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ABSTRACT This paper studies the molecular communication system where the transmitter has limited
productivity and the receiver employs ligand-binding receptors. By simplifying the release and propagation
process of the information particles, the ligand-binding process is regarded as a binding channel with peak
and average constraints and modeled by a finite-state Markov chain. It is proved that the capacity of the
constrained independent and identically distributed (IID) binding channel, defined as the IID capacity,
is achieved by a discrete input distribution. The sufficient and necessary conditions of an IID input
distribution being capacity-achieving is presented. Moreover, an algorithm called modified steepest ascent
cutting-plane algorithm is proposed to efficiently compute the IID capacity-achieving distributions. The
numerical results show that the IID capacity is a tight lower bound of the capacity for the binding channel.

INDEX TERMS Capacity-achieving distribution, channel capacity, channel models, iterative algorithms,
molecular communication, ligand-binding receptors.

I. INTRODUCTION
Molecular communication (MC) is a promising research
area which focuses on the communication paradigm for
the nanoscale information exchange. In MC systems
nano-machines exchange information by releasing molecules
which act as the information carriers. These information par-
ticles propagate in an aqueous or a gaseous medium and are
sensed or detected at the receiver.

Generally, the molecular receivers can be categorized into
two classes, i.e., passive receiver and active receiver [1]. A
passive receiver is usually assumed to be able to detect or
sense the information particles without affecting their move-
ment. On the other hand, active receivers employ receptor
proteins, called ligand receptors, to detect information par-
ticles, namely, ligand. As an essential feature of the active
reception, these receptor proteins participate in a reversible
reaction, i.e., binding and unbinding, with the arrived lig-
ands and form degradable ligand-receptor complexes. The
ligand-binding receiver can be used in the designing of syn-
thetic molecular receiver [2], [3]. In [4], the analytical signal
models at the reversibly reactive receivers for diffusion-based
molecular communication systems were investigated. The
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received signal model for the communication scenario in
spherical bounded fluid environments was studied in [5]. The
noise model and detection algorithms for molecular com-
munication systems with ligand-binding receiver were also
developed [3], [6], [7].

To evaluate the performance of molecular commu-
nication systems using ligand-binding reception mecha-
nism, channel modeling and capacity analysis are required.
In [8], the ligand-receptor binding process is modeled
as a memoryless channel and Jeffery’s prior is proved
to be the capacity-achieving distribution. In [9], multi-
ple ligand-binding receptors were modeled as independent
Markov channels and the capacity-achieving distribution was
also investigated. For the molecular communication system
with a single ligand-binding receptor, it was proved in [10]
that the channel capacity is achieved by an IID input distribu-
tion. When the input ligand concentration is binary and the
transmission interval approaches 0, the capacity-achieving
distribution of the binding channel with multiple independent
ligand-binding receptors was further proved to be IID in [11].
More recently, by considering the ligand-receptor binding
process as a signal transduction channel, an applied frame-
work was presented in [12].

However, these previous works on the channel capacity
analysis of the ligand-binding process or the binding channels
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only considered a peak constraint on the channel input, which
implies the ligand concentration can be chosen arbitrarily
in a closed range. Whereas, due to the finite reaction rate
and limited storage space, most ligand generators, including
living cells and synthetic nano-machines,have limited pro-
ductivity and hence can not continuously transmit ligands in
high concentrations [13]. Therefore, an average constraint on
the input should be considered, which will lead to some novel
characteristics on the capacity-achieving distribution.

Besides, it is still an open problem to obtain the closed
form of the capacity-achieving distribution of the binding
channels, the numerically solution to the channel capacity and
the capacity-achieving distribution is hence necessary, which
is also studied in this work. By regarding the ligand-binding
process as a special channel, called binding channel, it was
proved in [9] that the IID channel capacity is achieved by
a discrete distribution. A classical method to compute the
capacity-achieving distribution for discrete channels is the
Blahut-Arimoto algorithm (BAA) [14], [15]. In [16], a gen-
eralized BAA is proposed for the numerical optimization of
finite-state channels. A modified BAA is developed in [17]
to calculate the capacity of channels with feedback. All the
above algorithms require that the input alphabet is finite or
countably infinite and the capacity can be expressed in a
min-max form. The dynamic assignment BAA proposed for
the binomial channels in [18] can cope with uncountably
infinite input alphabets, but still requires the min-max form
for the capacity. The channel input of the binding channels
is uncountably infinite and the capacity cannot expressed
in a min-max form, which make the BAA-based algorithm
unavailable in this case. It is necessary to develop new
methods to numerically study the capacity of the binding
channel.

In this paper, we concentrate on the point-to-point molec-
ular communication systems where the transmitters have
limited productivity and the receivers employ ligand-binding
receptors. By simplifying the release and propagation process
of the information particles, the ligand-binding process is
regarded as a binding channel and modeled by a finite-state
Markov chain.

It is worthy to note that the binding channel is not a
fictional model, but instead is an abstract from the realistic,
biological systems and can be used to describe the signal
transduction processes in the biologically inspired molecular
communication systems. For example, in the interneuronal
communication, a neuron connects to another one across the
synaptic cleft via the chemical messengers, called neurotrans-
mitters. After being released by the presynaptic axon termi-
nal, these neurotransmitters act by binding to the receptors on
the membrane of the postsynaptic dendrite [19]. This recep-
tion process converts the molecular signal into the electrical
signal and can be modeled as a binding channel. Besides
this, the biological background of the investigation of the
binding channels is formed by the signal transduction pro-
cesses in the scenarios, including phototransduction in the
retina [20], antigen presenting process by the dendritic cells

in the immune system [21], chemotaxis of the tumor cells
in cancer [22] and so on. The abstracted binding channel
model can be used in many areas, e.g., the designing of the
bio-electro interface in the healthcare delivery systems [23]
and the analysis of the target cell localization in the targeted
drug delivery systems [24].

Furthermore, the recent advances in the biotechnology pro-
vide an insight into the microscale reactions and facilitate the
theoretical analysis on the ligand-receptor binding process.
For example, the binding and unbinding processes can be
visualized by the fluorescencemethod on the single-molecule
level [25], and in neuroscience, the intracellular signal trans-
duction process can be precisely modulated by the stim-
ulation of light, which is known as the optogenetics [26].
These advances motivate us to develop an analytical model
on the ligand-receptor binding process, which will not only
provide biological researchers a perspective from infor-
mation theory, but also benefit the further research on
the designing of the artificial molecular communication
systems.

Comparing to the binding channel model proposed in the
previous works, in this paper the channel transition proba-
bility is modeled as a function of the communication dura-
tion, which underlies a more general and realistic model. By
considering the limited productivity as an additional average
constraint on the ligand concentration, the main contribution
of this work is concluded as follows.

1) The capacity of the constrained IID binding channel is
proved to be achieved by a discrete input distribution
by using the Dubins’ theorem.

2) The sufficient and necessary conditions on the
capacity-achieving input distribution are proposed for
the IID binding channel with peak and average con-
straints.

3) A numerical algorithm is proposed to efficiently com-
pute the IID capacity-achieving distribution, and the
computed results is proved to be convergent.

4) The effects of the average constraint on the IID
capacity-achieving distribution are verified using
numerical method.

5) It is verified by the numerical method that the IID
capacity is a tightly lower bound of the capacity for the
binding channel.

The rest of this paper is organized as follows: the system
model is formulated in Section II, and the capacities of the
binding channel are defined in Section III. The discreteness
of the capacity-achieving distribution under peak and aver-
age constraints for the IID binding channels is proved in
Section IV and the sufficient and necessary conditions of
the IID input distribution being capacity-achieving is also
studied in this section. In Section V, an algorithm called
modified steepest ascent cutting-plane algorithm is developed
to compute the capacity-achieving distribution, and the corre-
sponding numerical results are shown in Section VI. Finally,
conclusions are presented in Section VII.
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II. MODEL FORMULATION
A. NOTATION
Let upper case letters denote random variables, e.g.,X ,Y , and
their realizations are denoted by the corresponding lower case
letters, e.g., x, y.
For j ≥ i, a sequence of random variables

(
Xi, . . . ,Xj

)
is

denoted by X ji (j ≥ i), and their realizations can be denoted
by x ji . For j < i, X ji and x

j
i denote empty sequence.

Let ν denote a probability measure defined on the Borel
algebra on the nonnegative real numbers. The probability
mass function (PMF) of a discrete random variable is denoted
by P. Different probability measures or PMFs are discrimi-
nated by their subscripts. For example, νX denotes the prob-
ability measure of the random variable X , PX ,Y denotes the
joint distribution of discrete random variables X and Y , and
PY |X denotes the conditional distribution of Y given X . For
simplicity, the subscripts is omittedwhenwe are talking about
an particular probability, e.g., ν(x),P(x, y), and P(y|x) are
short for νX (x),PX ,Y (x, y), and PY |X (y | x), respectively.
Sets are denoted by the capital script letters, e.g.,X . Matri-

ces are denoted by bold, capital letters, e.g., A. Specially,
the identity matrix is denoted by I. Vectors are denoted by
bold, small letters, e.g., a. And the vectors are row vectors by
default.

B. SYSTEM MODEL
In this work, we focus on the ligand-binding receiver and the
channel model is sketched in Fig. 1.

FIGURE 1. Binding channel with input concentration x and output bound
state y .

Suppose there are N ligand-binding receptors at receiver.
Each receptor has two states, i.e., bound and unbound. The
input of the binding channel is the concentration of informa-
tion particles and the channel output is the total number of the
receptors in bound state.

Assume that the channel is divided equally into slots in
time, denoted by T . The input sequence is X k1 where Xi
is the concentration of information molecules in i-th time
slot for i = 1, . . . , k . Following [9], the concentrations of
information molecules are assumed to change continuously
in X = [cL, cH] and can be held in a certain level in each
time slot.

In addition, considering that the molecule generator in
the source has a limited productivity, the concentrations is
hence assumed to satisfy an average constraint c̄ ∈ [cL, cH].
Note that this assumption has been adopted in the previous
works [13] and [27] to make the model more realistic.

The set of distributions which satisfy peak constraint
[cL, cH] and average constraint c̄ is denoted by

Vk (cL, cH, c̄) =
{
νX k1

∣∣∣ν(X k )=1,EνXi(Xi)≤ c̄
}
. (1)

For simplicity, we shall use the shorthand Vk = Vk (cL, cH, c̄)
and the superscript will be omitted when k = 1.

The output sequence is denoted by Y k1 , where Yi denote
the number of bound receptors at the end of the i-th time
slot. Let Y0 denote the initial state of the receptors and N =
{0, 1, . . . ,N } be the state space, then Yi ∈ N , i = 0, . . . , k .

Then the binding channel can be formulated by a
finite-state Markov process based on the chemical master
equation (CME). Let k+ and k− denote the rate coefficients
corresponding to the bound reaction and unbound reaction,
respectively. In the i-th transmission, the ligand-receptor
binding occurs with a rate k+Xi while the bound receptors
unbind with a rate k−. Let Yi(t) denote the number of bound
receptors at time t in the i-th transmission, where t ∈ (0,T ].

The CME for the binding process can be described as the
following equation.

N − Yi(t)

k+Xi
k− Yi(t), (2)

Let pn(t) denote the probability of Yi(t) = n. A differential
equation about pn(t) can be derived from the CME [6] as

d
dt
pn(t) = k+Xi(N − n+ 1)pn−1(t)+ k−(n+ 1)pn+1(t)

− [k−n+ k+Xi(N − n)] pn(t). (3)

Equation (3) can be interpreted as a homogeneous
Markov process illustrated in Fig. 2. For a, b ∈ N and
Xi = xi, the transition intensity of the Markov process
{Yi(t), t ∈ (0,T ]} changing from state a to state b is denoted
by qa,b(xi).

qa,b(xi) =


aµ, a = b+ 1
−[aµ+ (N − a)λi], a = b
(N − a)λi, a = b− 1
0, otherwise

(4)

where λi = k+xi is proportional to the input concentration,
µ = k− is a constant.
The intensity matrix of the Markov Process is denoted by

Q(xi) =
[
qa,b(xi)

]
. Let d(xi) be the vector comprising the

eigenvalues of Q(xi) in descending order,

d(xi) =
(
0,−(λi + µ), . . . ,−N (λi + µ)

)
. (5)

Denote P(t; xi) =
[
pa,b(t; xi)

]
as the transition matrix

of the Markov process {Yi(t), t ∈ (0,T ]}, where pa,b(t; xi)
implies the probability of Yi(t) transitioning from state a to
state b in time t , given the input concentration Xi = xi.
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FIGURE 2. State transition diagram of the Markov chain, where λi = k+Xi
and µ = k−.

Using the Kolmogorov equation [28], we have

P(t; xi) = U(xi) diag(exp(d(xi)t))V(xi), (6)

where U(xi) = [ua,b(xi)] is the matrix consisting of the
eigenvectors ofQ(xi) and satisfiesQU = U diag(d); V(xi) =
[va,b(xi)] is the inverse of U(xi).
For a, b ∈ N , let γ = min(a, b). The explicit expressions

of ua,b(xi) and va,b(xi) are

ua,b(xi) =

∑γ

j=0

(a
j

)(N−a
b−j

)
µj(−λi)b−j(N

b

)
µb

, (7)

va,b(xi) =

(N
b

)
µN−b

∑γ

j=0

(N−b
a−j

)
(−1)a−jλb−ji µj

(λi + µ)N
. (8)

Therefore, the channel state transition probability in the i-
th transmission is

P(yi | yi−1, xi) = pyi−1,yi (T ; xi)

=

N∑
n=0

uyi−1,nvn,yie
−n(λi+µ)T . (9)

Remark 1: In [10], [11], the channel state transition prob-
ability is an approximate results as T → 0. Different from
these previous works, the channel state transition proba-
bility given in (9) is an accurate expression, which is a
function of T , the length of time slot. For example, in the
inter-neuronal communication, the receiver, i.e., the post-
synaptic neuron, mainly contains two types of receptors,
namely α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor and N-Methyl-D-Aspartate (NMDA)
receptor. Since the signal transmission mediated by NMDA
receptors is much slower than which mediated by AMPA
receptors [29], it is hence reasonable and necessary to con-
sider the cases where each communication is persisting
hundreds millisecond. The channel model derived from (9)
will be more realistic to describe the scenario with NMDA
receptors.

According the biological nature of the binding process,
the i-th output Yi is supposed to depend only on the i-th
input Xi and the adjacent previous output state Yi−1, which
follows the assumption used in the previous works [9]–[12]
and reveals the Markov property of the ligand-binding
process [30]. Hence, the channel model can be represented
as

P(yk1 | y0, x
k
1 ) =

k∏
i=1

P(yi | yi−1, xi), (10)

where Y0 = y0 is the initial state of receptors and is supposed
to be independent with X k1 .

The PMF of the output distribution is

p(yk1) =
∑
y0

∫
p(y0)p(yk1 | y0, x

k
1 )ν(dx

k
1 ). (11)

III. CHANNEL CAPACITY
According to the channel characteristic in (10), the input-
output mutual information can be expressed as

I (X k1 ;Y
k
1 | Y0)=

k∑
i=1

[
H (Yi | Y

i−1
0 )−H (Yi | Yi−1,Xi)

]
. (12)

The channel capacity C equals to the maximized mutual
information rate per unit time:

C =
1
T

lim
k→∞

max
ν
Xk1
∈Vk

1
k
I (X k1 ;Y

k
1 | Y0) (13)

If the inputs are identically and independently distributed
(IID), the outputs form a first-order Markov chain. For
k = 1, 2, . . . ,

P(yk |y
k−1
0 ) =

∫
P(yk | y

k−1
0 , xk )ν(dxk | y

k−1
0 )

(a)
=

∫
P(yk | y

k−1
0 , xk )ν(dxk )

= P(yk | yk−1), (14)

where (a) is established since Xk is independent of previous
outputs.

Thus, the mutual information shown in (12) can be simpli-
fied as

I (X k1 ;Y
k
1 |Y0)=

k∑
i=1

[H (Yi |Yi−1)−H (Yi |Yi−1,Xi)]

=

k∑
i=1

I (Xi;Yi | Yi−1). (15)

Then the IID channel capacity CIID is defined as

CIID =
1
T

max
νX∈V

lim
k→∞

1
k

k∑
i=1

I (Xi;Yi | Yi−1), (16)

where V is short for V(cL, cH, c̄).
Define I∞(νX ) as

I∞(νX ) , lim
i→∞

I (Xi;Yi | Yi−1), (17)

which can be expanded as

I∞(νX ) =
N∑

yi−1=0

π (yi−1)
∫ N∑

yi=0

P(yi | yi−1, xi)

· log
[
P(yi | yi−1, xi)
P(yi | yi−1)

]
· νX (dxi), ∀i > 0. (18)

where π is the unique stationary distribution for the output
of the aperiodic and irreducible finite-state Markov chain Y k1
according to (9) and (11).
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Then the IID channel capacity CIID can be further
expressed as

CIID =
1
T

max
νX∈V

I∞(νX ), (19)

where I∞(νX ) = limk→∞
1
k

∑k
i=1 I (Xi;Yi | Yi−1) based on

the result of Cesáro mean in Theorem 4.2.3 in [31].

IV. CAPACITY-ACHIEVING INPUT
In this section, we focus on the characterization of the
capacity-achieving distributions for the IID binding channels,
which is defined as the input distribution maximizing the
channel capacity defined in (19).

A. THE IID CAPACITY-ACHIEVING DISTRIBUTION IS
DISCRETE
Since the binding channels have discrete outputs, it is intuitive
to conjecture the capacity-achieving distribution is discrete.
Theorem 1: For the binding channel with IID inputs,

the channel capacity is achieved by a discrete distribution in
the set V(cL, cH, c̄).
Remark 2: In [9], it is proved that the IID channel capacity

is achieved by a discrete input distribution, where the chan-
nel output is a vector consisting of the bound states of all
receptors. However, the proof of the discreteness in [9] is
based on the special expressions of the channel state transition
probabilities, where the binding rate for a single receptor can
be regarded as a special case of our channel model in (9) for
N = 1 and T →∞.

In order to prove the discreteness of the capacity-achieving
input of the binding channel for more general situations,
we first introduce Dubins’ theorem [32] and the definition of
a linearly closed and linearly bounded set.
Definition 1: A convex set S is said to be linearly closed

and linearly bounded if every straight line intersects S in a
closed line segment.
Theorem 2 (Dubins’ Theorem): Assume that S is a lin-

early closed and linearly bounded convex set. Let I be the
intersection of S with N hyperplanes. Then every extreme
point of I is a convex combination of N +1 or fewer extreme
points of S.
Then the proof of Theorem 1 is as follows.
Proof 1 (Proof of Theorem 1): For different distribu-

tions ν0, ν1 ∈ V(cL, cH, c̄) satisfying the peak and average
constraints, define a straight line L as

L : ν = (1− θ )ν0 + θν1, −∞ < θ <∞. (20)

It can be verified that the line L intersects V(cL, cH, c̄) in a
closed line segment. Hence V(cL, cH, c̄) is a linearly closed
and linearly bounded convex set. In the following proof,
we use V for short.
According to the Weierstrass extreme value theorem [33],

I∞(νX ) attains its maximum on V . Denote the capacity-
achieving distribution by ν∗X , and the corresponding trans-
mission probability distribution of the output Markov chain
is denoted by P∗Yi|Yi−1 .

For yi−1 ∈ N and yi ∈ {1, . . . ,N }, let Hyi−1,yi denote the
hyperplane defined as

Hyi−1,yi :
∫
P(yi|yi−1, xi)ν(dxi)=P∗(yi|yi−1). (21)

Let A denote the intersection of the set V and the above
N (N + 1) hyperplanes. Since the stationary distribution π
depends only on PYi|Yi−1 , I∞(νX ) defined in (18) is linear in
νX for any νX ∈ A.
Thus, I∞(νX ) is maximized by an extreme point of the set

A, namely, ν∗X is an extreme point of A.
By using the Dubins’ theorem, it is proved that ν∗X is a

convex combination of at most N (N + 1)+ 1 extreme points
of V .

The term ‘‘extreme point’’ of a convex set implies the point
that cannot be expressed as a convex combination of other
points in the set.

Let δ(·) be the Dirac delta function. For c ∈ [cL, c̄),
the point measure defined as δc(x) = δ(x − c) must be
a extreme point of V . Besides, let Bc1,c2 be the Bernoulli
distribution defined as

Bc1,c2 =
c2 − c̄
c2 − c1

δc1 +
c̄− c1
c2 − c1

δc2 , (22)

where c1 ∈ [cL, c̄], c2 ∈ (c̄, cH].
It can be verified thatEBc1,c2 (X ) = c̄ andBc1,c2 is a extreme

point of V . All other distributions in V can be expressed as a
combination of distributions in {δc,Bc1,c2

∣∣ c ∈ [cL, c̄), c1 ∈
[cL, c̄], c2 ∈ (c̄, cH],EBc1,c2 (X ) = c̄}.
Therefore, the capacity-achieving distribution is discrete

and take values at most 2(N 2
+ N + 1) points.

Remark 3: Actually, the support set of the capacity-
achieving distribution for IID binding channels, denoted
by S∗, contains much fewer points than the upper bound,
i.e., 2(N 2

+N+1) stated in Theorem 1. It is proved in [9] that
the capacity-achieving distribution for IID binding channels
takes values at most (N+4)/2 points for the specified channel
model, where the channel output is the vector containing the
states of all the receptors. According to the numerical results
shown in Section VI, (N + 4)/2 seems to be a much tight
upper bound on the cardinality of S∗. However, the proof of
this conjecture is currently not available.

B. SUFFICIENT AND NECESSARY CONDITIONS
OF BEING CAPACITY-ACHIEVING
Next, the sufficient and necessary conditions on the IID chan-
nel input to be capacity-achieving are investigated.

For a binding channel with a discrete IID input distribution
PX , let S be the corresponding support set and PYi|Yi−1 be the
state transition matrix of the output Markov chain.

LetR
(
PYi|Yi−1 ,S

)
= [r(yi−1, xi)] be a (N+1)×|S|matrix,

where the entries are defined as follows for any yi−1 ∈ N and
xi ∈ S .

r(yi−1, xi)=
N∑
yi=0

P(yi|yi−1, xi)log
P(yi|yi−1, xi)
P(yi|yi−1)

(23)
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The notation pX is used to denote the probability vector
corresponding to the PMF PX . Similarly, π is the probability
vector corresponding to the stationary distribution π . The
notation PYi|Yi−1 is used to denote the probability matrix
corresponding to the conditional PMF PYi|Yi−1 .

A PMF can be regarded as the combination of its prob-
ability vector and its support set, e.g., PX = (pX ,S). The
limitations of the mutual information defined in (17) can be
rewritten in matrix form.

I (PX ) = πR
(
PYi|Yi−1 ,S

)
pᵀX , (24)

where pᵀX is the transpose of pX , PYi|Yi−1 is a function of PX
and can be derived from (14).

PYi|Yi−1 =
∑
xi∈S

PX (xi)PYi|Yi−1,Xi=xi . (25)

Let P(cL, cH, c̄) be the set of all the discrete PMFs satisfy-
ing the peak constraint [cL, cH] and average constraint c̄, and
P be the shorthand of it. It is easy to verify that P is a convex
subset of V .
We use some decorations to make distinctions between

different input distributions, e.g., PX ,P′X indicate different
PMFs, respectively.

Moreover, the variables induced by the input PMF are
decorated with the same symbol, e.g., S ′ and p′X are the
support set and the probability vector corresponding to the
distribution P′X , respectively. Similar to define P′Yi|Yi−1 and
π ′.
Definition 2: For any PX ,P′X ∈ P , the weak derivative of

I∞ at PX is defined as [34]

I ′∞(P
′
X ;PX ) = lim

θ↓0

I∞
(
PθX
)
− I∞ (PX )

θ
, (26)

where PθX , (1− θ )PX + θP′X , and the down arrow notation
is used to emphasize that θ is approaching 0 from above.

The weak derivative function defined in (26) can be
expressed as follows (details in Appendix A).

I ′∞(P
′
X ;PX ) = π

(
P′Yi|Yi−1−W

)
9−1R(PYi|Yi−1 ,S)p

ᵀ
X

+πR(PYi|Yi−1 ,S
′)
(
p′X
)ᵀ
, (27)

where 9 , W − PYi|Yi−1 ; W is a (N +1)× (N +1) matrix
defined in (59).

The sufficient and necessary conditions on the capacity-
achieving distribution for the IID binding channels are stated
in the following theorem.
Theorem 3: Suppose that P∗X ∈ P(cL, cH, c̄) is an IID

input distribution of a binding channel under the peak and
average constraints. Then P∗X is capacity-achieving if and
only if there exists a ϑ ≥ 0 such that for every c ∈ [cL, cH],

π∗(Qc −W)
(
9∗
)−1R(P∗Yi|Yi−1 ,S∗)p∗Xᵀ

+π∗R(P∗Yi|Yi−1 , c)− ϑ(c− c̄) ≤ 0, (28)

where 9∗ , W − P∗Yi|Yi−1 , Qc , P(T ; c). Furthermore,
(28) hold with equality for c ∈ S∗, respectively. Specially, if

c̄ = cH, the sufficient and necessary conditions are degraded
as

π∗(Qc −W)
(
9∗
)−1R(P∗Yi|Yi−1 ,S∗)p∗Xᵀ

+π∗R(P∗Yi|Yi−1 , c) ≤ 0 (29)

with equality if and only if c ∈ S∗.
Proof 2: See Appendix B.

Let us define the effective average constraint as follows.
Definition 3: For an IID binding channel, an average con-

straint is said to be effective if the capacity-achieving distri-
bution is changed after considering this constraint.

Based on Theorem 3, a property of the optimal support,
which is defined as the support set of the capacity-achieving
distribution, is investigated.
Corollary 1: For an IID binding channel with a peak con-

straint [cL, cH] and an effective average constraint EPX (X ) ≤
c̄, the lowest concentration cL must be included in the optimal
support.

Proof 3: LetP∗X ∈ P(cL, cH, c̄) be the capacity-achieving
distribution supported on S∗ =

{
s∗1, . . . , s

∗
M

}
.

Without loss of generality, suppose that the elements in S∗
are strictly ordered satisfying cL ≤ s∗1 < · · · < s∗M ≤ cH .
By contradiction, suppose that cL < s∗1. For any ε ≥ 0,

the sufficient and necessary conditions says

L ′
(
δs∗1−ε
;P∗X

)
≤ 0, (30)

with equality if and only if ε = 0, where L ′(·; ·) is defined in
(64) in Appendix.

Since P∗X is supposed to be optimal,EP∗X (X
∗) = c̄. Accord-

ing to (64), we have

L ′
(
δs∗1−ε
;P∗X

)
= I ′∞(δs∗1−ε;P

∗
X )− ϑ

(
Eδs∗1−ε (X )− c̄

)
= I ′∞(δs∗1−ε;P

∗
X )−ϑ

(
s∗1−ε−c̄

)
≤ 0. (31)

For a binding channel with an effective average constraint,
the Lagrangian multiplier ϑ > 0. Hence,

I ′∞(δs∗1−ε;P
∗
X ) ≤ ϑ

(
s∗1 − ε − c̄

)
< 0. (32)

Based on the definition in (26), there must be a distribution
PθX = (1− θ )P

∗
X + θδs∗1−ε

∈ P(cL, cH, c̄) such that

I∞(PθX ) > I∞(P∗X ), (33)

which contradicts the optimal-input assumption. Hence,
cL ∈ S∗.
For a binding channel with only a peak constraint, it is

proved that the capacity-achieving distribution must take val-
ues of X = cL and X = cH [9], [10]. However, with an
additionally effective average constraint, only cL is certainly
included in the optimal support, and the highest concentration
in the optimal support may be remarkably less than cH. The
numerical results in Section VI affirm this conclusion.
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V. CALCULATION OF CAPACITY-ACHIEVING
DISTRIBUTION
It is proved in Section IV that the capacity-achieving distri-
bution for IID binding channels is discrete. Note the fact that
the input concentration can be chosen in a continuous range,
i.e., [cL, cH]. It leads to the difficulty in the computation
of the capacity-achieving input distribution. The classical
BAA [14]–[16], which requires the finiteness of the input
alphabet, is hence inapplicable for our model.

In [18], a dynamic assignment BAA is proposed to com-
pute the capacity-achieving input distributions for the bino-
mial channels with uncountably infinite input alphabets.
However, the dynamic assignment BAA requires expressing
the channel capacity in the min-max form, which is really a
challenge for the capacity defined in (19).

A numerical algorithm, known as the steepest ascent
cutting-plane algorithm (SACPA), can efficiently solve the
problem. It is a piecewise-linear approximation method
firstly proposed in [35]. In this section, a modified SACPA
is proposed to compute the capacity-achieving input distribu-
tions of binding channels.

Before giving the exact description of the modified
SACPA, a lemma is introduced at first.
Lemma 1: For any PX ∈ P(cL, cH, c̄), the following equa-

tion holds.

I∞(PX ) = min
P′X∈P

πR
(
P′Yi|Yi−1 ,S

)
pᵀX . (34)

where P′Yi|Yi−1 is determined by P′X .
Proof 4: According to (24) and (23), we have

πR
(
P′Yi|Yi−1 ,S

)
pᵀX

= πR
(
PYi|Yi−1 ,S

)
pᵀX + πD

(
PYi|Yi−1

∥∥∥P′Yi|Yi−1)
≥ πR

(
PYi|Yi−1 ,S

)
pᵀX , (35)

where D
(
PYi|Yi−1

∥∥∥P′Yi|Yi−1) is a column vector defined

in (51). Hence πD
(
PYi|Yi−1

∥∥∥P′Yi|Yi−1) must be non-negative.
Based on Lemma 1, the IID capacity defined in (19) can be

expressed as

CIID =
1
T

max
PX∈P

min
P′X∈P

πR
(
P′Yi|Yi−1 ,S

)
pᵀX . (36)

The original SACPA is an iterative algorithm, of which the
main idea is listed as follows.

1) At each iteration, find the piecewise approximation
of the capacity-achieving input distribution on a fixed
input alphabet.

2) Update the input alphabet with the most likely point,
where the likelihood can bemeasured using Theorem 3.

Let P(n)X denote the input distribution found at the n-th
iteration. For a discrete set S ⊂ [cL, cH], define that

P(S)=
{
PX∈P(cL, cH, c̄)

∣∣∣∣∑
x∈S

PX (x)=1

}
. (37)

The details of the modified SACPA is described in
Algorithm 1.

Algorithm 1 Modified Steepest Ascent Cutting-Plane Algo-
rithm

Initialize algorithm with an arbitrary input distribution
P(0)X =

(
p(0)X ,S(0)

)
.

repeat
1. Generate the piecewise approximation function in the
n-th iteration.

I (n)(PX ) = min
0<i<n−1

πR
(
P(i)Yi|Yi−1 ,S

)
pᵀX , (38)

where P(i)Yi|Yi−1 is the transition matrix of the output states

determined by P(i)X .
2. Generate the n-th distribution

P(n)X = arg max
PX∈P(S(n−1))

I (n)(PX ). (39)

3. Update the support. Let

x(n)= arg max
x∈[cL,cH]

[
I ′∞
(
δx;P

(n)
X

)
−ν(n)(x−c̄)

]
, (40)

where ν(n) is an associated Lagrange multiplier calcu-
lated in (39).
The new support S(n) is obtained by

S(n) = S(n−1)
⋃{

x(n)
}

(41)

until I (n)
(
P(n)X

)
− I∞

(
P(n)X

)
< ε.

It can be proved that, after infinite iteration, the distri-
bution found by the modified SACPA will converge to the
capacity-achieving IID input distribution.
Theorem 4: Let P∗X be the capacity-achieving IID input

distribution. Then P(n)X → P∗X as n→∞.
Proof 5: Note that P(cL, cH, c̄) is a compact space. The

infinite sequence
{
P(n)X

}∞
n=0

is hence have an infinite conver-

gent subsequence, denoted by
{
P(nk )X

}∞
k=0

.
By using (34), (38) and (39), the following inequality is

established for all PX ∈ P .

I∞(PX ) ≤ I (nk )(PX ) ≤ I (nk )
(
P(nk )X

)
(42)

Another inequality obtained from (38) is

I (nk )
(
P(nk )X

)
≤π (nk )R

(
P(nk−1)Yi|Yi−1

,S(nk )
)(

p(nk )X

)ᵀ
. (43)

As k →∞, the right-hand side item in (43) is convergent
to I∞

(
P(∞)
X

)
, which implies that, for ∀PX ∈ P ,

I∞
(
P(∞)
X

)
≥ I∞ (PX ) . (44)

Thus, P(∞)
X is the capacity-achieving input distribution.
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VI. NUMERICAL RESULTS
In this section, the numerical results are presented based
on the environment parameters in Table 1, where the rate
coefficients corresponding to the bound reaction and unbound
reaction are obtained from [36] and µM refers to the unit
‘‘micromolar’’ where 1µM = 10−6mol L−1.

TABLE 1. Parameters in numerical experiments.

A. WITH ONLY A PEAK CONSTRAINT
For the IID channels with only a peak constraint [cL, cH],
The capacity-achieving input distributions calculated by the
modified SACPA are shown in Fig. 3, where the probabilities
of the mass points are represented by the area of the circle.
The scatter plot numerically verifies the discreteness stated
in Theorem 1. As increasing the number of receptors form 1
to 10, the cardinality of the support set increases slowly. Com-
paring to the upper bound stated in Theorem 1, the support set
contains much fewer points.

The orange asterisks against the left y-axis in Fig. 3 rep-
resent the expectations of the capacity-achieving inputs. As
we can see, the expectation against the right y-axis attains its
maximumwhenN = 2 and then decreases with increasingN .

FIGURE 3. Capacity-achieving distributions with only a peak constraint,
fixing T = 100ms.

The validity of the capacity-achieving input distributions
obtained by the modified SACPA are evaluated by the criteria
proposed in Theorem 3. Fig. 4 shows the criterion functions
when N ∈ {2, 5, 8}. As is shown, the criterion function is
non-positive and equal to 0 only when it takes values in the
optimal support set.

FIGURE 4. The validity of the calculated capacity-achieving input
distributions, fixing T = 100ms.

FIGURE 5. Effect of T on the capacity-achieving distribution with N = 5.

The effect of the length of a time slot, i.e., T , on the
capacity-achieving distribution is also investigated. As is
shown in Fig. 5, the IID channel capacity is achieved by a
Bernoulli distribution as T → 0 and converges to a special
discrete distribution as T → 1 s. The expectation of the
capacity-achieving input, represented by the orange asterisk
against the right y-axis, increases with increasing T . By
regarding as a function of T , the turn point of the expectation
implies the appearance of a new support point.

B. WITH PEAK AND AVERAGE CONSTRAINTS
For the IID channels with the peak and average constraints,
the capacity-achieving input distributions are shown in Fig. 6.
The probability of a mass points is represented by the area of
the circle. Different average constraints are distinguished by
the colors of the circles. It can be seen that cH may not be
included in the optimal support set. The average constraint
mainly affects the location of the maximum support point.
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FIGURE 6. Capacity achieving input distribution with the peak and
average constraints, where c̄ = 10µM and T = 100ms.

FIGURE 7. The validity of the calculated capacity-achieving input
distributions, where c̄ = 10µM and T = 100ms.

Let P∗X denote the capacity-achieving input distributions
of the IID binding channel without average constraint and
X∗ be the random variable following P∗X . The effect of the
average constraint depends on the gap between c̄ and the
expectation EP∗X (X

∗), i.e., EP∗X (X
∗) − c̄. As shown in Fig. 3,

EP∗X (X
∗) (orange asterisks) is greater than 15µM for N ∈

{1, 2, . . . , 10}. Hence the gap EP∗X (X
∗) − c̄ has the same

changing trend as EP∗X (X
∗) for N ∈ {1, 2, . . . , 10} when

c̄ = 10 or 15 µM. Combining with Fig. 6, it can be concluded
that the value of the maximum support point decreases with
increasing the gap EP∗X (X

∗)− c̄.
The validity of the capacity-achieving input distributions

shown in Fig. 6 are also evaluated by the criteria proposed in
Theorem 3. For the average constraint c̄ = 10µM and N =
2, 5, 8, the criterion functions are depicted in Fig. 7. Note that
the criterion function is negative at the ending point cH, which
coincides the results shown in Fig. 6.
For the IID binding channel with peak and average con-

straints, the effect of T on the capacity-achieving distribution

FIGURE 8. Effect of T on the capacity-achieving distribution under peak
and average constraints, where c̄ = 10µM and N = 5.

FIGURE 9. Effect of T on 1, where c̄ = 10µM and N = 5.

is shown in Fig. 8. When T → 0, the capacity-achieving dis-
tribution is a Bernoulli distribution. When T ≥ 3× 10−3 s,
the average constraint c̄ = 10µM is less than EP∗X (X

∗)
shown by the orange asterisks in Fig. 5. Let P̂X denote
the capacity-achieving input distribution for the IID binding
channel with the peak constraint cL = 0 µM, cH = 50µM
and the average constraint c̄ = 10µM. Hence we have

EP̂X (X̂ ) =

{
EP∗X (X

∗) T ≤ 2× 10−3 s

c̄ T ≥ 3× 10−3 s,
(45)

where X̂ is the random variable following the distribution P̂X .
Let 1 = EP∗X (X

∗) − EP̂X (X̂ ). As T increases, the value
of 1 becomes larger, which is plotted in Fig. 9 and leads
to a remarkable decreasing on the maximum support point
in Fig. 8.

C. ACHIEVING RATES
Plots of achieving rates of the IID binding channels are shown
in Fig. 10 with fixing T = 100ms. It can be seen that
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FIGURE 10. The achieving rates of the binding channels for different N ,
where T = 100ms.

FIGURE 11. The achieving rates of the binding channels for different T ,
where N = 5.

the IID capacity increases with increasing the number of
receptors. The effect of the average constraint on the IID
channel capacity is related to the gap EP∗X (X

∗)− c̄. The larger
the gap, the lower the IID channel capacity.

Moreover, in Fig. 10, the numerical capacity of the binding
channel with feedback (feedback capacity), denoted by CFB,
is also plotted, which is defined as

CFB =
1
T

lim
k→∞

max
P
Xk1 ‖Y

k
1

I (X k1 → Y k0 ), (46)

where PX k1 ‖Y k0
,

∏k
i=1 PXi|X i−11 ,Y i−10

is the feedback input
distribution, called causal conditioning distribution, and
I (X k1 → Y k0 ) ,

∑k
i=1 I (X

k
1 ;Yk | Y

k−1
0 ).

The feedback capacity CFB can be computed using the
modified SACPA, where the optimization vector is replaced
byPX k1 ‖Y k0

and the updating strategy is based on the sequential
sufficient and necessary conditions proposed in [38].

As an upper bound of the channel capacity C defined
in (13), CFB can be used to evaluate the tightness of CIID

approximating to the channel capacity C . It can be concluded
that CIID provides a tight lower bound of C .
For the binding channel with N = 5 receptors, the feed-

back capacities and IID capacities related to different lengths
of each time slot are plotted in Fig. 11. As increasing T ,
the achieving rate decreases. However, the binding process
may consume hundred milliseconds in some special cases,
e.g., the aforementioned synaptic transmission mediated by
NMDA receptors [29]. When T is long enough (in the exper-
iment is T → 1 s ), CFB and CIID are almost equal, which
implies that the capacity of the binding channel is achieved
by an IID distribution in the limiting case.

VII. CONCLUSION
In this work, we investigate the binding channel derived from
the ligand-receptor binding process in receiver. The channel
model is established by using a finite-state Markov process.

For a binding channel with peak and average constraints,
the discreteness of the capacity-achieving distribution for
IID binding channels is proved. Based on the characteristics
of the channel model, a criterion function is then proposed
to verify the optimality of the IID input distributions. Fur-
thermore, a numerical algorithm, called modified steepest
ascent cutting-plane algorithm, is proposed to efficiently cal-
culated the capacity-achieving input distribution. The numer-
ical results show the special effect of the average constraint on
the IID capacity-achieving input distributions and verifies the
tightness of IID capacity to the capacity of binding channels.

Comparing to the previous works, our channel model is
more realistic, derived from which the mathematical and
numerical results can hence be used in the actual scenarios,
e.g., modeling on the molecular-electro signal transduction
process in inter-neuronal communication or designing of
the bio-cyber interface in the healthcare delivery systems,
in molecular communication.

APPENDIX A
CALCULATION OF THE WEAK DERIVATIVE
As is defined, PθX = (1− θ )PX + θP′X , which means

Sθ = S
⋃

S ′, (47)

pθX = (1− θ )p̂X + θ p̂′X , (48)

where p̂X and p̂′X are |Sθ | dimensional row vectors expanded
with zero entries from the probability vectors pX and p′X ,
respectively, and |Sθ | is the cardinality of the set Sθ .

According to (25), PYi|Yi−1 is a linear function of PX ,
namely,

PθYi|Yi−1 = (1− θ )PYi|Yi−1 + θP
′

Yi|Yi−1 . (49)

Thus we have the following expansion.

R
(
PθYi|Yi−1 ,S

θ
) (

pθX
)ᵀ

(a)
= (1− θ )R

(
PθYi|Yi−1 ,S

θ
)
p̂ᵀX + θR

(
PθYi|Yi−1 ,S

θ
) (

p̂′X
)ᵀ

(b)
= (1− θ )R

(
PθYi|Yi−1 ,S

)
pᵀX + θR

(
PθYi|Yi−1 ,S

′

) (
p′X
)ᵀ
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(c)
= (1− θ )

[
R
(
PYi|Yi−1 ,S

)
pᵀX + D

(
PYi|Yi−1

∥∥∥PθYi|Yi−1) ]
+ θR

(
PθYi|Yi−1 ,S

′

) (
p′X
)ᵀ
, (50)

where (a) is based on (48); (b) is established since PX
is only positive on its support set S, so is P′X ; In (c),

D
(
PYi|Yi−1

∥∥∥PθYi|Yi−1) , (
d0(θ ), . . . , dN (θ )

)ᵀ is a column
vector consisting of relative entropies.

dyi−1(θ )=
N∑
yi=0

P(yi|yi−1) log
P(yi|yi−1)
Pθ (yi|yi−1)

, yi−1∈N . (51)

Lemma 2: According to the definition of dyi−1(θ ), the fol-
lowing limitations are established.

1) lim
θ↓0

D
(
PYi|Yi−1

∥∥∥PθYi|Yi−1) = 0;

2) lim
θ↓0

1
θ
πD

(
PYi|Yi−1

∥∥∥PθYi|Yi−1) = 0.

Proof 6:
1) Let θ = 0, then

dyi−1 (θ ) =
N∑
yi=0

P(yi|yi−1) log
P(yi|yi−1)
P(yi|yi−1)

= 0 (52)

2) The expression in the limitation can be expanded as

πD
(
PYi|Yi−1

∥∥∥PθYi|Yi−1)
=

N∑
yi−1=0

π (yi−1)
N∑
yi=0

P(yi|yi−1) log
P(yi|yi−1)
Pθ (yi|yi−1)

=

N∑
yi−1=0

π (yi−1)
N∑
yi=0

P(yi|yi−1)

· log

(
1+

θ
(
P(yi|yi−1)− P′(yi|yi−1)

)
Pθ (yi|yi−1)

)

=

N∑
yi−1=0

π (yi−1)
N∑
yi=0

P(yi|yi−1)

·

θ
(
P(yi|yi−1)−P′(yi|yi−1)

)
Pθ (yi|yi−1)

+o(θ )


= θ EPYi−1,Yi

(
P(yi|yi−1)−P′(yi|yi−1)

Pθ (yi|yi−1)

)
+ o(θ ), (53)

where o(θ ) is the higher-order infinitesimal referring to θ as
θ → 0.
The expectation in the first item in (53) is zero when θ = 0,

which leads to the second equation in Lemma (2).
Since π (πθ ) is the unique stationary distribution corre-

sponding to PYi|Yi−1
(
PθYi|Yi−1

)
, it implies that the following

equations have a unique solution.{
µPYi|Yi−1 = µ
µ1ᵀ = 1,

(54)

where µ ∈
{
π ,πθ

}
, 1 = (1, 1, . . . , 1) is a (N + 1) dimen-

sional row vector.
The equations in (54) can be reorganized as{

πθPθYi|Yi−1−πPYi|Yi−1 = π
θ
− π(

πθ − π
)
1ᵀ = 0

(55)

Taking (49) into the first equation in (55), we have

(1−θ )πθPYi|Yi−1+θπ
θP′Yi|Yi−1−πPYi|Yi−1=π

θ
−π . (56)

Let I denote the (N + 1) dimensional identical matrix. The
equations in (56) can be expressed as{(

πθ−π
)
9θ = θ

(
πθP′Yi|Yi−1−πPYi|Yi−1

)
(
πθ−π

)
1ᵀ = 0.

(57)

where 9θ ,
(
I− (1− θ)PYi|Yi−1

)
is singular as θ ↓ 0.

Based on the fact that (54) has a unique solution, the
expanded matrix [9θ , 1ᵀ] has rank (N + 1).
By adding 1ᵀ to the first column of9θ , the second equation

in (57) can be embedded in the first one and lead to the
following equation.(

πθ−π
)
9̃ = θ

(
πθP′Yi|Yi−1 − πPYi|Yi−1

)
, (58)

where 9̃θ ,W− (1− θ )PYi|Yi−1 withW defined as

W =


2 0 0 . . . 0
1 1 0 . . . 0
1 0 1 . . . 0
...

...
...

. . .
...

1 0 0 . . . 1

 . (59)

Hence we have

πθ = π + θ
(
πθP′Yi|Yi−1 − πPYi|Yi−1

)
9̃
−1
θ . (60)

Remark 4: It can be verified that the eigenvalues ofPYi|Yi−1
is a convex combination of the eigenvalues of PYi|Yi−1,Xi=xi ,
in same order, with the coefficient PX (xi) for xi ∈ S . Accord-
ing to (5) and (6), eigenvalues of PYi|Yi−1 are no greater than 1,
and only one of them equals 1. Therefore, the eigenvalues of
the matrix

(
W− (1− θ )PYi|Yi−1

)
are all positive, i.e., it is a

nonsingular matrix and hence invertible.
Taking (50) and (60) into the definition of weak derivative

in (26), one can obtain the expression shown in (61), as shown
at the top of the next page.
Based on Lemma 2, it can be deduced that

I ′∞(P
′
X ;PX ) = π

(
P′Yi|Yi−1−PYi|Yi−1

)
9̃
−1
0 R

(
PYi|Yi−1 ,S

)
pᵀX

+πR
(
PYi|Yi−1 ,S

′
)(
p′X
)ᵀ
− πR

(
PYi|Yi−1

)
pᵀX

= π
(
P′Yi|Yi−1 −W

)
9̃
−1
0 R

(
PYi|Yi−1 ,S

)
pᵀX

+πR
(
PYi|Yi−1 ,S

′
)(
p′X
)ᵀ
. (62)

104390 VOLUME 7, 2019



J. Sun, H. Li: On the IID Capacity-Achieving Input for Binding Channels With Multiple Ligand Receptors

I ′∞(P
′
X ;PX ) = lim

θ↓0

1
θ

{
(1−θ)

[
π + θ

(
πθP′Yi|Yi−1−πPYi|Yi−1

)
9̃
−1
θ

] [
R
(
PYi|Yi−1 ,S

)
pᵀX+D

(
PYi|Yi−1

∥∥∥PθYi|Yi−1) ]
+ θ

[
π + θ

(
πθP′Yi|Yi−1 − πPYi|Yi−1

)
9̃
−1
θ

]
R
(
PθYi|Yi−1 ,S

′

)(
p′X
)ᵀ
− πR

(
PYi|Yi−1

)
pᵀX

}

= lim
θ↓0

(1−θ )πD
(
PYi|Yi−1

∥∥∥PθYi|Yi−1)
θ

+lim
θ↓0

{
(1−θ )

(
πθP′Yi|Yi−1−πPYi|Yi−1

)
9̃
−1
θ

[
R
(
PYi|Yi−1 ,S

)
pᵀX

+D
(
PYi|Yi−1

∥∥∥PθYi|Yi−1) ]+ [π + θ (πθP′Yi|Yi−1 − πPYi|Yi−1) 9̃−1θ ]
R
(
PθYi|Yi−1 ,S

′

)(
p′X
)ᵀ }

−πR
(
PYi|Yi−1

)
pᵀX (61)

APPENDIX B
PROOF OF THE SUFFICIENT AND NECESSARY
CONDITIONS
Define the Lagrangian

L(PX ) = I∞(PX )− ϑ
(
EPX (X )− c̄

)
, (63)

where ϑ ≥ 0 is the Lagrangian multiplier.
By the method of Lagrangian multipliers [37], P∗X is opti-

mal if and only if P∗X and ϑ are such that

1) ϑ
(
EP∗X (X

∗)− c̄
)
= 0;

2) L(P∗X ) ≥ L(PX ) for all PX ∈ P(cL, cH, c̄).
Since I∞ is a concave function on the convex set

P(cL, cH, c̄) [31], L is also a concave function and the maxi-
mizer of (19) must exist.

For any legal input distribution PX , the weak derivative of
L at P∗X is calculated as

L ′(PX ;P∗X ) = lim
θ↓0

L
(
(1− θ )P∗X + θPX

)
− L(P∗X )

θ

= I ′∞(PX ;P
∗
X )− ϑ

(
EPX (X )− EP∗X (X

∗)
)
. (64)

Taking (27) into (64), then

L ′(PX ;P∗X ) = π
∗
(
PYi|Yi−1−W

) (
9̃
∗

0

)
−1R∗

(
p∗X
)ᵀ

+π∗R
(
P∗Yi|Yi−1 ,S

)
pᵀX

−ϑ
(
EPX (X )− EP∗X (X

∗)
)
, (65)

where 9̃
∗

0 = W − P∗Yi|Yi−1 , R∗ is the shorthand of

R
(
P∗Yi|Yi−1 ,S

∗

)
.

Generally, it is assumed that c̄ < cH since c̄ = cH is a
special case that can be proved in the same way by setting
ϑ = 0.

A. NECESSITY
Suppose P∗X is the capacity-achieving distribution. According
to the condition 2) listed at the beginning of this section,
the weak derivative L ′(PX ;P∗X ) should be non-positive for
any PX ∈ P , namely,

L ′(PX ;P∗X ) ≤ 0. (66)

Assume that δc is a Dirac measure defined as

δc(x) =

{
1 x = c
0 x 6= c.

(67)

For c ∈ [cL, c̄], the distribution δc is certainly an element
of the feasible setP . LetQc , P(T ; c) = PYi|Yi−1,Xi=c. Based
on the fact that Eδc (X ) = c, we have

L ′(δc;P∗X )=π
∗ (Qc−W)

(̃
9
∗

0

)
−1R∗

(
p∗X
)ᵀ
+π∗R

(
P∗Yi|Yi−1 , c

)
−ϑ

(
Eδc (X )− EP∗X (X

∗)
)
,

=π∗ (Qc−W)
(̃
9
∗

0

)
−1R∗

(
p∗X
)ᵀ
+π∗R

(
P∗Yi|Yi−1 , c

)
−ϑ (c− c̄) ≤ 0, (68)

where the last equality is derived from condition 1).
For cL ≤ s < c̄ ≤ c ≤ cH, define a Bernoulli distribution

Bc1,c2 as

Bs,c = (1− θ)δs + θδc, 0 < θ ≤
c̄− s
c− s

. (69)

Note that L ′(PX ;P∗X ) is a linear function of PX as P∗X is
given. Then the weak derivative L ′(Bs,c;P∗X ) can be regarded
as a convex combination which is

L ′(Bs,c;P∗X )= (1− θ )L
′(δs;P∗X )+ θL

′(δc;P∗X ) ≤ 0. (70)

Without loss of generality, assume s is the solution to
L ′(δs;P∗X ) = 0 for s ∈ [cL, c̄). Then

L ′(Bs,c) = θL ′(δc;P∗X ) ≤ 0, c ∈ [c̄, cH]. (71)

Since θ > 0, for c ∈ [cL, cH], we have

L ′(δc;P∗X ) = π
∗(Qc−W)

(̃
9
∗

0

)
−1R∗

(
p∗X
)ᵀ
+π∗R

(
P∗Yi|Yi−1 , c

)
−ϑ (c− c̄) ≤ 0. (72)

The weighted sum of I (δc;P∗X ) with the coefficient P∗X (c)
for c ∈ S∗ is∑
c∈S∗

P∗X (c)L
′(δc;P∗X )

= π∗
(
P∗Yi|Yi−1−W

) (̃
9
∗

0

)
−1R∗

(
p∗X
)ᵀ
+π∗R∗

(
p∗X
)ᵀ
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−ϑ

(∑
c∈S∗

P∗X (c)c− c̄

)
(a)
= −π∗R∗

(
p∗X
)ᵀ
+ π∗R∗

(
p∗X
)ᵀ

= 0, (73)

where (a) is established since P∗Yi|Yi−1−W = −9̃
∗

0 and∑
c∈S∗ P

∗
X (c)c = EP∗X (X

∗) = c̄.
Based on the non-positivity of L ′(δc;P∗X ), it is proved that

L ′(δc;P∗X ) = 0, c ∈ S∗. (74)

B. SUFFICIENCY
Suppose the inequality in (28) is satisfied, i.e.,

I (δc;P∗X ) ≤ 0, c ∈ [cL, cH]. (75)

Suppose S∗ =
{
s∗1, . . . , s

∗
M

}
. With a slight abuse of nota-

tion, let C∗ be a random variable following the distribution
P∗X . One can calculate the expectation of L ′(δC∗;P∗X ) as

EP∗X
(
L ′(δC∗;P∗X )

)
=

M∑
i=1

P∗X (s
∗
i )L
′(δs∗i ;P

∗
X )

= π∗
(
P∗Yi|Yi−1−W

) (̃
9
∗

0

)
−1R∗

(
p∗X
)ᵀ

+π∗R∗
(
p∗X
)ᵀ
− ϑ

(
EP∗X (C

∗)− c̄
)

= −ϑ
(
EP∗X (C

∗)− c̄
)

≥ 0, (76)

where the last inequality holds because P∗X ∈ P .
Combining (75) and (76), it is proved that

ϑ
(
EP∗X (X

∗)− c̄
)
= ϑ

(
EP∗X (C

∗)− c̄
)
= 0, (77)

which leads to the condition 1) listed at the beginning of
Appendix B.

Suppose PX is an arbitrary distribution in P , and the cor-
responding support set is denoted by S = {s1, . . . , sm}. Let
pX = (p1, . . . , p2) be the probability vector of PX , where
pj = PX (sj), j = 1, . . . ,m. Thus, we have

PX =
m∑
j=1

pjδsj . (78)

By linearity of L ′(PX ;P∗X ), it can be deduced that

L ′(PX ;P∗X ) =
m∑
j=1

pjL ′(δsj;P
∗
X ) ≤ 0, (79)

which leads to the condition 2).
In conclusion, as (28) is satisfied, condition 1) and 2) are

both established. Hence P∗X achieves the capacity.
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