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ABSTRACT This paper investigates speed regulation of permanent magnet synchronous motor (PMSM)
system based on sliding mode control (SMC). Sliding mode control has been vastly applied for speed control
of PMSM. However, continuous SMC enhancement studies are executed to improve the performance of
conventional SMC in terms of tracking and disturbance rejection properties as well as to reduce chattering
effects. By introducing fractional calculus in the sliding mode manifold, a novel fractional order sliding
mode controller is proposed for the speed loop. The proposed fractional order sliding mode speed controller
is designed with a sliding surface that consists of both fractional differentiation and integration. Stability of
the proposed controller is proved using Lyapunov stability theorem. The simulation and experimental results
show the superiorities of the proposed method in terms of faster convergence, better tracking precision and
better anti-disturbance rejection properties. In addition, chattering effect of this enhanced SMC is smaller
compared to those of conventional SMC. Last but not least, a comprehensive comparison table summarizes
key performance indexes of the proposed controller with respect to conventional integer order controller.

INDEX TERMS Fractional calculus, permanent magnet synchronous motor, sliding mode control, speed
control.

NOMENCLATURE
DC Direct current.
DSP Digital signal processor.
FIR Finite Impulse Response.
FOSMC Fractional order sliding mode controller.
FPGA Field-programmable gate array.
IOSMC Integer order SMC.
PMSM Permanent magnet synchronous motors.
SMC Sliding mode control.
aDr

t Fractional calculus fundamental operator.
r Order of operation of fractional calculus.
∈ Element of.
R Real number.
0 (.) Gamma function.

The associate editor coordinating the review of this manuscript and
approving it for publication was Muhammad Zubair.

PIαDβ Fractional PID.
α Order of fractional integration.
β Order of fractional differentiation.
u∗d ,u

∗
q d, q-axis stator voltage.

i∗d , i
∗
q d, q-axis stator current.

Ld ,Lq d, q-axis stator inductance.
T e Electric torque.
Idf Equivalent d-axis magnetizing current.
Lmd d-axis mutual inductance.
np Pole pair.
ωf Inverter frequency.
ωr Rotor speed.
λd ,λq d, q-axis stator flux linkage.
J Moment of inertia.
Bm Viscous friction coefficient.
TL Load torque.
kp, ki, kd Controller coefficients.
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s(t) Sliding surface.

e(t) Speed tracking error.

R Stator resistance.

I. INTRODUCTION
Fractional calculus has emerged theoretically since 300 years
ago, but only in recent decades has been applied practically
in a wide range of science and engineering disciplines. It is
a generalization of the traditional integer order integration
and differentiation to the non-integer order. Fractional order
term has the property of attenuating old data and storing
new data, hence is more stable or at least as stable as
the integer order counterpart [1], [2]. Fractional calculus
theory is applied mainly in four aspects, namely in plant
or system models, estimators, optimization algorithms and
controllers.

Researchers have grown interest in modeling their sys-
tems/plants using fractional calculus to better interpret com-
plex phenomena, processes and system dynamics. Among
proposed fractional modeling are electrical components and
circuits e.g. inductor [3], supercapacitor [4], [5], memris-
tor [6], fractor [7], [8], oscillator [9], resonator [10] and
filter [11], [12] etc., hydraulic turbine governing system [13],
magnetorheological vibration device [14] and FIR differen-
tiator [15]. Advantages of fractional order modeling against
integer order modeling include improves reliability due to
consideration of non-ideal properties [16], reduces com-
putational complexity when combined with fractional con-
trollers [17], electronic tuning capability [10] and has better
accuracy [14] as well as real-time performance [5]. Apart
from being applied in plant or system modeling, this non-
integer calculus theory is also used for various kinds of
estimator design in a vast area of application e.g. fractional
order compensators [18], [19], fractional order observer [20]
and fractional order sliding mode observer [21]. Inherent
strengths of fractional calculus in terms of long-term mem-
ory, nonlocality and weak singularity makes it preferable
to be applied in optimization problems such as signal and
image processing [22], [23] and complex neural network
training [24].

Last but not least, fractional calculus has also been incor-
porated in controllers design. Extensively, the theory is inte-
grated with classical PID control theory to come out with
fractional PID controllers indicated as PIλDµ [25]–[27],
which recent development, design and tuning methods
are thoroughly reviewed in [28]. Superiorities of PIλDµ

controllers have drawn researchers to consider fractional
calculus to enhance their controllers. Other fractional order
controllers emerged which includes fractional adaptive con-
trollers [29], [30] and fractional order sliding mode con-
trol [21], [31]–[33]. State-of-the-art fractional controls and
their enormous advantages have been reviewed in details
for various kinds of systems such as for time delay sys-
tems [34], for unmanned vehicles [35] and for industrial
automation [36].

FOSMC utilizes fractional calculus in constructing its slid-
ing surface. The extra degree of freedom of integral and
derivative operators can improve the controller’s performance
further compared to traditional IOSMC. FOSMC has proven
its advantages against IOSMC in many areas of applica-
tion e.g. smaller total harmonic distortion, eliminates system
uncertainties and reduces tracking error in active power fil-
ter [37], [38], faster deployment without overshoot and less
chattering in deployment of space tethered system [39] and
faster response, smaller tracking error, disturbance and noise
signals rejection capability and robustness against uncertainty
in nuclear reactors [40].

This paper aims to further investigate the advantage of
incorporating fractional calculus in SMC for controlling
real systems e.g. electrical machines. Implementation of
fractional controllers on electrical machines such as DC
motors, induction generators and permanent magnet lin-
ear synchronous motors have resulted in better transient
response, better convergence properties and lower chattering
than other controllers in comparison [41]–[43]. Permanent
magnet synchronous motors are widely used in low to mid
power application and high performance drives e.g. robotics,
electric vehicles and machine tools. They are preferred over
brush-type motors and gradually replacing induction motors
in various fields of application due to its advantages such
as compact structure, high air-gap flux density, high power
density, high torque to inertia ratio, and high efficiency. How-
ever, PMSM system is nonlinear and consists of time-varying
parameters with high-order complex dynamics [44], [45].
High performance application of PMSM requires its speed
controller to result in fast response, precise tracking, small
overshoot and strong disturbance rejection ability. Linear
control algorithms e.g. PI controllers have been widely used
for speed control of PMSM, but the performances were unsat-
isfactory in terms of tracking ability and robustness [46].
Hence, robust nonlinear control methods have been proposed
and used to enhance speed control performance of PMSM.
These methods include sliding mode control [2], [44]–[48],
predictive control [49], [50], backstepping control [51],
adaptive control [52]–[54], H∞ control [55], automatic dis-
turbance rejection control [56] and artificial intelligence
incorporated controllers [57], [58].

Sliding mode control has been vastly applied for speed
control of PMSM. Various SMC enhancement methods have
been proposed to improve the performance of conventional
SMC in terms of tracking and disturbance rejection properties
as well as to reduce chattering effects. These methods include
sliding surface design modification, reaching law methods,
higher order SMC and composite SMC designs e.g. combina-
tion with artificial intelligence or disturbance compensation,
as summarized in Fig. 1. A thorough review of enhancement
methods in SMC for PMSM control is reviewed in [59].

In this paper, conventional SMC is enhanced by modifying
its sliding manifold design to obtain a fractional order SMC
to control the speed of a PMSM. The proposed FOSMC is
designed with differentiation and integration sliding surface.
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FIGURE 1. Summary of SMC enhancement methods [59].

The effectiveness of the proposed controller for PMSM is
verified using simulation and experimental approach. Its per-
formance is compared against conventional SMC to prove its
superiority.

The rest of the paper is organized in the following man-
ner. Fractional calculus is briefly introduced and defined in
Section II. The proposed fractional order SMC design is
described in Section III. Simulation and experimental results
are presented and analyzed in Section IV. Finally, conclusions
and future works are given in Section V.

II. FRACTIONAL CALCULUS THEORY AND DEFINITION
Fundamental operator of fractional calculus aDrt is defined as
in (1), where a and t are the limits of the operation and r is
the order of operation. r is generally r ∈ R but r could also
be a complex number [60].

aDrt =


d r

dtr
forr > 0,

1 forr = 0,∫ t
a (dτ)

−r forr < 0,

(1)

Three definitions are commonly used for the general frac-
tional differintegral namely the Grunwald-Letnikov defini-
tion (2), the Riemann-Liouville definition (3) and the Caputo
definition (4) for n − 1 < r < n. Riemann-Liouville
definition of fractional differintegral is also formulated in
form of Laplace transformation (5) for n − 1 < r ≤ n
and s ≡ jω which denotes the Laplace transform variable,
since this method is commonly used in engineering problem
solving [61], [62].

aDrt f (t) = lim
h→0

h−r

[ t−a
h

]∑
j=0

(−1)j
(
r
j

)
f (t − jh) (2)

aDrt f (t) =
1

0 (n− r)
dn

dtn

∫ t

a

f (τ )

(t − τ)r−n1
dτ (3)

aDrt f (t) =
1

0 (r − n)

∫ t

a

f (n) (τ )

(t − τ)r−n1
dτ (4)

FIGURE 2. Field-oriented speed control of PMSM.

∞∫
0

e−st0Drt f (t)dt = srF(s)−
n−1∑
k=0

sk0Dr−k−1t f (t) |t = 0

(5)

Understanding of geometric and physical of fractional dif-
ferentiation and integration compared to integer order ones
is detailed in Podlubny [63]. Furthermore, main properties of
fractional calculus are listed in Chen et al. [60].

III. DESIGN OF FRACTIONAL ORDER SMC FOR PMSM
SPEED CONTROL
A. CONTROLLER DESIGN
In the proposed controller, field-oriented control of PMSM
as illustrated in Fig. 2 is chosen, which mathematical model
is described as in (6)-(8). d, q-axis stator flux linkages are
defined in (9) and (10) and motor dynamics is described
in (11).

u∗d = Rsi∗d + λ̇d − ωf λq (6)

u∗q = Rsi∗q + λ̇q + ωf λd (7)

Te = 1.5np
[
Lmd Idf i∗q +

(
Ld − Lq

)
i∗d i
∗
q

]
(8)

λq = Lqi∗q (9)

λd = Ld i∗d + Lmd Idf (10)

Te = J ω̇r + Bmωr + TL (11)

In this study, the main control problem is to ensure the
motor speed, ωr to track the desired speed command, ω∗r
asymptotically. The speed tracking error, e(t) is defined
in (12). The main speed controller i.e., the sliding mode
controller provides an output in terms of q-axis stator current
command, iq as the control input for the inner q-axis current
controller.

e(t) = ω∗r (t)− ωr (t) (12)

The proposed fractional PID (PIαDβ ) sliding surface is
defined in (13), where 0D

−α
t (.) is a fractional integration of

order α and 0D
β
t (.) is a fractional differentiation of order β.
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By selecting α = β = 1, a classical integer order PID
sliding surface is obtained. With the chosen control law (14),
the equivalent control law (15) is obtained.

s (t) = kpe (t)+ ki0D−αt e (t)+ kd 0D
β
t e (t)

kp, ki, kd> 0, 0 < α < 1, 0 < β < 1 (13)

ṡ = −ws− kssign (s) ,w, ks ∈ R+ (14)

i∗q (t) =
(
bkp
)−1


ki0D

1−α
t e (t)+ kd 0D

β+1
t e (t)

+ (w− a) kpe (t)
+kp∅ (t)+ wki0D

−α
t e (t)

+wkd 0D
β
t e (t)+ kssign (s)

 (15)

B. STABILITY ANALYSIS
Reaching condition of the proposed fractional sliding mani-
fold has to be satisfied to ensure convergence of system state
to the manifold for any initial condition. For this purpose,
Lyapunov stability theorem is used, where the Lyapunov
function candidate is chosen to be V =(1/2)s2 for system
initial states t0 6= 0. The reaching condition is satisfied when
V̇ < 0 holds or sṡ < 0. From (16), it shows that V̇ < 0
holds when ks > kp |δ (t)| is satisfied or (ks/kp) > |δ (t)|
is satisfied. Assumed that |δ (t)| ≤ ∅ ∈R+, then, according
to Lyapunov stability theorem, the reaching condition of the
proposed FOSMC is satisfied if (ks/kp) > ∅. In addition,
Zhang et al. [2] has proven that with the chosen control law,
system will converge to the switching manifold at any initial
state when inequality (17) is satisfied.

V̇ = −ws2 − ks |s| + kpδ (t) s (16)

t ≥ t0 − (1/w)ln(ks/w |s (t0)| + ks) (17)

After reaching condition is ensured, the stability of the sys-
tem during sliding phase has to be analyzed. For that purpose,
Lemma below is presented, followed by its corresponding
theorem and proof.
Lemma: [64] The following autonomous fractional order

system is considered,

0Drt x (t) = A.x (t) , x (0) = x0 (18)

where x ∈ Rn,A =
(
aij
)
∈ Rnxn, 0 < r < 1, is asymptoti-

cally stable if and only if

|arg (eig (A))| > r(π/2) (19)

Theorem: System in (13) is stable when conditions
kp, kI , kd > 0 and 0 < α,β < 1 are synchronously satisfied.
Proof. When sliding mode occurs, the sliding mode

dynamics are represented in matrix form as in (20).[
0Dαt (e1)

0D
β
t (e2)

]
=

[
0 1

−(ki/kd ) −(kp/kd )

]
[
e1
e2

]
= A

[
e1
e2

]
(20)

By Lemma, system (13) is stable if the condition in (19)
is satisfied. Since 0 < α, β < 1 is satisfied, hence,
0 < α(π/2) < (π/2) and 0 < β((π/2) < (π/2). Stability
condition in Lemma is satisfied if kp, ki and kd are selected
to be positive.

TABLE 1. Parameters of PMSM.

FIGURE 3. Speed response comparison between FOSMC and SMC for
speed reference of (a) 250 rpm (b) 500 rpm (simulation).

IV. RESULTS AND DISCUSSION
A. SIMULATION RESULTS
Performance of the proposed controller is evaluated using
simulation in MATLAB/Simulink environment. The PMSM
model used in this simulation is a three-phase Y-connected
1.93 kWmotorwith parameters as listed in Table 1. Fractional
orders α and β of the designed controller was chosen to be
0.35 and 0.3 respectively.

101768 VOLUME 7, 2019



F. M. Zaihidee et al.: Application of Fractional Order SMC for Speed Control of PMSM

FIGURE 4. Comparison of speed drop of FOSMC and SMC under 0.5 Nm
load (simulation).

FIGURE 5. Comparison of q-axis reference current as output of FOSMC
and SMC speed controllers (simulation).

In simulation evaluation, a speed reference of 250 rpm was
given for 0.5 seconds, followed by 500 rpm speed reference
for another 0.5 seconds. The step response for both scenarios
is shown in Fig. 3(a) and Fig. 3(b) respectively. Similar results
were obtained in both cases where FOSMC-controlled sys-
tem produced less overshoot and tracked the reference faster
compared to SMC system.

Disturbance rejection properties of the proposed controller
were evaluated by giving a load of 0.5 Nm at t = 1s.
Results in Fig. 4 shows that system driven with FOSMC
suffered approximately half speed drop compared to SMC
and settled with a small steady state error of only 0.6%.
When load is applied, q-axis reference current i.e. speed
controller output of both controllers in comparison is as
shown in Fig. 5. FOSMC speed controller produces reference
value with almost 20 times less ripple. In addition, as shown
in Fig. 6, system with FOSMC resulted in less torque ripple
compared to system driven with SMC.

FIGURE 6. Torque ripple comparison between FOSMC and
SMC (simulation).

FIGURE 7. Speed response of FOSMC for various speed reference (a) at
no load (b) when load of 2 Nm is applied (simulation).

Performance of the proposed FOSMC is further validated
for various speed references between 1000 to 2500 rpm
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FIGURE 8. Speed drop of FOSMC under various loads (simulation).

FIGURE 9. PMSM system prototype.

with load torque of 2 Nm applied after 1 second. Results
in Fig. 7(a) shows that given reference speeds were suc-
cessfully tracked with maximum overshoot of only 5.04%
namely for speed reference of 2500 rpm. When load torque is
applied, the system suffered from speed drop of only between
2.28% and 6.06%, before settled back to its reference speed
after approximately 0.25 seconds, as shown in Fig. 7(b).
Fig. 8 shows speed drop of FOSMC driven PMSM system
with reference speed of 2000 rpm when various loads are
applied. In all cases, speed recovers back to reference speed
after not more than 9.8% speed drop with maximum steady
state error of only 1.1% (at load 6 Nm).

B. EXPERIMENTAL RESULTS
In addition to simulation, the robustness and stability of the
proposed control scheme are verified through actual exper-
iment. The prototype of PMSM speed control, as shown
in Fig. 9 consists of a PMSM with built-in encoder (param-
eters in Table 1), driven by a three-phase voltage source
PWM inverter. DSpace DS1104 performs as the controller,
which signals can be monitored using the ControlDesk soft-
ware. Required load is given by Magtrol hysteresis brake
AHB-3. The brake is controlled by Magtrol DSP6001 con-
troller, which can be programmed using Magtrol M-TEST

FIGURE 10. Speed response comparison between FOSMC and SMC for
speed reference of 250 rpm (experimental).

5.0 Motor Testing software. TMB 307/411 in-line torque and
speed transducer provides torque and speed measurement.
Auxiliary components such as current sensors and encoder
data interface circuits are also designed and built into the
prototype.

In experimental verification, PMSM system prototype was
tested with the proposed fractional order SMC controller as
well as with a conventional integer order SMC for com-
parison purpose. Firstly, a speed reference of 250 rpm was
given to investigate the step speed response of both cases.
Fig. 10 compares the speed response of PMSM for speed
reference of 250 rpm when controlled with a FOSMC and a
conventional SMC. System using FOSMC resulted in only
8.32% overshoot, which is about 5 times smaller than the
overshoot obtained when using SMC. Some speed oscilla-
tion was experienced by SMC-controlled system as response
to the step change. Speed ripple of both cases at steady
state were also investigated where FOSMC recorded 1.56%
maximum ripple compared to 1.36% of SMC, as shown
in Fig. 11.

Then, from 250 rpm, the speed reference was doubled to
500 rpm to evaluate controller’s performance at a different
speed. As shown in Fig. 12, the results obtained are similar
to the previous case. The fosmc-controlled system recorded
5 times smaller overshoot than those of SMC-controlled sys-
tem and did not suffer under step change oscillation.

Disturbance rejection properties of the proposed controller
and the controller in comparison were investigated by giving
a load of approximately 0.5 Nm to the system after about
10 seconds. From speed 500 rpm, the prototype suffered a
speed drop of 27.4 rpm under the given load when controlled
with the proposed fractional order controller. 35%more speed
drop was experienced by the prototype when controlled by
SMC. During speed recovery, it can be seen in Fig. 13 that
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FIGURE 11. Speed ripple of FOSMC and SMC during steady state
(experimental).

FIGURE 12. Speed response comparison between FOSMC and SMC for
speed reference of 500 rpm (experimental).

FOSMC-system settled after about 6 seconds to the speed
reference with a small steady-state error of only 0.46%.
On the other hand, SMC-system oscillates at early stage of
recovery with 3.32% of overshoot before settling back to the
speed reference and continue to oscillate at 0.5%.

Fig. 14 shows changes in q-axis reference current when
load was given and the corresponding actual q-axis current
in the FOSMC and SMC systems. Current, iq ripple in both
cases can be compared from Fig. 14(a) and 14(b), where iq
ripple in FOSMC is less than those in SMC of approximately
6%. Speed controller output i.e. the reference q-axis current
produced by both controllers are compared Fig. 15. The
proposed controller required about 20% less current spike at
load increase and settled with less oscillation compared to
the SMC controller in comparison. In addition to that, when
controlled with FOSMC, the motor experienced less torque
ripple compared to when controlled with SMC as shown
in Fig. 16.

FIGURE 13. Speed drop of FOSMC and SMC under 0.5 Nm load
(experimental).

FIGURE 14. Reference and actual q-axis current under 0.5 Nm load for
(a) FOSMC system (b) SMC system (experimental).

Lastly, the controllers were further tested by removing the
given load from the system at around t = 27s. Fig. 17 shows
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FIGURE 15. Comparison of q-axis reference current as output of FOSMC
and SMC speed controllers (experimental).

FIGURE 16. Torque ripple comparison between FOSMC and SMC
(experimental).

that with only 6.92% speed increase, speed of motor in
FOSMC system settled back to 500 rpm after about 4 seconds.
In SMC system, the motor experienced a speed hike up to
11.16% and significant oscillation before settling back to the
reference speed after about 6 seconds.

It is also important to mention that authors are aware that
these experimental results are not totally at par with other
data presented in previous literatures especially in terms of
rise time and settling time. The experimental validation of
the proposed controller is limited by available equipment in
our laboratory for building the prototype. Usage of dSpace
DS1104 as controller in this prototype limited the sampling
time at 5e−4 s and switching frequency at 4kHz. Higher sam-
pling time and switching frequency can be used by improving
the controller to more advanced controllers such as Speed-
goat, advanced DSPs or FPGAs. However, authors believe
that within this limited capacity, necessary results to show

FIGURE 17. Speed response of FOSMC and SMC when load was removed.

TABLE 2. Summary of simulation and experimental results.

superiorities of the proposed controller and the conventional
controller have been presented above.

Summary of both simulation and experimental results are
tabulated in Table 2, showing how incorporating fractional
calculus affects and improves the performance of a conven-
tional sliding mode speed controller.

V. CONCLUSION AND FUTURE WORKS
A fractional order sliding mode speed controller for PMSM
has been proposed in this research. Fractional calculus is
incorporated into the sliding surface design. Simulation and
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experimental results proved that the proposed FOSMC
controller performs better in terms of speed tracking and anti-
disturbance properties compared to a conventional SMC con-
troller. The proposed controller also reduces the chattering
effect of sliding mode control.

As future works, the proposed controller can be fur-
ther enhanced by incorporating artificial intelligence tun-
ing mechanism to optimize the controller’s parameters to
improve its performance. Furthermore, fractional order val-
ues used in the controller can be designed to be adaptive
depending on the machine dynamics and external distur-
bances. Other than that, the proposed controller can also be
expanded with appropriate estimators to realize sensorless
control of electrical machines.
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