list C but not

in the list C ′;
8: Transport the new contents in the list C ′;
9: At time t + R, shift the four time windows by R, and

repeat 1 to 6 for the next C ′.

V. SIMULATION OF PERFORMANCE AND ENERGY
CONSUMPTION OF EDGE CACHING
A. SIMULATION SETUP
We simulate the mobility patterns of 2,500 users on an 8 ×
8, 64-cell playground (intercell-distance of 500 m) using the
smoothly truncated Levy walks algorithm [30] with an aver-
age user movement speed of 20 km/h (which indicates that
users are commuting). The algorithm simulates the mobil-
ity pattern of individual mobile users within the environ-
ment using preset probability distributions for travel distance,
pause length, and change in travel direction [30]. Content
requests from mobile users are modeled based on Poisson
arrivals.

Related research has shown that the number of requests for
web content follows Zipf’s distribution [10], [15].We assume
that the maximum number of video contents that can be
stored per edge cache isM and that the total number of video
contents is Nf . All video content items are sorted according
to popularity, from high to low, then the probability P(i) of
each content is subject to Zipf’s distribution as follows:

P (i) =
i−α

Nf∑
k=1

k−α
(1)

104398 VOLUME 7, 2019



M. Yan et al.: Assessing the Energy Consumption of Proactive Mobile Edge Caching in Wireless Networks

where α indicates the similarity in content requests of differ-
ent users. A smaller α indicates lower similarity. For example,
if α = 0, the probability that each video content is requested
has a uniform distribution. As α increases, different users’
requests have a higher similarity. In other words, the lower
indexed content has a higher request probability [10]. We use
Zipf’s distribution to model the popularity of video content
items in our simulation, and wemodel two different scenarios
in terms of user similarity: low and high similarity, by setting
α to 0.4 and 1.2, respectively.
We assume that the size of the video content pool

is 500,000, the average size of each video content, Sf ,
is 15 Mbytes (approximately 1 minute of high definition
video on YouTube) and the edge cache constraint is limited to
20% of the size of all contents. In other words, an edge cache
can store up to the top 20% of the top popular contents.

The updating of stored content causes new content items to
be transferred from the CDN server to the edge caches. The
energy consumption of transmission of content items can be
calculated using the following equation:

Etransport = (NcEc + NeEe + Ebng + Esw)× St (2)

where Nc and Ne are the numbers of core and edge routers
in the core network and edge network, Ec, Ee, Ebng, and Esw
denote the energy per bit of the core router, the edge router,
the broadband network gateway (BNG), and the Ethernet
switch, respectively. St indicates the data size of the content
item needing to be transported [25]. Table 2 lists the estimated
energy per bit of different types of equipment in the wireline
core network [31].

TABLE 2. Energy per bit of equipment in the wireline core network.

Next, we assume that the power consumption per bit of
caching in the MEC server, Pcaching, is 6.25 × 10−12 W/bit.
We then calculate the energy consumption for caching one
content item for a certain period of time (for example, 1 hour)
as below:

Ecaching = Pcaching × Sf × T (3)

where T is the caching duration. A summary of simulation
parameters and assumptions is provided in Table 3.

B. PERFORMANCE OF PROACTIVE CACHING WHEN
CACHING AT THE DUs
The number of active users connected to a wireless network
varies at different times of the day. For instance, the busy
hours refer to the hours with more active users and compara-
tively high traffic. In this simulation, we assume serving user
demands during medium traffic loads with approximately

TABLE 3. Simulation parameters and assumptions.

1,250 users (out of 2,500) being simultaneously active. Fig-
ure 3 shows the average cache hit rates of PC with differ-
ent refresh periods compared to the conventional caching
algorithms. We then analyze the impact of cache size on
performance by varying its size. We find that when the cache
capacity reaches 1,000, the average hit rate of the PC algo-
rithm is close to 100%, so the maximum cache size in our
simulation is set to 1,500. In addition, different user behavior
similarities can also have an impact on performance. Here,
we simulate low similarity in content requests (α = 0.4) as
shown in Figure 3(a) and high similarity in content requests
(α = 1.2) as shown in Figure 3(b).

Figure 3(a) shows that the average cache hit rates
of LRU/LFU and the popularity-based caching are very
low (approximately 1% for LRU/LFU and 3% for the
popularity-based caching) even if the cache size reaches
the maximum of 1,500 because when the similarity in user
behavior is relatively low, the users’ requests are relatively
scattered. The caching strategies of LRU and LFU are not
based on the prediction of user behavior, so they cannot
effectively satisfy the requests of most users. Figure 3(a)
also shows that PC algorithm improves the cache hit rate
significantly compared to LRU, LFU, and popularity-based
caching, which is because PC utilizes predictive analytics on
user content requests and can precache popular video content
at DU caches. Furthermore, as the refresh period R increases,
the cache hit rate of the PC will decrease, especially when the
cache size is small. For example, if a DU caches 100 video
contents, the cache hit rate of PC is 48% when R = 15
minutes, and it decreases to 31% when R = 1 hour because
a higher refresh rate enables timely prediction and update of
cached content items to better meet user requests. However,
comparing Figures 3(a) and 3(b), we observe that the average
cache hit rates increase significantly as the user similarity in
content requests increases, especially for LRU/LFU and the
popularity-based caching.

Figure 4 shows the number of content items, which
need to be transported from CDN servers to DUs caches
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FIGURE 3. Cache hit rate vs. cache size when caching at DU with different similarity in content requests.

FIGURE 4. Number of content items to be transported vs. different cache sizes when caching at DU with different similarity in content requests.

when adopting different caching algorithms. In general,
the PC algorithm needs to transport more content items than
LRU/LFU and the popularity-based caching due to the use
of a proactive refresh method. Moreover, more content items
need to be transported as the refresh period is short and, the
number of content items that need to be transported for all
algorithms decreases as the cache size increases because an
increase in cache size allows more content items to be stored,
and hence, reduces the requirement of transporting contents
from the CDN server. Comparing Figures 4(a) and 4(b),
we observe that the number of content items that need to be
transported decreases dramatically as the similarity in user
content requests increases because the greater similarity in
user behavior reduces the additional transport requirements
of new content items.

By observing the results shown in Figures 3 and 4, our
proposed PC algorithm outperforms LRU, LFU, and the
popularity-based caching in terms of cache hit rate. However,

this comes at the cost of transporting additional video content
items.

C. PERFORMANCE OF PROACTIVE CACHING WHEN
CACHING AT THE CUs
In 5G access networks, the CUs are deployed at a rela-
tively higher network hierarchical level than DUs. In general,
the CU’s cache capacity is much larger than that of the DU,
and one CU can provide service for more users than one
DU. In the simulation, we assume that a CU can support five
DUs. Figure 5 shows the average cache hit rates of different
algorithms with different cache sizes of a CU. We find that
when the cache capacity of a CU reaches 6,000, the average
hit rate of the PC algorithm is close to 100%, so the maximum
cache size in our simulation is set to 6,000.

Similar to Figure 3(a), Figure 5(a) shows that the average
cache hit rates of LRU, LFU, and popularity-based caching
are very low (i.e., from less than 1% when the cache size is
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FIGURE 5. Cache hit rate vs. different cache sizes when caching at CU with different similarities in content requests.

100 to approximately 13.8% when the cache size increases
to 6,000.) with low similarity in content requests (α = 0.4).
Due to the use of predictive analytics on user content requests,
Figure 5(a) also shows that the PC algorithm improves the
cache hit rate significantly compared to LRU, LFU and the
popularity-based caching. Furthermore, the cache hit rate of
PC decreases as the refresh period R increases. Additionally,
by comparing Figures 5(a) and 5(b), we can see that the
average cache hit rates increase significantly as the user
similarity in content requests increases, especially for the
conventional methods. As the cache size grows, the hit rate
of the PC algorithm is more likely to reach 100% when the
user similarity is high (α = 1.2). Moreover, as the similarity
in content requests increases, the performance gap between
conventional algorithms and PC algorithms is significantly
reduced.

Figure 6 shows the number of content items that need to
be transported from CDN servers to the CU caches. Similar
to Figure 4, the PC algorithm needs to transport more content
items than the conventional algorithms due to the use of a
proactive refresh method. As the refresh period of the PC
algorithm increases, the number of content items that need
to be transported decreases dramatically. The number of con-
tent items that need to be transported using all three algo-
rithms also decreases as the cache size increases. Comparing
Figure 6(a) and 6(b), we can also see that the number of con-
tent items that need to be transported decreases dramatically
as the similarity in user content requests increases.

D. ENERGY CONSUMPTION OF CACHING AT THE DUs
If we deploy the edge caches at the DUs, the power consump-
tion consists of two parts: the network transmission energy
consumed by transmitting the content items that need to be
updated from the CDN server to the caches, and the cache
energy consumption of storing different numbers of video
content items. We simulate the energy consumption using

these cache updating algorithms, i.e., LRU, LFU, popularity-
based caching and PC.Wemodel the PC algorithm with three
refresh cycles, by setting R to 15 minutes, 30 minutes, and
1 hour. The simulation results are shown in Figure 7.

As shown in Figure 7(a), when user similarity is low, the
conventional algorithms such as LRU, LFU, and popularity-
based caching cannot achieve a 100% user request hit rate
even when storing up to 1,500 content items. The PC algo-
rithm uses the proactive refresh technique, which can achieve
a 100% hit rate when the cache usage is small. For example,
if the refresh period R is set to 15 minutes, the hit rate can
reach 100% when the number of cached content items is
greater than or equal to 500. However, the extra cost is that
more video content items need to be updated and transferred,
which consumes more network transmission power.

In addition, when the PC algorithm is adopted, as the
number of stored content items increases, the storage energy
consumption increases linearly, but the transmission energy
consumption decreases. Therefore, in the actual network
deployment, the trade-off between cache energy consumption
and the transport energy should be considered. Furthermore,
as the refresh period R increases, more content items need
to be stored in the DU caches to achieve a higher hit rate.
For example, when R is 30 minutes, 1,000 content items
need to be stored to achieve a 100% hit rate. In contrast,
when R is 15 minutes, only 500 content items need to be
stored. Moreover, as R increases, the transmission energy
consumption decreases, thus the trade-off betweenR and total
energy consumption needs to be jointly considered.

Comparing Figures 7(a) and 7(b), it can be seen that when
the similarity in content requests increases, the transmission
energy consumptions of all algorithms decreases, which is
because the number of requests for popular content items
increases significantly compared to the low similarity sce-
nario, and hence, fewer content items need to be updated
in each cache refresh cycle. Moreover, fewer content items
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FIGURE 6. Number of content items to be transported vs. different cache sizes when caching at CU with different similarities in content
requests.

FIGURE 7. Comparison of network energy consumption when caching at
DU with different similarities in video content item requests. (Note:
Numbers (%) above the bars indicate the average hit rate.)

need to be stored on the DU to achieve a 100% hit rate.
For example, when using the PC algorithm and setting R
to 30 minutes, only 300 content items need to be stored
with high similarity in content requests, and this number is
1,000 with low similarity in content requests.

FIGURE 8. Comparison of network energy consumption when caching at
the CU with different levels of similarity in video content items requests.
(Note: Numbers (%) above the bars indicate the average hit rate.)

E. ENERGY CONSUMPTION OF CACHING AT CUs
For edge caches deployed at the CUs, the total power con-
sumption consists of three parts: (i) the transmission energy
consumed by transmitting the content items that need to be
updated from the CDN server to the CUs, (ii) the transmission
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energy consumed by transmitting these content items from
the CUs to the DUs, and (iii) the cache energy consumption
of storing different numbers of video content items. The
simulation results are shown in Figure 8. We observe that
the PC algorithm, in theory, can relatively easily achieve a
100% hit rate but at the cost of higher transmission energy
consumption compared to conventional algorithms such as
the LRU and LFU.

Since the storage capacity of the CU is higher than that of
the DU, when the user similarity is relatively high, the trans-
mission energy from the CDN server to the CU is very small.
Particularly, when the number of stored video content items
is relatively large, the cache storage energy consumption is
almost negligible compared to the transmission energy from
the CU to DU.

In addition, by comparing Figures 7 and 8, caching at the
CUs generally consumes less energy than caching at the DUs
because each DU uses the same update and storage algorithm,
which results in the same content items being stored in multi-
ple DUs. However, this causes additional transfers of content
items from the CDN server to the DUs, which consumesmore
storage and transmission power.

VI. CONCLUSION
The flexibility of the 5G network architecture has pro-
vided a platform for the deployment of MEC infrastructure.
By deploying a large number of MEC servers, network con-
tent items can be cached in advance at the wireless edge to
provide users with an ultimate QoE, extremely low latency
and high bandwidth performance. However, due to limited
storage capacity of edge caches, only top popular content
items can be selected for storage to satisfy the QoS of mobile
users. In addition, due to the differences in user similarity, the
performance of the conventional cache updating algorithms,
such as the LRU, LFU and the popularity-based caching, can-
not meet the dynamic real-time changes of user requirements.
In this paper, we introduce a predictive caching algorithm
that utilizes big data analytics to predict user content requests
and determine what content items need to be cached where
in the network to achieve a better QoE. However, the cost of
adopting this new algorithm is that more content items need
to be updated and transferred, which consumes more network
transmission energy. We performed a comprehensive simula-
tion to assess the network transmission and storage energy
consumption of our proposed PC algorithm under different
refresh cycles. The simulation results provide useful insights
for mobile operators to assess the trade-off between cache
energy consumption and transport energy, and the trade-off
between refresh cycles R and the total energy consumption of
MEC. The key findings in this paper will provide a reference
baseline for the energy-efficient deployment of edge caching
in future wireless networks such as 5G and beyond.
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