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ABSTRACT Due to increased embedded processing requirements, modern SoCs are becoming heteroge-
neous computing platforms by combining traditional processing units with custom reconfigurable hardware
accelerators (HAs) on an FPGA fabric. However, efficiently managing such HAs in an embedded Linux
environment involves handling Linux kernel source code and creating custom device drivers specific to a
target platform, therefore negatively impacting development costs, portability and time-to-market. To address
this issue, we present LEOSoC, a snap-on user-space manager for dynamically reconfigurable SoCs. Using
LEOSoC does not require any specific version of the Linux kernel, nor to rebuild a custom driver for each
new kernel release.LEOSoC consists of a base hardware system and a software layer which run on SoCs from
various vendors. The system identifies the SoC on which it is running and auto-adapts its communication
channels to the HAs accordingly. Furthermore, LEOSoC allows applications to partially or completely
change the structure of the HAs at runtime without rebooting the system by leveraging the underlying SoC
support for dynamic full/partial FPGA reconfiguration. The system has been tested on multiple commercial
off the shelf (COTS) boards from different vendors, each one running different versions of Linux, therefore
proving the real portability and usability of LEOSoC in a custom industrial design. Finally, we use a
cloud detection algorithm for multispectral image processing as a showcase for LEOSoC’s capabilities and
performance.

INDEX TERMS Adaptive systems, field programmable gate array, multithreading, reconfigurable architec-
tures, system-on-chip.

I. INTRODUCTION
The increased computational requirements exhibited by
today’s embedded systems have promoted the develop-
ment of reconfigurable heterogeneous System-on-Chips:
devices which integrate traditional hard IPs (embedded
CPUs, memory controllers, communication interfaces) with
a tightly-coupled FPGA fabric, as shown in Figure 1. Such
tightly-integrated reconfigurable logic enables system devel-
opers to design custom Hardware Accelerators (HAs) as a
function of their applications needs. Such increased device
complexity comes at the expense of application programming
effort, requiring improvements in existing tools focusing on
usability [1]. One of themost effective software environments
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for managing these complex SoCs is an embedded Linux
operating system. Indeed, 90% of today’s embedded devices
are based on Linux kernel derivatives [2]. The success of
embedded Linux systems is largely attributed to the availabil-
ity of a wide range of device drivers responsible for managing
all the hard IPs in an SoC. These drivers are provided by
SoC vendors and are eventually merged into the mainline
Linux kernel repository. In fact, the total space contribution
of device drivers in the Linux source code reached 57% of
the total lines of code in version 4.6 of the kernel. In contrast,
the kernel source code itself only comprised 1.2% of the total
code contribution [2].

A. MOTIVATION
User applications cannot directly communicate with hard-
ware because that requires privileges such as executing
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FIGURE 1. Reconfigurable system-on-chip – internal structure.

special instructions and handling interrupts. Device drivers
assume the burden of interacting with hardware and export
interfaces that applications and the rest of the kernel can use
to safely access devices. Applications operate on devices via
nodes in Linux’s /dev directory and learn information about
devices using nodes in the/sys directory [3]. Usually device
drivers run in kernel space for protection reasons, with the
drawback of being dependent on each version of the kernel.

While the Linux kernel shipped with SoC systems does
include a set of precompiled drivers that enable software
developers to rapidly develop reliable and ready-to-market
applications using the hard peripherals of the SoC, nothing
similar exists for the custom soft accelerators deployed on
the FPGA. Indeed, an application developer who creates a
custom HA on the FPGA must also write the custom driver
that supports the accelerator and allows their applications to
easily interface with it. Writing a custom driver for every HA
is tedious for two reasons: (1) The driver would need to be
adapted to each SoC platform to account for its specifici-
ties (different system topologies, peripherals, and addresses).
(2) The driver would need to be adapted and recompiled
whenever the Linux kernel is updated since the OS only
accepts to dynamically insert a loadable device driver if it is
compiled specifically for the same kernel version currently
running on the platform. This makes sense since device
drivers must match the kernel’s driver interface. However,
given that a new version of the kernel is released every
70 days [4] the portability of the device driver is severely
restricted.

Furthermore, to decouple the Linux kernel developer teams
from hardware vendors, the community introduced the con-
cept of a device tree. By using a device tree, the description
of the hardware structure (such the base address, the registers
addresses, and the driver name of all hardware peripherals)
can be loaded at boot time from a file instead of being hard-
coded into the OS kernel [5]. Although loading the hardware
description at boot time poses no issues on systems with
fixed hardware, it makes it difficult to change the hardware
at runtime by reprogramming the FPGA as doing so would
require restarting the operating system to load a new device
tree. To address this problem, has been introduced the concept
of Device Tree Overlay (DOT), which allows to overwrite
the device tree at runtime [6]. In fact, the newest Xilinx tool

Listing 1. Sample example program.

SDSoC [7] is able to produce the device tree required for
the hardware designed, but still it needs to reboot the system
after the FPGA reconfiguration, and it does not avoid to the
user developer to handle the Linux sources. Another facility
Linux provides for managing hardware devices is the user-
space driver subsystem (UIO) which we attempted to use in
our work since it provides the ability to handle interrupts [8].
However, its support is typically not compiled into the kernel
by default.

B. GOAL
Our primary goal is to allow software experts to easily access
and use hardware accelerators deployed on the FPGA fabric
of such SoCs. Listing 1 shows a full programwhich can inter-
act with HAs through LEOSoC. The code is simple, compact,
and has no kernel version or compilation dependencies. A
simple inclusion of the LEOSoC.h header file at the top of the
file is enough to use the library. Calling the init() function
and passing it the FOUR_HA_STRUCTURE parameter allows
one to instantiate a static hardware structure which can host
up to 4 HAs simultaneously onto the FPGA. Through the call
create(1, HA_TYPE_A) we load a hardware accelera-
tor of type A which is then instantiated into one of the avail-
able slots in the static FPGA structure programmed before.
Sending commands/data to the HA is achieved through the
write_reg(1, REG_INPUT, data_input) func-
tion which takes care of hiding all the complexity related
to interfacing with the FPGA interface from a software
application. This function can be used to pass to the HA
the shared memory addresses to read/write data, avoiding
data movement. The application then waits for the HA to
terminate its internal operations by using the join(1)
function and finally retrieves the computed data using the
read_reg(1, REG_OUTPUT) function. This code can
be compiled and executed as-is on different platforms,
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for example on Xilinx and Altera (now Intel) devices, without
changing a single line in the application code. Section IV
shows how LEOSoC achieves this transparency.

C. PAPER ORGANIZATION
This paper is organized as follows: Section 2 presents related
work by underling their main differences with respect to our
software library. Section 3 describes the characteristics of
LEOSoC. Section 4 shows how LEOSoC is internally con-
structed as well as the hardware it supports. Section 5 show-
cases performance and a sample use case of the library.

II. RELATED WORK
Over the years much prior work has tried to simplify
the management of hardware accelerators from a software
perspective. LinROS [11] uses a Linux device driver that
automatically manages the software and hardware of the
reconfigurable SoC at runtime. However, it is an extension
of a specialized version of Linux which limits its portability
to other custom platforms with all the constraints related
to driver development. The ReconOS operating system [9]
offers unified services for functions executing in software
and hardware, and a standardized interface for integrating
custom hardware accelerators. ReconOS leverages the well-
established multi-threading programming model and extends
a host operating system with support for hardware threads.
ReconOS is currently specialized for Xilinx SoCs, does not
support dynamic full bitstream reconfiguration, and portabil-
ity to different custom platforms is unsupported. R3TOS [14]
is another real-time operating system capable of interfacing
hardware and software systems. It is focused on hardware
reliability by enabling the system to auto-detect hardware
faults. However, it is not based on Linux and therefore
reduces its applicability. SPREAD [12] is a framework able to
manage hardware and software threads where a lightweight
OS kernel has been used for extend control to hardware
threads. Again, is another non-linux OS extension with porta-
bility and flexibilty limitations. FUSE [10] is a front-end
for easy integration of hardware threads. It is composed of
two parts: TLFC which runs in user-space and LLFC which
runs in kernel-space. Since FUSE includes some parts run-
ning in kernel-space, it cannot be completely free of kernel
dependencies like LEOSoC, which runs completely in user-
space. As a consequence, while FUSE can, from a high-
level architecture perspective, work on any Linux platform,
the LLFC module may have to be adapted every time the
kernel version is changed. CAP-OS [13] is a runtime system
capable of controlling and scheduling the reconfiguration
of hardware partitions following a preemptive-scheduling
approach. In CAP-OS, Xilkernel is used as a lightweight
OS. Again, is not Linux-based and not portable to different
platforms. Mini-NOVA [15] is a lightweight ARM-based
virtualization microkernel supporting dynamic partial recon-
figuration. It runs on Zynq SoCs from Xilinx and is based on
an RTOS. It doesn’t have any support for full dynamic recon-
figuration and the portability to other platforms is restricted

to the native design. Furthermore, it is RTOS-based and
not Linux-based. Hthreads [16] is a framework for manag-
ing hardware accelerators from software. It is able to man-
age hardware threads on an FPGA in a similar way as the
operating system does for software threads by supporting
semaphores and interrupts. However it is an extension of an
RTOS and therefore suffers from portability and flexibility
issues limited to the specific platform it was developed on.

A. DIFFERENCES OF OUR WORK
Our work is different from those presented above for several
reasons. Firstly, it was specifically designed for portability
on different platforms. Secondly, with respect to useability,
the goal was to make the library simple to use and, more
importantly, easy to integrate in a real industrial design.
By avoiding any kernel dependencies, LEOSoC can be used
on any kernel version without changes in the source code.
Moreover, LEOSoC has been designed to use the same source
code (without any modification) on different platforms by
different vendors, since it recognizes the platform where it
is running and auto-adapts the system calls and address map
accordingly. Adding new platform to LEOSoC is much easier
compared to other systems since it does not require to handle
the Linux kernel’s source code neither to recompile it from
scratch. This reduce dramatically the effort, skills, and time
needed for adding new platforms to the existing ones.

III. CROSS-PLATFORM EMBEDDED LINUX LIBRARY
The new approach proposed in this paper aims to over-
come the high effort required to interface with FPGA-based
hardware accelerators in an embedded Linux environment.
We focus our attention on making this software cross plat-
form, easy to use, while at the same time being reliable. In this
section we present the characteristics of the library. The
library consists of two distinct parts which work together. The
first part of the library consists of a portable base hardware
template to be instantiated on the FPGA and which contains
all the infrastructure needed to support up to N hardware
accelerators, akin to the ‘‘shell’’ in Microsoft Catapult [17].
We call this base hardware template the ‘‘static design’’.
The second part of the library is a software module which
leverages the infrastructure of the static design to provide
software developers with easy access to their hardware accel-
erators and allows them to partially/fully reconfigure the
FPGA in their target platform.

A. CROSS PLATFORM
All the architectural constructs are made using the HAL
(Hardware Abstraction Layer) software model, allowing to
execute the same source code on different platforms, indepen-
dently on the underlying hardware [18]. At startup, the library
tries to discover the platform on which it is running and,
once determined, adapts its behavior and consequently the
address mapping accordingly. The source code is written
without any constraints related to the structure of a particular
SoC which would restrict the applicability of the library.
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TABLE 1. Comparison to related work.

For every supported platform, the platform include a header
file containing all the references for the specific platform.
Furthermore, the concept of portability is not based around
FPGAs from the same family or from the same vendor. At the
time of writing of this paper, our library supports Intel and
Xilinx SoCs, however we plan on adding upcoming support
for Microsemi and recent NanoXplore FPGAs to maximize
applicability.

B. EASY TO USE
The second important element where we focus our attention
is the usability of the framework. Building and incorporating
the library in an application is simple. The library is statically
built using a traditional GCC makefile, one of the de facto
standard in embedded system development environment. The
makefile generates a static .a library file which can then eas-
ily be included in the custom makefile of a target application.

C. RELIABILITY
LEOSoC supports FPGA Dynamic Full Reconfigura-
tion (DFR) and Dynamic Partial Reconfiguration (DPR). The
main problem with software support for dynamic full recon-
figuration and dynamic partial reconfiguration is related to
the management of different hardware structures while repro-
gramming the FPGA. Indeed, trying to access an accelerator’s
memory-mapped registers when the accelerator is physically
absent causes the system to hang and requires a reboot of
the whole machine. In our library this problem has been
avoided by checking the hardware status before accessing
the bus. Another relevant problem is related to the glitches
during the dynamic partial reconfiguration. To address this
problem, we introduced hardware isolation, explained in
Section IV-C, automatically managed by the library without
any intervention needed from the user.

IV. LIBRARY STRUCTURE
The internal structure of the library is designed in order to
hide all the hardware structures needed to support the HAs
from the software developer’s workload. Figure 2 shows the

Figure 2. Library internal structure.

internal structure of the library. Basically, the software library
is mainly composed of two parts: a front-end and a back-end.

A. FRONT-END
User Developer Interface: The design of the front-end is
inspired from the programming paradigm used to manage
POSIX threads, inspired by HThreads [19]. This choice
was mainly done from a user-friendliness principle as most
embedded software developers are well-accustomed to this
paradigm and they would not have to learn a completely
different framework to be able to efficiently interface with
their custom HAs. POSIX threads, PThreads [20] for short,
is an execution model which support concurrent execution
in a software environment. Similarly to the virtual soft-
ware multi-threading that occurs in a classic CPU, an SoC
with an integrated FPGA can support hardware threads
in its FPGA to achieve real concurrent execution. In our
work we have focused our attention on the basic manage-
ment of HAs, but future implementations and optimizations
to further match PThread-like semantics are planned. The
complete list of public functions is reported in Table 2.
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TABLE 2. List of public functions.

The create() and join() concepts are familiar from
the PThreads context. Additionally, we have introduced the
init() and destroy() functions whose main scope is
to define the static design of the FPGA, i.e., the FPGA
structures needed to support a given number of HAs and their
corresponding size in terms of device resources. Using these
functions allows developers to allocate/deallocate a finite
number of HAs at runtime on their target platform. Finally,
the library provides a set of standard interface functions that
grant developers access to their HA’s internal registers so they
can easily program their custom accelerators.

B. BACK-END
The back-end performs all the operations needed to interface
the FPGA subsystem from software. It is composed of the
following components:

• Accelerator Control Unit;
• Address Management Unit;
• FPGA Communication Interface;
• Platform Management Unit;
• Hardware Reconfiguration Unit;
• FPGA Programming Interface.

1) ACCELERATOR CONTROL UNIT
This unit represents the core of the library. The accelerator
control unit manages and dispatches requests coming from
the front-end to the FPGA subsystem for controlling, repro-
gramming and restructuring the HAs. It also manages the
assignment of the HA into available partial-reconfigurable
regions, in function of the availability of free HA slots. If the
number of requests exceeds the available slots, it will be
inserted in a queue, then dispatched when the slot become
available.

2) ADDRESS MANAGEMENT UNIT
The user developers cannot directly access a physical address
since the library provides an abstract access to the HAs.
The address management unit is responsible for computing
the physical address of the specific HA by evaluating the
mapping function reported in equation [1]:

PhysAdd = BaseAddp + (HAi · HAc). (1)

where BaseAddp represents the base address of the control
bus specific to a given platform, HAi is the hardware acceler-
ator index provided by the user, andHAc is a coefficient fixed
by the hardware design currently loaded. Both BaseAddp and
HAc are provided by the platform management unit, which
stores information about the FPGA structure for the running
session.

3) FPGA COMMUNICATION INTERFACE
From the operating system’s perspective there cannot be any
specific driver loaded for the HAs since one does not know
what the structure of the FPGA for the running session is.
Accessing the HAs registers through physical memory is
instead managed by the library through the /dev/mem sys-
tem device. In Linux, /dev/mem is a character device file
that is an image of the physical memory of the system [21].
Indeed, using the mmap system call [22] it is possible to
access the registers of the HAs present in the programmable
logic of the FPGA at runtime, therefore avoiding any depen-
dency on a Linux device tree or a Linux device driver.
Furthermore, this approach enables the library to change the
number and the size of the HAs at runtime, without reloading
any device tree, driver or rebooting the system for using the
new hardware peripherals.

4) PLATFORM MANAGEMENT UNIT
The library is capable of discovering its host platform. This
discovery process is executed during the library’s initializa-
tion phase. The CHECK_FPGA() function checks for the
presence of the FPGA programming device in the Linux file
system, which is distinct on every platform. Once a compat-
ible programming device is found, the running environment
can be set and consequently used from the address manage-
ment unit for the computation of the physical addresses.

5) HARDWARE RECONFIGURATION UNIT
In reconfigurable SoCs, the processing system includes a
special device that is responsible for reconfiguring the pro-
grammable logic on the FPGA fabric at runtime. Since this
device is part of the hard IPs, a custom driver for this periph-
eral is already present in the Linux kernel, usually released
with the reference Linux kernel image of the board. From the
library’s perspective, the reconfiguration is managed through
the specific platform driver of the reconfiguration controller.
The reconfiguration controller is visible to the operating sys-
tem as a standard character device file and reconfiguration is
done by simply writing the target bitstream into this device
file.

6) FPGA PROGRAMMING INTERFACE
Each platform has its own custom device file for performing
dynamic partial/full reconfiguration on the programmable
logic. To detect which device file to use, the hardware recon-
figuration unit queries the platform management unit for
information about the platform’s device at library initializa-
tion time. To provide a standard interface to this device file
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Figure 3. FPGA static design.

we created a virtual interface called FPGA programming
interface which points to the correct device. After the first
access to the device file, the hardware reconfiguration unit
caches the device identifier in its environment variables for
the current running session. The throughput of the reconfig-
uration controller depends on the capabilities of its actual
hardware and on its device driver’s capabilities. We show
some reconfiguration throughput measurements in Section V.

C. BASE HARDWARE STRUCTURE
The base hardware structure is the improved version of the
architecture presented by Guerrieri et al. [23] adapted to
be synthesized on FPGAs from different vendors. This base
hardware structure (i.e. static design) has been specifically
designed to host multiple independent HAs with different
purposes, sizes and functionalities. Figure 3 shows the inter-
nal structure of the static design infrastructure.

1) HARDWARE ACCELERATOR
Each HA shares the external memory with the CPU and
with the other HAs through the Payload Bus. The HA can
be automatically-generated using high-level synthesis tools
such as Vivado HLS [24] or Intel HLS Compiler [25], or can
be designed using the standard hardware description lan-
guages such as VHDL or Verilog. In order to normalize
the HA’s interfaces, to provide virtual memory protection,
and to ensure the dynamic partial reconfiguration process,
we introduced the hardware accelerator wrapper.

2) HARDWARE ACCELERATOR WRAPPER
We implement a standard hardware accelerator wrapper
which we use to contain accelerators and control their
access to the rest of the system. Having a standard wrap-
per also allows the system infrastructure to monitor and
control the accelerator independently from the accelerator’s
functionality. Figure 4 shows the architecture of the hard-
ware accelerator wrapper. It is it composed of (1) a wrapper
control unit, (2) a partial-reconfigurable region (acceler-
ator slot), (3) isolators, and (4) a Translation Lookaside
Buffer (TLB). The wrapper control unit provides a set of

Figure 4. Hardware accelerator wrapper.

predefined registers for controlling the subsystem’s compo-
nents. An accelerator kernel can be loaded dynamically into
each partial-reconfigurable region depending on user/system
requests. Isolators provide a safe interface between the static
design and dynamic design during partial reconfiguration,
in order to avoid that hardware glitches affect the rest of the
system during the reconfiguration process. Finally, a TLB
is added to each hardware accelerator wrapper to enable
memory protection and virtualization. If disabled, the TLB
will transparently allow direct access to memory.

3) INTERNAL BUS
Controlling the HAs behavior from software requires to
have a communication link between the CPU and the HAs.
SoCs include several such interconnects which all use the
AXI4 protocol, so all communication between the CPU and
the HAs in the static design is AXI4-based. However, the HAs
would achieve very low performance if they were to ask
the host CPU to perform memory accesses for them as a
middleman and communicate the result to them through a
simple control/status bus. To get around this issue, we decou-
ple the static design’s communication infrastructure into two
independent interconnects: the control/status bus and the pay-
load bus. The control/status bus is an AXI4-Lite interconnect
whose main role is to allow the host CPU to manage the HAs
through their control/status interfaces by writing to control
registers and reading from status registers. The payload bus
is an AXI4-Full interconnect which gives accelerators high-
performance direct access to system memory without involv-
ing the host CPU or the software library in any way.

4) HA CENTRAL UNIT
This unit is managed by the library and its goal is to intercept
requests directed to the processor from the HAs, in order
to centralize the requests. The library read the status of
all the HAs through this unit using one bus transaction,
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TABLE 3. Dynamic partial reconfiguration and dynamic full
reconfiguration measurements for the selected target platforms.

independently of the number of HAs present in the static
design. An example of such a request is the termination of a
scheduled job or the notification of an error. The HA central
unit is connected to the control/status bus and the number of
HAs it supports is related to the number of HA slots present
in the static design.

V. EVALUATION AND TESTS
A. EXPERIMENTAL SETUP
We tested the execution capability of the same library on
different versions of Linux kernel without changing a single
line in the source code. Furthermore, to demonstrate the
real advantages coming from the uses of such as library
for embedded systems, we developed and tested a realistic
industrial application, a cloud detection algorithm for multi-
spectral image processing. We deployed our system on two
FPGAs from two major device vendors:

1) Xilinx ZC706 (Xilinx XC7Z045-FFG900-2, high-end)
2) Terasic DE0-Nano-SoC (Altera 5CSEMA4U23C6,

low-end)

B. PERFORMANCE AND RESOURCE UTILIZATION
1) HARDWARE ACCELERATOR INSTANTIATION LATENCY
The create() function involves the dynamic partial recon-
figuration. The reconfiguration time tr is determined by two
factors: the bandwidth of the reconfiguration controller Br
and the size of the bitstream ls. However, the dynamic partial
reconfiguration is performed only during the first instantia-
tion of theHA, reducing the latency and improving the perfor-
mance in runningmultiple times the same accelerator. Table 3
shows the measured reconfiguration time for dynamic full
reconfiguration and dynamic partial reconfiguration, where
supported by the underlying device.

2) READ/WRITE LATENCY
To measure the latency of our read() and write() APIs,
we instantiate a simple accelerator with a single configura-
tion register and we use Xilinx’s Integrated Logic Analyzer
to measure the pulse width on that register when toggling
its value in a sequence of tight writes through our library.
We compare this pulse width to the one observed when the
same register is set by consecutive writes in a bare-metal
application, which is an optimistic estimation of the latency
we would measure if we were using a device driver. Table 4
shows that our user-space library only introduces a latency
overhead of 55 ns on accessing the control/status interface of
a given HA.

TABLE 4. Hardware access latency.

Figure 5. Hardware access latency from bare-metal software (top) and
from user-space Linux software using LEOSoC (bottom), as measured by
the Xilinx ILA (orange to blue cursor, bottom blue time scale in 200 MHz
FPGA clock cycles). Even with our library, hardware access latency
remains on the order of hundreds of nanoseconds just like bare-metal
software, the latter providing an optimistic estimation of access times
seen by a driver.

TABLE 5. Resource utilization of hardware system template. Note that
Altera and Xilinx FPGAs have different units in their basic blocks, so no
linear ratio can be derived between the utilization of slices vs. ALMs.

3) RESOURCE UTILIZATION
Table 5 shows the resource utilization of our hardware infras-
tructure on two different FPGAs. Computing area usage
is tricky since it requires knowledge of what the basic
building blocks of the specific FPGA used. In percentage,
the static design occupies 4% of the FPGA resources of the
Xilinx ZC706’s SoC (high-end) while 28% on the Altera
DE0-Nano-SoC’s one (low-end).

C. BENCHMARK APPLICATION
1) CLOUD DETECTION ALGORITHM DESCRIPTION
The cloud detection algorithm is an application used in satel-
lite for earth observation. The purpose is to process multi-
spectral images to find clouds in images [26]. The analysis is
performed applying a series of sequential filters, starting from
the red region of the solar spectrum. The output is a proba-
bility of potentially cloud for each pixel. The algorithm fil-
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Figure 6. Cloud detection algorithm steps. Algorithm input:
Multi-spectral images. Algorithm output: Scene classification mask.

Figure 7. System view of cloud detection hardware implementation.
White boxes represent reusable modules. Gray boxes represent custom
modules.

tering sequence can be divided into two parts: the basic cloud
detection sequence (CDS) and the snow detection sequence
(SDS). The SDS is enabled if and only if the image contains
snowy pixels. The SDS sequence may not be instantiated
into the hardware thread that will detect clouds in snow-free
regions to further save FPGA resources and power consump-
tion. However, the snow sequence can be added whenever
the image represents a snowy region thanks to the capabil-
ity of our library. This can be simply done by swapping
hardware accelerator implementing CDS and CDS + SDS
sequences using thecreate() function call. Figure 6 shows
the block diagram of the cloud detection algorithm used in
our experiments.

2) HARDWARE ACCELERATOR IMPLEMENTATION
The algorithm’s steps are implemented in a processing ele-
ment (PE). The PEmodule may be instantiated as many times
as the partial-reconfigurable region size allows it. Except
for the PE modules, all the other modules of the hardware
accelerator design are from the hardware accelerator tem-
plate, such as DMA engines, AXI interfaces, configuration
registers, arbiters, FIFOs and interrupt systems. Figure 7
shows the HA internal structure for the given application.

3) EXECUTION PERFORMANCE
We compiled and executed on the dual-core ARMCortex-A9
processor the software version of cloud detection algorithm

Figure 8. Total execution time for various hardware configurations.

TABLE 6. Platform performance for various hardware configurations.

TABLE 7. Speedup processing multiple images for various hardware
configurations.

Figure 9. Speedup For multiple image processed in sequence.

using 1, 2, and 4 software threads. Then, we compared the
execution time using 1, 2, and 4 HAs. Figure 8 compares the
execution time of the software-based algorithm to the various
hardware-accelerated versions. Table 6 reports some time
details on the application execution, showing the setup and
the execution time for the different versions. This table shows
the achievable speedup up to 34× in the hardware-accelerated
version and how the HA’s instantiation latency can affect
the performance. In fact, although the HA execution time is
smaller with multiple HAs, the total time increases. This is
true processing a single image. In processing multiple images
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in sequence the setup time disappears thanks to the caching
feature of LEOSoC. Table 7 shows how the speedup change
as a function of the number of images. Up to 5 images,
the fastest version remains the one with one HA, while the
version with 2 HAs becomes more effective starting from
10 images. Here is where LEOSoC play the key role: the user
can decide at runtime how many HAs allocate and run con-
currently to achieve the best performance, with a minimum
design effort.

VI. CONCLUSION
This paper presents LEOSoC, a snap-on, user-space manager
which solves the problem of managing hardware accelerators
in dynamically-reconfigurable SoCs, with minimum devel-
opment effort. As shown in the motivation and in the review
of related work, most LEOSoC features are individually
available in other solutions. Yet, we believe that LEOSoC
represents a unique solution which combines pragmatically
and effectively everything an embedded system developer
needs to profit of emerging reconfigurable platforms with
minimal risk and negligible effort. Besides, and contrary to
some other academic embodiments of similar ideas, LEOSoC
is designed with performance in mind and not to compromise
the speedup one can achieve from hardware accelerators. We
have shown that the overhead of accessing the HA registers
from the CPU through our library is negligible compared to
a bare-metal application and that realistic signal processing
applications can achieve significant speedups with minimum
costs. The source code of LEOSoC will be released as open-
source available for download at https://github.com/Andrea-
Guerrieri/LEOSoC.
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