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ABSTRACT The power consumption models of mobile application processors have emerged as key objects
of interest following the tremendous growth in mobile device production given that such consumption is an
important factor in the graphics performance of mobile technologies. Conventionally, the performance of the
graphics processing units (GPUs) depends critically on texture mapping units, which is why the number of
such GPU components and texture fill rates value prominently whenever the GPU performance is evaluated.
Our previous work has established a model to predict maximum performance based on unified shaders.
By extending the work, this paper developed a practically applicable GPU performance prediction model
on the basis of texture mapping performance. The effects of increased texture mapping units on unified
shader performance and GPU efficiency were examined, and a performance prediction model based on the
number of frames per second (FPS) was constructed. For these purposes, a benchmark related to texture
mapping units was formulated and the experiments were conducted to determine utilization factors that are
relevant to GPU performance and efficiency. The final stage in model construction involved establishing a
relationship between the previously investigated utilization factors and relevant resources that are consumed
during graphics processing. The experimental results showed that the proposed prediction model produced
an average error rate of 5.77%.

INDEX TERMS Computer graphics, dynamic voltage scaling, performance analysis, performance

evaluation, prediction method.

I. INTRODUCTION

The performance of application processors (APs) in mobile
devices and other embedded systems has dramatically
improved owing to the intensive advancement of semi-
conductor processes and design technologies. Currently
APs are being developed and manufactured with a single
chip in which multicore central processing units (CPUs)
and graphics processing units (GPUs) are integrated using
system-on-chip technology. As a result, it is common that
the performance of their CPU performance has come up to
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2.84 GHz clock speed and 64-bit 8 cores. Along with the
performance increase, more demand for graphics applications
that require very advanced technologies of augmented and
virtual reality and high-performance three-dimensional (3D)
rendering are getting popular. Such high-quality graphics
are processed at considerable computational cost and power
consumption [1], thus prompting enhancements to graphics
processing technology.

However, applying advanced graphics processing tech-
niques on a resource-constrained mobile platform has
become the most important issue to address. To improve high-
quality graphics processing in a limited environment, mobile
GPU manufacturers focus on developing chip designs that
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enable efficient processing with low power consumption, and
developers emphasize application optimization for smooth
operation with minimal resources.

Typically, mobile APs have low power consumption with
the help of low power design methodologies. However, when
using a GPU, it consumes a lot of power in nature. In this
case, that of the mobile AP is closely related to the use of
them. Higher graphics quality and faster processing perfor-
mance may inherently cause power consumption and heat
generation. In this regard, current mobile AAA games sup-
port an option for user control over graphics quality, texture
resolution, and frame rate. As the prediction of performance
and power consumption of mobile GPU becomes important,
various prediction methods are being developed. However,
accurate power consumption prediction should be made by
GPU performance.

In general, the models that can predict the power consump-
tion of mobile GPUs have been studied on the basis of three
methods. The first one measures and analyzes power con-
sumption with reference to each phase of a graphics pipeline;
the second one predicts power consumption by analyzing
dynamic voltage and frequency scaling (DVFS) according
to information on the utilizations of both CPU and GPU;
the third one predicts power consumption using an equation
extracted through learning. More details of these three meth-
ods are provided below.

The first method involves the use of primitive informa-
tion on a 3D graphics pipeline [5], the collection of batch,
vertex, and fragment data by each rendering path [6], and
the analysis of power consumption by 3D graphics com-
ponents in each pipeline stage [7], [8]. The second method
entails the use of information on vertex-processing and pixel-
processing loads [9], frequency scaling that accounts for user
and application conditions [10], and a dynamic power predi-
cation scheme that accords with CPU and GPU usage [11].
The third method calls for a combination of data collec-
tion and online learning using GPU frequency and workload
factor [12], machine learning that uses the profiling data of
CPUs [13], and a linear model that uses game application as
learning data [14].

The research of predicting the performance of mobile
GPU based on power usage can be approached in four
ways: 1) GPU performance prediction based on changes in
GPU-related parameters [15]; 2) the measurement and com-
putation of hardware performance in each graphics process-
ing phase [16]; 3) calculate using equations that factor the
performance of the GPU hardware [17]; 4) maximum perfor-
mance prediction grounded in the processing performance of
a unified shader [18].

The first method predicts the performance of a program
that uses designated instances by changing parameters such
as the number of threads, blocks, and streaming multiproces-
sors. The second one predicts performance by extracting a
linear regression model when it learns about a GPU’s low-
level performance and frame rate. The third one compares the
performance of a GPU with that of video graphics arrays in
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a proportion calculation scheme by converting various GPU
computational performance levels into an equation. The final
method determines the processing performance of a unified
shader on the basis of the examined relationship among
hardware units that constitute a GPU and predicts maximum
performance by normalizing utilization values.

In our previous study [18], we identified the unified shader
as a key component of GPU performance in which much of
the graphics pipeline operations were performed. Based on
this, we derived a new GPU performance prediction model by
running it at maximum. More advanced than before, the per-
formance prediction model proposed in this work has utilized
a complex correlation between TMU performance and the
maximum throughput of USI per GFLOPS in order to predict
the FPS.

FIGURE 1. Texture mapping via advanced graphics processing techniques
in a texture mapping unit; (a) Bump mapping off/on, (b) shadow
mapping, (c) light mapping, (d) environment mapping, (e) screen space
ambient occlusion off/on [19].

Figure 1 shows that for high-end graphics processing tech-
nology, TMUs perform texture mapping tasks, such as bump
mapping, shadow mapping, light mapping, environment map-
ping, and screen space ambient occlusion. TMU perfor-
mance is particularly important in high-performance GPUs
wherein texture processing is several times more complicated
than pixel processing. Considering that more high-end, high-
quality texture mapping technologies will be used in the
future, predicting TMU performance is a critical requirement.

The research confirmed that the processing efficiency of
unified shader instruction (USI) increased as the unified
shader, which is a core factor in mobile GPU performance,
was affected by TMU texture processing. With reference to
this result, the gigaflops (GFLOPS) consumed per frame was
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TABLE 1. Comparison table of characteristics of performance related reference paper.

Category [15] [16] [17] [13] [18]
Target Desktop GPU Mobile GPU Desktop GPU Desktop GPU Mobile GPU
Analytic Mathematical . . Mathematical K-Nearest Neighbor, Mathematical
. Linear Regression . Support Vector .
Model equation equation Machine equation
Low-level
Hardware performance:
The relevant parameters: specification: thlrr(l)sl:rl}lft;(t)r:m
The total number of Number of shaders, uni ﬁe%j sha der
resident blocks, number texture mapping Magnitude of GPU
. Low-level performance: . (vertex & fragment),
of threads in each block, . units, render output speedups: Lo
Triangle Throughput, : . GPU utilization,
Model the total number of units, Memory Computation,
. texture fill rate, . shaders busy, shader
Factor blocks spawned in the . bandwidth and GPU memory, control .
. the calculation speed of ALU capacity
device, the total number frequency flow, OpenMP,
. . shaders (FLOPS)
of streaming multi- aggregate Hardware
processors available in Operation speed: . L
. specification:
the device Shader, texture,
. GPU frequency, the
rendering °d Yy
calculation speed of
shaders (GFLOPS)
The average error
rate: 2.96%
The prediction error: The maximum error rate: The aclceuar:ltc':y of at T-Rex (0.10~6.22%)
Result P * | T-Rex 0.97 FPS, Egypt None : MANHATTAN
0.13~5.69% 77-90%, and the
0.93 FPS ; (0.95~4.32%)
best device: 91%
Bootcamp
(0.02~5.91)

obtained, and a performance prediction model that predicts
the number of FPS was developed. For the performance
evaluation, the Snapdragon Profiler [20] was used and exper-
iments based on the measured low-level performance were
conducted. As a result, the GFLOPS, GPU efficiency, and
GFLOPS per frame of the device are applied into the per-
formance prediction model. The experimental results indi-
cated that the average error rate between the predicted and
measured values of the corrected FPS was 5.77%.

The rest of the paper is organized as follows. Chapter 2
describes the unified shader-based performance prediction
model that was investigated in our previous study. Chapter 3
explains the GPU efficiency that is based on the number of
TMU s in a device. Chapter 4 discusses the FPS-based perfor-
mance prediction model that was constructed with reference
to the relationship among TMUS, the throughput of a unified
shader, and GPU efficiency. Chapter 5 presents the results of
experiments on the model put forward in the current work,
and Chapter 6 concludes the paper.

Il. BACKGROUND

A. PERFORMANCE PREDICTION MODELS FOR GPUs
Table 1 classify the performance prediction models proposed
in previous work, including our study, according to categories
of characteristics. In the table, the ‘“‘target” identifies the
platform of the device to be predicted, ‘“analytic model”
refers to the model used for prediction, “model factor” refers
to the factors used to derive the analytic models, and “‘result”
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represents the predicted value derived from the performance
model.

Hasan et al. [15] developed an analytic model to predict
GPU performance for computationally intensive tasks. The
analytic model is based on varying the relevant parame-
ters. These parameters consist of total number of threads,
blocks, streaming multi-processors. These parameters are
changed to predict the performance of the program for a
given instance. Although this analytical model was devel-
oped for computationally intensive tasks on desktop GPUs,
it may not be appropriate for mobile GPU environments that
perform graphics-intensive tasks rather than computationally
intensive tasks.

Xie et al. [16] proposed an estimation method for mobile
GPUs. They used 3D rendering low-level performance which
was measured at the early stage of SoC design. In addition,
they built a linear regression model for estimating mobile
GPUs. However, since the utilization factor which is variable
due to DVFS is not considered, it may be difficult to predict
performance close to actual performance.

Lee et al [17] established a mathematical equation for
predicting desktop GPUs. To estimate desktop GPUs, the
author derived operation speeds that occurs during calcu-
lation in the graphics pipeline. In addition, the hardware
specification of the desktop GPU (GPU frequency, shader
performance, texture fill rate, memory bandwidth, pixel pro-
cessing performance) was applied as an input parameter of
the equation. The equation is computed in such a way as
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to sum up the performance of the units being processed
in the graphics pipeline. However, the bottleneck depends on
the type of job being processed, the method of calculating
the equation may not be suitable for performance prediction.

Baldini et al. [13] proposed a performance prediction
model that could estimate speedup in a desktop GPU. This
model derived algorithms for performance prediction through
machine learning methods using CPU profiling data as input
parameters. Unlike the mobile GPU, the power consumption
and heat generation of the desktop GPU are controlled by
the user’s OS setting. Because of this, DVFS and throttling
functions were not considered as factor of limiting perfor-
mance. Therefore, the performance prediction model may be
inapplicable to mobile GPUs.

B. OUR PREVIOUS WORK: PERFORMANCE

PREDICTION MODEL WITH USI

In our previous study, we presented a new approach to the
prediction of mobile GPU performance by analyzing the
relationship between hardware units that make up a GPU
and GPU performance and ascertaining the maximum per-
formance for which DVFS and throttling are considered [18].
Through micro-benchmarking, we were able to measure
low-level performance values and investigate their direct
impact on performance by assigning workloads to each hard-
ware device. The simulation results showed that a unified
shader, which accounted for the largest space among the
hardware units that composed a GPU, directly influenced
performance. On this basis, we constructed a performance
prediction model, with the instruction throughput in unified
shader (USI) and predicted the USI per second throughput.

The simulation results in [18] showed the unstable per-
formance outcomes each time because of the throttling that
forcibly diminishes performance by the DVFS and tem-
perature of a device. We have investigated the relationship
between GPU performance and utilization through issues
related to DVFS and throttling.

In the graphics pipeline, the utilization values of each unit
can change in real time depending on the task being given.
Because of this issue causes the processing speed of each
unit to vary and it is difficult to predict GPU performance
accurately. To address the issue, Yun et al. [18] elevated
the utilization value of a GPU to its maximum level when
they developed a GFLOPS-based USIyax model; the USIyax
refers to the maximum performance in which instructions in
a unified shader can be processed.

Accurately predicting performance is very difficult
because utilization values change in real time in accordance
with a use environment, thus producing different process-
ing speeds whenever a GPU is used. To address the issue,
Yun et al. [18] elevated the utilization value of a GPU to
its maximum level when they developed a GFLOPS-based
USIMax model.

Thus, enabling us to explore the relationship between
the GFLOPS of the GPU shader core and GPU perfor-
mance and extracted the corresponding equation (Figure 2).
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FIGURE 2. The factors on the right of the figure reflect actual
performance, and those on the left indicate maximum performance. This
figure is the same as Figure 9 in [13].

TABLE 2. The parameters used in this paper.

Category Feature Mnemonic
USI throughput/second USI
. USI throughput to the maximum USIyax
Instruction USI th hout/ q
throughput rous pl,l . sec'on
(Corrected GPU utilization value USIcorrected
to 100%)
GPU utilization GPUU
Utilization Shaders busy SB
Shader ALU capacity utilized SALU
Hard Shader performance GFLOPS
aT Wa?e GFLOPS of the device GFpevice
specification
GFLOPS per frame GFframe

Equations have been validated in benchmark experiments on
mobile devices. This model predicted maximum performance
with an average error of 3.32%.

Ill. IMPROVED PERFORMANCE AND EFFICIENCY
FOLLOWING INCREASED NUMBER OF TMUs

A. TMU AND GPU EFFICIENCY

Next to unified shaders, TMUs process the largest amount of
work in a graphics pipeline. In the fragment shader phase that
follows vertex shader work, texture mapping and memory
access tasks for texture map loads are processed in TMUs.
If processing occurs fast because of the large number of units
that carry out texture mapping, then the delay in the work
processing of a unified shader decreases. The efficiency of
the shader core increases as the number of instructions that
are processed rises after delay reduction in unified shader pro-
cessing. Because the augmented efficiency of the shader core
increases throughput, the overall processing performance of
a graphics pipeline improves.

To confirm the improvement in shader efficiency following
an increase in the number of TMUs in a device, an exper-
iment involving GFXBench (an application generally used
to measure the performance of mobile devices) with textures
was conducted. Among the experimental devices used, the
GPU in G4 and G3 are the Adreno 4 series and are based
on similar GPU architectures. The performance compari-
son in Table 3 shows that the two models have identical
characteristics, except for the number of TMUs. To verify
the TMU-induced improvement in the performance of those
models, the low-level performance values of related items in
GFXBench were measured using the Snapdragon Profiler.
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TABLE 3. Comparison of G4 and G3 CAT 6 performance.

GPU clock Render output T™MU Shader performance Shader performance Product
roduc
(MHz) unit (ROP) 16 bit (GFLOPS) 32 bit (GFLOPS)
Adreno 418 600 8 8 316.8 163.2 G4
Adreno 420 600 8 16 3264 172.8 G3 CAT6
TABLE 4. MANHATTAN and TREX benchmark experiment results of G4 and G3 CAT6.
GPUU (%) SB (%) SALU (%) Actual USI throughput FPS
Scene
G4 G3 CAT6 G4 G3 CAT6 G4 G3 CAT6 G4 G3 CAT6 G4 G3 CAT6
MANHATTAN 95.68 69.10 71.20 72.51 27.92 39.92 16.2G 17.0G 16 16
TREX 99.75 90.11 72.51 69.14 25.13 32.81 14.2G 16.8G 36 37

The measured FPS performance values of them were very
similar, but the GPU utilization and shader ALU capacity
consumed were remarkably different shown in Table 4. The
experimental results on the MANHATTAN scene showed that
G4 exhibited a performance of 16 FPS while running at a
GPUU of 95.68%. G3 CAT6 did a performance of 16 FPS
while operating at a GPUU of 69.1%. For the TREX scene,
G3 CAT6 ran at a smaller level of GPU utilization but
achieved a performance similar to that of G4. As a result, it is
confirmed that the processing efficiency of the GPU increases
when processing with similar frame rate performance is per-
formed with a relatively small GPU frequency.

B. IMPROVEMENT IN USI PROCESSING

PERFORMANCE THANKS TO TMUs

Due to fluctuating GPU utilization values, it is difficult to
pinpoint performance differences due to TMU. To solve this
problem, the test environment was designed to approximate
conditions wherein GPU frequency is at its maximum level
of 600 MHz; this approximation was achieved by correcting
the GPU utilization value to its maximum. Normalization to
identical conditions via such correction enabled the monitor-
ing of the TMU-driven increase in the USI performance of
the experimental devices. The normalization was performed
using the following equation:

USI correctea(GPUU100%) =USI x100/GPUU (1)

In (1), USI is the weighted sum of the number of instruc-
tions that are processed in the vertex shader of a unified
shader and the number of instructions that are processed in
the fragment shader. This weighted sum is calculated taking
into account the percentage of the work done by the vertex
shader and the fragment shader. GPUU refers to the measured
GPU utilization value. So (1) is used to compute the corrected
USI throughput when GPU frequency is at its maximum.
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TABLE 5. Corrected USI throughput (GPUU 100%) of GFXBench.

USI throughput when GPU utilization is 100%
G4 G3 Increase of performance
CAT6 | (Number of TMUs increased)
MANHATTAN | 169G | 246G 1.4556 (45.56%)
TREX 142G 18.7G 1.3098 (30.98%)

As shown in Table 5, the corrected USI throughput of
G3 CAT®6, which has twice the number of TMUs, is approx-
imately 45.5% and 30.9% higher than that of G4 for the
MANHATTAN and TREX scenes, respectively. The aver-
age performance increase of 38.2% can be attributed to
the increased USI throughput due to TMUs rather than
the performance indicator GFLOPS of shader performance.
This increase reflects a difference of 9.6 GFLOPS between
G3 CAT6 and G4. To confirm these findings, we have fabri-
cated and experimented a microbenchmark without textures.

The microbenchmark in Table 6 was developed in such a
way that the corrected USI throughput could be displayed
by increasing the number of vertices from 0.1 million to
0.9 million (Figure 3). The microbenchmark results showed
that the corrected USI throughput of G3 CAT6 increased
by 9.15% over the level derived by G4. The findings also
indicated a large difference from the results of the GFXBench
experiment with respect to the increase in average corrected
USI throughput. Because there is no texture in the benchmark
in Table 6, the USI correction throughput is increased by
about 9.15% due to the shader performance GFLOPS differ-
ence of 9.6, regardless of the number of TMUs.

The non-textured experiment also confirmed that the effi-
ciency of the shader core increased when the number of
TMUs increased. This phenomenon is attributed to the fact
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TABLE 6. Corrected USI throughput (GPUU 100%) of the microbenchmark
without textures.

Corrected USI throughput (GPUU 100%){VI x weight) + FI} +
GPU utilization

Vertices G4 G3 CAT6 Incrza:e ;’fgrg’:}lznce'
100k 7.02G 8.01 G 1.140549236
200k 724G 9.16 G 1.264193623
300k 8.16G 922G 1.129668782
400k 8.14G 952G 1.169785576
500k 9.07G 975G 1.075155825
600k 957G 9.90 G 1.034325676
700k 10.05 G 10.19G 1.014561497
800k 10.14 G 1025G 1.010068068
900k 10.54 G 1039 G 0.985938119

Average 8.88 G 9.60 G 1.091582934 (9.15%)

FIGURE 3. Microbenchmark where the vertices increased from zero to a
range of 0.1 to 0.9 million.

that under these conditions, delayed work processing in a
unified shader decreases and instruction processing is exe-
cuted more efficiently. On this basis, we conclude that USI
processing performance in general applications with textures
can be affected by TMU performance.

IV. PROPOSED FPS-BASED PERFORMANCE

PREDICTION MODEL

The difference in USIcoprecteq demonstrated that the instruc-
tion throughput in a unified shader ultimately increases as
the efficiency of the shader core improves. In order to pro-
pose an FPS-based performance prediction model, the USI
throughput increase rate according to the number of TMUs is
defined as ETMU and the GPU efficiency value is defined as
EGPU. Predicting FPS performance necessitates determining
the EGPU, ETMU, and shader GLFOPS of an experimental
device and the GFLOPS required to draw one frame. The USI
value that is processed to draw one frame was obtained first
to identify the GFLOPS required to draw such frame. The
following equation was employed in calculating the USI per
frame:

USIFrame = USICorrected - FPSCorrected (2)
GFFrame = USIFrame - US]GFLOPS (3)

The FPScorrected derived using equation (2) refers to the
FPS value obtained when GPU frequency is corrected to
its maximum level in an experimental benchmark scene.
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In (3), the USIgrLops is the USI throughput per 1 GFLOPS.
We derived USIgpLops value of approximately 0.5137G
through experiment in our previous work [18]. The equation
yields the USI value that is processed to draw one frame.
The GFgrame that is consumed to draw one frame can be
obtained by dividing the computed USI per frame by the USI
average value that is processed in each GFLOPS, as shown
in (Table 7). In the experiment (V), the average GFLOPS
values per frame of the devices are 1.94 and 0.82 for the
MANHATTAN and TREX scenes, respectively. Also, in the
BOOTCAMP scene of Unity sample project, the GFLOPS
values per frame value is 1.14. The MANHATTAN scene
requires much higher GFLOPS to draw one frame than the
TREX scene. This indicates that the MANHATTAN scene
has higher scene complexity and shader complexity than the
TREX scene. The GPU efficiency of the experimental devices
should be applied to predict FPS values on the basis of the
GFLOPS values obtained above. Among the GPU efficiency
values, the EGPU is computed using (4).

EGPU = USI corrected + USI pax 4

In (4), the USIyax denotes the maximum level of USI
that can be processed in mobile GPUs. EGPU is obtained
by dividing the corrected throughput by the maximum USI
throughput. ETMU pertains to the additionally improved
GPU efficiency stemming from the increased number of
TMUs in mobile GPU series that have similar architectures.
For example, In the MANHATTAN scene (Table 7), GPU
efficiency was 18.09% on G4, which has a built-in Adreno
400 series. GPU efficiency increased by 28.95% on G3 CAT6,
which is equipped with the same Adreno 400 series. Of these
values, 10.86% is the ETMU value, which is additionally
increased by an increase in the number of TMUs. The GPU
efficiency value, which is one of the factor values for predict-
ing the FPS, can be obtained through (4). Finally, the predic-
tion target for FPS is determined thus:

FPS ={GF pevice X (EGPU + ETMU)} =+ (GF Frame) (5)

The FPS prediction value can be obtained from (5). The
computed FPS is the value derived when GPU frequency
is at its maximum level. GPU utilization data are normal-
ized because performance differs by device given variances
in DVES.

V. SIMULATION

A. EXPERIMENTAL ENVIRONMENT

This section details the simulations conducted on the
FPS-based performance prediction model. The used mobile
devices, an LG G4, G3 CAT6, GFLEX?2, and G5 have the
maximum GFLOPS values of 162.3, 172.8, 326.4, and 339.4,
respectively [21]. We took advantage of GFXBench and
Unity BOOTCAMP scenes for simulation and verification.
GFXBench is a commonly used benchmarking applica-
tion consisting of MANHATTAN and TREX scenes. The
BOOTCAMP scene is one of Unity sample projects and
designed as an actual 3D game application.
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TABLE 7. Results of GFXBench scenes and unity bootcamp scene for experimental devices.

Maximum USI GPU efficiency
Corrected USI
GFXBench throughput (GPUU
MANHATTAN throughput 100% SgBI;OO‘EA) sapLy |GPUUCR)| SB(%) | SALU(%)
(GPUU 100%) ’ ’ EGPU(%) | ETMU(%)
100%)
G4 16.9 G 832G 95.68 | 71.20 27.92 18.17 -
G3 CAT6 24.6 G 85.0G 69.10 | 72.51 39.92 18.09 10.86
G FLEX2 302G 168.1 G 74.89 | 67.90 26.52 18.01 -
G5 47.1G 175.8 G 99.69 | 75.52 35.53 26.83 -
Maximum USI GPU efficiency
Corrected USI
GFT);];";CI’ throughput . Oz]lf;""sg];";g;,f/cl::i[] GPUU(%)| SB(%) | SALU(%)
(GPUU 100%) » ” EGPU(%) | ETMU(%)
100%)
G4 142 G 81.7G 99.75 72.51 25.13 19.02 -
G3 CATé6 18.7G 82.5G 90.11 69.14 32.81 17.07 5.62
G FLEX2 242G 160.6 G 8244 | 62.53 24.17 15.11 -
G5 335G 177.1 G 99.39 | 74.09 25.55 18.93 -
Corrected USI Maximum USI GPU efficiency
Unit throughput (GPUU
BOOTCZ;MP throughput 100% sgBl;oo'E/., saLy [CPUU()| SB(%) | SALU(%)
(GPUU 100%) ’ ’ EGPU(%) | ETMU(%)
100%)
G4 20.89G 82.2G 33.38 66.09 38.42 25.39 -
G3 CATé6 22.29G 82.9G 57.18 63.80 42.14 21.30 5.59
G FLEX2 28.70G 166.7G 53.68 | 52.14 33.00 17.21 -
G5 45.51G 170.5G 39.68 | 72.68 36.72 26.69 -

FIGURE 4. Benchmark scenes for verification. (a) GFXBench - manhattan scene (b) GFXBench - TREX scene (c) 3D game application Unity

BOOTCAMP scene.

However, it is difficult to measure accurately performance

for the reason that the resolution and density of experimental
devices are different. As a result, we set the experiment
environment to make the resolution and density of those
devices equal for accurate performance measurement. The
measurements are made by using the Snapdragon profiler,
measuring 10 times for each benchmark, and then calculating
the average value of them.

B. EXPERIMENTAL RESULTS
Table 8 compares the predicted values of the FPS-based
model with the measured FPS values that corrected the
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GPU utilization by 100%. The difference between the pre-
dicted and measured FPS values in MANHATTAN and
BOOTCAMP scenes are approximately 1.3 and 1.65, respec-
tively, indicating that the predicted value and the measured
value are almost coincides.

Table 8 shows that there is a variance of predicted error
rate values when rendering different scenes on the same
device. This is because each scene has different GFLOPS
values for drawing one frame depending on various factors
such as shader complexity, the OpenGL ES version used
for rendering, texture types, and filtering methods. For this
reason, the error rate differs depending on the characteristics
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TABLE 8. Benchmark test results of the FPS-based performance prediction model.

G4 16 16.72 15.23 1.49 8.92%
G3 CAT6 16 23.15 25.70 2.55 10.99%
G FLEX2 22 29.37 30.20 0.82 2.8%

GS 47 47.14 46.78 0.37 0.78%

e || i |t | s | s

G4 36 36.09 37.75 1.66 4.60%
G3 CAT6 40 44.39 47.68 3.29 7.41%
G FLEX2 47 57.01 59.98 2.97 5.21%

GS 91 91.56 78.13 13.43 14.67%

G4 13 38.95 39.90 0.95 2.45%
G3 CAT6 24 41.97 44.73 2.76 6.57%
G FLEX2 28 52.16 54.09 1.93 3.7%

G5 35 88.20 87.21 0.98 1.13%

of each scene if the scene is rendered differently even though
on the same experimental device.

In the case of TREX, G5 has a performance difference of
about 13.43 FPS compared to the prediction result. This is due
to the visibility performance improved and the ALU/texture
array efficiency due to the changes in the G5 architec-
ture using the Adreno 500 series, unlike other devices as
the Adreno 400 series [22]. The MANHATTAN scene and
BOOTCAMP scene were created using OpenGL ES 3.0,
whereas the TREX scene was produced using OpenGL
ES 2.0. Similar to MANHATTAN, many current mobile AAA
games are developed in versions higher than OpenGL ES 3.0.

The average error FPS value of the FPS-based model in
comparison with the measured value of the corrected FPS
was 2.76, shown in Table 8. When the error FPS value was
converted into a percentage, the average error rate of the
experimental devices was 5.77% which demonstrated the
applicability of the model put forward in this work.

C. EXPERIMENTAL ANALYSIS

The prediction error results of the previous works [13],
[15]-[18] are shown in Table 1. Comparisons between
the results of this paper and previous works are as
follows. As mentioned in the background, the perfor-
mance prediction models of [13], [15]-[18] do not consider
the TMU. Furthermore, [15], [17] and [13] are not included
for comparison because they are targeting desktop GPUs.
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Hansan et al. [15] is an analytical model for computation-
ally intensive tasks in a desktop GPU and is not suitable
for mobile environments that perform graphic-centric tasks.
Lee et al. [17] utilizes only the specifications of the desk-
top GPU and does not reflect the architecture and appli-
cation characteristics. Baldini et al. [13] does not apply to
mobile GPU because it does not reflect DVFS and throttling
functions.

Xie et al. [16] predicts the performance of mobile GPUs
using a correlation between high-level and low-level bench-
marks. GFXBench TREX and EGYPT scenes were used for
verification. As a result of the model prediction, the maxi-
mum FPS error value was 0.97 and 0.93 in each scene. When
the error value is converted into a percentage, the average
error rate of the experimental devices is 19.52% and 5.78%,
respectively. The model may not be appropriate for compar-
ing them on completely different GPU architectures. In fact,
Anandtech’s benchmark results [22] show that the low-level
and high-level benchmarks results from GFXBench are not
entirely proportional. Furthermore, the model was established
at the peak of GPU performance without reflecting GPU
utilization, while our proposed model reflected utilization
values.

Our previous study [18] presented a more precise model
using the numerical values obtained directly from the GPU
profiler and showed a lower error rate than the existing
methods; but it has a limitation that only USI_MAX value
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is predicted. On the other hand, the proposed model in this
paper predicts actual FPS, which is more progressive than our
previous models.

The GFXBench TREX scene was commonly used
in [16], [18] as well as our environment for simulation. Thus,
we are able to directly compare the average error rate of
each model in the scene: 19.52% in [16], 3.08% in [18],
and 7.97%. Our previous work [18] reveals the lowest aver-
age error rate. But the predicted value is the maximum perfor-
mance of the unified shader, which is not a model considering
the actual FPS value. In contrast, our model is based on actual
FPS prediction, so it could be understood that 7.97% may be
numerically reliable.

VI. CONCLUSION

This research proposed a model that predicts the performance
of mobile GPUs by deriving FPS, which could represent
practical performance levels on the basis of GPU architecture
and utilization information. The performance of a unified
shader and the efficiency of a GPU increased following a
rise in the number of TMUs in the experiment on a texture-
related microbenchmark. On the basis of the results, an FPS
prediction equation was derived by establishing the relation-
ship between utilization factors that were relevant to GPU
performance and efficiency and related resources consumed
during graphics processing. This study predicted the FPS
of GFXBench using the proposed model, which derived an
average prediction error rate of 5.77% for all the experi-
mental devices. The average error rate confirmed the appli-
cability of the performance prediction model presented in
this work. Another advantage of the proposed model is its
ability to predict performance more practical than can an
existing performance prediction model based on maximum
USI throughput [18].

The experiments to proposed performance prediction
model was performed only on Qualcomm Adreno GPUs.
However, we believe that our model is applicable to other
commodity mobile GPUs that include fundamentally similar
rendering pipelines for OpenGL ES compatibility.

Future work will verify this model on various GPU archi-
tectures. Although our previous study [18] and the current
work focus on shader units and TMUs (two elements with
the largest influence on the performance of mobile GPUs),
other subsystems in a GPU (geometry units, raster operations
pipelines, memory units, GPU drivers, etc.) can also affect
performance [23]. If we extend the current study to a perfor-
mance model that can encompass various GPU subsystems,
more accurate hardware modeling will be possible.

Furthermore, in mobile devices, power consumption is
important as well as performance, and the power of a mobile
GPU varies flexibly depending on the rendering tasks and
performance required by the application. To exactly measure
power consumption of a GPU, the separated power rail of the
GPU on a development board is required as experimented
in [24]; but unfortunately, it is hard to directly apply this
method to commodity mobile devices.
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Instead, GPU power consumption can be approximately
compared by measuring system power consumption as
Anandtech did; of course, this approach may show somewhat
inaccurate results due to power consumption of other compo-
nents such as a CPU, RAM, etc.

Regarding these points, we would like to investigate how
to accurately estimate the GPU portion in entire system
power consumption. Furthermore, we would like to extend
our current model to a power-performance estimation model
as future work.
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