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ABSTRACT In multi-extended target tracking, each target may generate more than one observation. The
traditional probability hypothesis density (PHD)-based methods are no longer effective in such scenarios.
Recently, the Gaussian mixture PHD approach for the extended target tracking (ET-GM-PHD) has been
presented to solve such a problem. The tracking performance of this approach has been restricted by the
following disadvantages. First, it only focuses on the linear models. When targets are moving with nonlinear
models, it may lead to great tracking errors. Second, the birth intensities are commonly assumed as a prior.
In practice, these intensities are always unknown. In order to improve the tracking performance of the
traditional ET-GM-PHD approach, a novel extended target tracking approach, namely the ET-cubature
information GM-PHD (ET-CIGM-PHD) approach, has been proposed in this paper. To be more specific,
we, first, utilize the cubature information filter (CIF) and gating methods to predict and update the Gaussian
mixture components of the ET-GM-PHD approach. In the merit of high estimating accuracy of the CIF
method, the tracking accuracy of the traditional ET-GM-PHD approach can be significantly improved. Due
to the gating method, only part of cells can be used to construct the observation set in the update stage.
Thus, the computational load of our approach can be significantly reduced. Then, we propose an adaptive
initiating method for the birth intensity initiating. In our method, we utilize the estimated target set to select
the most possible partition. Then, we remove cells associated with the estimated targets from the selected
partition. The left cells are used to initiate the birth intensity. With the help of the above implementations,
the birth intensity can be adaptively initiated. Using such a method, our approach can solve the cases that
the prior information of birth intensity is rather little. The simulation results demonstrate the effectiveness
of our approach.

INDEX TERMS Multi extended targets, Gaussian mixture, probability hypothesis density, cubature infor-
mation filter.

I. INTRODUCTION
A. BACKGROUND
In multi-target tracking area, targets are commonly assumed
to follow the standard target models. That is to say, each target
can generate at most one observation (see Fig 1). However,
for modern radars with high resolutions, targets may occupy
several resolution cells. In these cases, each target may give

The associate editor coordinating the review of this manuscript and
approving it for publication was Weimin Huang.

rise to more than one observations (see Fig 2). Such targets
are named as the extended targets [1]. Compared with the
standard targets models, the observation models of extended
targets require the following two components; the model for
the number of observations generated by each target, and
the model for spatial distribution of these observations [2].
Otherwise, the associations between observations are always
unknown. Thus, the tracking approaches for multi targets,
such as the nearest-neighbour Kalman filter (NNKF) [3],
multiple hypothesis tracking (MHT) [4], and joint
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FIGURE 1. Standard target tracking. The state of the target have no more
than one corresponding observation in the observation space. Here,
we use the same color to represent the state and its corresponding
observation.

FIGURE 2. Extended target tracking. Each state may have more than one
corresponding observations in the observation space. Here, we use the
same color to represent the state and its corresponding observations.

probabilistic data association (JPDA) [5] can hardly be
applied in the extended target tracking.

To solve the extended target tracking problem, several
approaches have been presented. Using the random matri-
ces, Feldmann and Franken [6]–[8] represented the target
extension with a random symmetric positive definite matrix.
Vivone et al. [9] applied the random matrix into multiple
sensor scenarios. Magnant et al. [10] used the random matrix
to track and classify extended targets in maritime surveil-
lance. Although these approaches are efficient in ellipsoidal
extended target tracking scenarios, it may give rise to inac-
curate results in non-ellipsoidal extended target scenarios.
Considering the non-ellipsoidal extended target as a combi-
nation of sub-ellipsoidal extended objects, Lan and Li [11]
proposed a multiple-model (MM) approach to solve such a
problem. In this approach, the sub-object motions are com-
bined to model the dynamics of the non-ellipsoidal extended
targets. On this basis, the MM method has been utilized
to improve the estimating accuracy of the non-ellipsoidal
extended target. However, the number of the sub-object is
assumed as a prior. Beard et.al. [12] modeled the state of
the extended target as a generalised labelled multi-Bernoulli
(GLMB) component. Combined with the gamma Gaussian
inverseWishart (GGIW) distribution, a GLMBfilter has been
be developed for tracking the extended target. The improved
versions of such an approach have been presented in [13]
and [14]. These LMB based approaches can estimate the
states and trajectories of the extended targets. Since the LMB
approaches approximate the number of target after every

update, it leads to a cumulative errors in the cardinality
(the number of targets) distribution [14]. Moreover, their
computation complexity is more expensive than the PHD
based approaches. In the light of [15], Granström et al. [16]
constructed the Poisson model for the extended target track-
ing. Pioneered by these literature, Mahler [1] formulated the
observation-update equations of the probability hypothesis
density (PHD) filter for the extended target tracking (called
the EPHD). However, the EPHD filter is computationally
intractable [17]–[20]. Granström et al. [21]–[23] proposed
the Gaussian mixture implementation of the PHD filter for
the extended target tracking (named as the ET-GM-PHD).
The improved approach has been presented in [24].
The ET-GM-PHD approach utilizes the Gaussian mixture
moments to represent the first-order moments, making the
PHD filter of the extend targets tractable. Nevertheless, such
an approach may lead to great tracking errors in nonlinear
scenarios. Chen et al. [25] utilized the cubature Kalman filter
into the ET-GM-PHD approach. It can improve the tracking
accuracy in nonlinear scenarios. Since it simply uses all of the
partitions to update intensities, the proposed approach may
cost great computational complexity. In order to improve the
tracking performance,Yang et al. [26] presented an improved
ET-GM-PHD approach by introducing a penalty strategy into
the likelihood computing. Zhang and Ji [27] proposed the
ART partitioning method. By utilizing the fuzzy ART model
into observation partitioning, the computational time can be
decreased. Such a method has been used in [19]. However,
the performance of this method dependents on the choice of
the vigilance values. Shen et al. [28] proposed an extended
target multipath tracking approach using multipath Bernoulli
filter (MPBF) and ET-PHD filter. Nevertheless, it only uses
one extended target. Ristic et al. [29] presented the birth
initiating method for PHD and cardinalised PHD (CPHD).
Zhu et al. [30] proposed a birth density estimating method.
Zhou et al. [31] used the entropy distribution to remove the
noise of the birth intensity. However, these methods are under
the standard target assumption. Wu et al. [32] proposed an
iterative random sample consensus (I-RANSAC) algorithm
with a sliding window to initiate the birth intensity. In prac-
tice, selecting the width of the window is rather difficult.
Peng and Ye [33] proposed the adaptive birth target initi-
ation methods. However, these adaptive methods have two
disadvantages. First, these methods utilize all of the partitions
into birth intensity initiating. It may cost great computational
time. Second, most of these methods assume that there is only
one target born at each scan.

B. OUR WORK AND CONTRIBUTION
Currently, information filters such as EIF (extended infor-
mation filter) and UIF (unscented information filter) are
widely used in nonlinear target tracking. Compared with
these filters, the cubature information filter (CIF) [34]method
is easier in initiation, and more suitable to estimate states
with the high dimension. Otherwise, it also has significant
tracking performance in nonlinear target tracking. In the light
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of [18], we integrate the CIF method and a gating method
into the ET-GM-PHD approach in this paper. Here, we name
our approach as the ET-cubature information GM-PHD
(ET-CIGM-PHD) approach. Unlike the CIF and gating meth-
ods in standard target tracking, our approach aims at tracking
multi extended targets in nonlinear scenarios. In such sce-
narios, the assumption of standard targets cannot be satis-
fied. Thus, the CIF and gating methods cannot be directly
integrated into the ET-GM-PHD approach. To solve such
a problem, first, we adopt the CIF method to predict and
update the Gaussianmixture components of the ET-GM-PHD
approach. Using such a method, the ET-GM-PHD approach
can be extended into the nonlinear extended target tracking
scenarios, and achieved high estimating accuracy. On this
basis, we present a gating method to construct the obser-
vation set, and reduce the computational complexity of the
CIF method. Then, to initialize the birth density of extended
targets, inspired by [29],we propose an adaptive birth density
initializing method for our approach. Using such a method,
the birth density of our approach can be adaptively initialized.
We list the main contributions as follows:
1) We propose an improved ET-GM-PHD approach based

on the CIF and gating methods. First, we, following
the way of the ET-GM-PHD approach, represent the
density of the extended target by Gaussian mixture com-
ponents. Then, we predict the states of Gaussian mixture
components by the CIF method. In order to construct
the observation set, and reduce the computational load
of the CIF method, we propose a gating method to
extract the cells corresponding to the current predicted
observation. Then, these extracted cells are combined
into one set (consists of observations). On this basis,
we utilize the combined set to update the state and
covariance of the CIF method. By iterating the CIF
and gating methods, the states and covariances of the
Gaussian mixture components can be obtained. With the
obtained Gaussian mixture components, the intensities
of multi extended target can be achieved. Unlike the
traditional gating methods, we directly implemented our
approach on cells, enjoying better computational com-
plexity. Benefitted from these operations, the estimation
accuracy and computational speed of our approach can
be significantly improved.

2) We develop a birth intensity initiation method for our
approach. In the multi extended target tracking, the esti-
mated targets can be considered as the survival targets
in current time step. That is to say, these targets may
not be birth targets in next time step. According to this
assumption, we remove the observations associated with
the estimated targets. The left observations can be con-
sidered as the observations generated by the birth targets.
To achieve this, we, first, project cells of each partition
into state space. Then, we calculate the numbers of the
projected cells associated with the estimated targets. The
partition with largest number can be considered as the
most possible partition. Thus, we can remove the cells

associated with the estimated targets from such a parti-
tion. Since each cell may contain several observations,
we define a contribution factor to combine each cell into
one component. On this basis, the combined compo-
nents are used to calculate the birth intensity. Therefore,
the birth intensity can be adaptively initiated. Compared
with the traditional adaptive method, our method can
avoid the restrict of one target born at each scan, and
enjoy less computational time.

The rest of this paper is organized as follows: we overview
the PHD filter and GM-PHD implementation for extended
targets in Section II. Section III proposes our ET-CIGM-PHD
approach. Simulation results are demonstrated in Section IV,
and Section V concludes this paper.

II. THE PHD FILTER AND GM-PHD FOR EXTENDED
TARGET TRACKING
In this section, we, first, discuss the observation partitioning
method of the multi extended targets in Section II-A. Then,
the randomfinite set (RFS) and PHD functions are introduced
in Section II-B. Section II-C and II-D overview the PHD
filter of multi extended targets and ET-GM-PHD approach,
respectively. The main notations are listed as follows:

Ci The i-th partition of the current observation set
Xk The state set of multi-target at time k
Zk The observation set of multi-target at time k
xk The state of a dynamic target at time k
zk The observation of a dynamic target at time k
N (·) The function of the Gaussian distribution
γk (·) The birth intensity of target at time k
ps(·) The survival probability of target
pd (·) The detected probability of target
D(·|·) The intensity of multi-target

A. OBSERVATION PARTITIONING
In multi extended target tracking scenarios, each target may
generate more than one observation. That means each target
may generate a group of observations. Commonly, the asso-
ciations between observations of different targets are always
unknown. It poses a great challenge for observation partition-
ing. To illustrate such a challenge, let the observation set Z be
Z = {z1, z2, z3}, where zi represents the i-th observation ofZ.
All of the possible partitions can be listed as follows [1]:

C1 :W1
1 = {z1, z2, z3},

C2 :W2
1 = {z1}, W2

2 = {z2, z3},

C3 :W3
1 = {z1, z2}, W3

2 = {z3},

C4 :W4
1 = {z1, z3}, W4

2 = {z2},

C5 :W5
1 = {z1}, W5

2 = {z2}, W
5
3 = {z3},

whereWi
j denotes the j-th cell of the partition Ci.

Obviously, when the number of observations increases,
the number of possible partitions grows even larger.
It may make the PHD computing rather expensive. In [24],
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Granstrom et al. presented a distance partition method to
solve such a problem. It only utilizes the subset of partitions
for the PHD computing, making better performance than the
Kmeans clustering method. In this paper, we tend to use the
distance partition method in [24].

B. RANDOM FINITE SET AND PHD FUNCTIONS
1) RANDOM FINITE SET OF MULTI TARGETS
In multi-target tracking scenario, the states and observations
of targets belong to sets of the individual target states and
observations, respectively. Since the targets appear, disap-
pear, andmaneuver, the target number and states are uncertain
at different time. In addition, influenced by the imprecise
detections, the observations of targets are also uncertain in
the tracking process. Thus, the RFS is used to represent the
multi-target states and observations.

Here, we assume that there are Mk targets in the multi-
target tracking scenario at time k . The state vector of each
target at time k is represented by xk,i, where i denotes the
i-th target. Obviously, xk,i is in the state space X. Assuming
that the multi-target state set at time k is represented by Xk ,
we have

Xk = {xk,1, xk,2, . . . , xk,Mk }. (1)

SinceXk is constructed by several states of individual targets,
we haveXk ∈ F(X), whereF(X) is the set of all finite subset
in the state space X. Due to targets appearing, disappearing
and maneuvering, xk,i and the dimension (also called cardi-
nality) of Xk are uncertain. In addition, the number of multi-
target in tracking process is finite without ordering for the
individual targets. Thus, Xk is a random finite set in F(X).
Similarly, if there are Nk observations at time k , the multi-

target observation set Zk at time k can be modeled by

Zk = {zk,1, zk,2, · · · , zk,Nk }, (2)

where zk,j ∈ Z is the j-th target observation vector at time k .
Let F(Z) be the set of all finite subset in the observation
space Z. Therefore, we have Zk ∈ F(Z), and Zk is also a
random finite set in F(Z).

2) PHD FUNCTIONS
According to [15], the first order moment of the posterior
distribution (namely the intensity or PHD) D(x|Z) is a non-
negative function on X, which can be characterized by∫

S
D(x|Z)dx = N , (3)

where N is the expected number of targets located in S.
S, thought as a subset of X, represents the state set of targets.
Therefore, we can use the intensity D(x|Z) to estimate the

states and number of targets.

C. THE PHD FILTER FOR THE EXTENDED TRACKING
Let Dk−1|k−1(·) and xk−1 be the intensity and state
of the single extended target at time k − 1. Accord-
ing to [35], the predicted intensity can be formulated

by (4), as shown at the top of the next page. In (4),
ps(·) denotes the survival probability of the single target,
ϕk|k−1(·) is the transition density,Z1:k−1 represents the obser-
vation sets from time 1 to k − 1, and γ (·) is the intensity of
birth target.

Then, the predicted Dk|k−1(xk |Z1:k−1) can be updated by

Dk|k (xk ) = Lz(xk )Dk|k−1(xk |Z1:k−1), (5)

where Lz(·) represents the pseudolikelihood function, defined
by (6), as shown at the top of the next page.

In (6), β(·) denotes the expected number of observations
generated by single extended target, c(·) is the density of the
clutter, pD(·) is the detection probability of the single target,
and φ(xk ) is the likelihood of observations generated by a sin-
gle target. y 6 Zk means that Zk is partitioned into nonempty
cells W by y. W is the subset of the current partition, and
ωy can be considered as the weight of the current partition,
expressed by

ωy =

∏
W∈y dW∑

y6 Zk

∏
W dW

. (7)

The nonnegative coefficient in (7) is represented by (8), as
shown at the top of the next page. where δi,j is the Kronecker
delta.

Equations (4) and (5) describe a PHD recursion in extended
target cases. Similar to the standard target cases, there are no
closed-forms for (4) and (5).

D. GM-PHD FOR EXTENDED TARGET TRACKING
In this section, we overview the basic idea of the
ET-GM-PHD approach. Such an approach can be considered
as a Gaussian mixture implementation of the PHD approach
in Section II-C. In this approach,the predicted and updated
intensities are represented by the GM components. With help
of these GM components, (4) and (5) can be changed into
the summation of GM components, making these equations
tractable. The details of the ET-GM-PHD are provided in the
following.

Assume that the state and observation models are subject
to linear Gaussian models, represented by

ϕk|k−1(xk |xk−1) ∼ N (x;Fk|k−1xk−1,Qk−1) (9)

φk (zk |xk ) ∼ N (zk ;Hkxk ,Rk ) (10)

where Fk|k−1 is the state transition function, and Hk is the
observation function.

According to [24], the predicted intensity in (4) can be
given by

Dk|k−1(x) = vs,k|k−1(x)+ γk (x), (11)

where vs,k|k−1(x) and γk (x) are the intensities of survival and
birth components, respectively. vs,k|k−1(x) is given by

vs,k|k−1(x) = ps,k

Jk−1∑
j=1

wjk−1N (x;mj
k|k−1,P

j
k|k−1), (12)
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Dk|k−1(xk |Z1:k−1) =
∫
X
ps(xk )ϕk|k−1(xk |x)Dk−1|k−1(x|Z1:k−1)dx︸ ︷︷ ︸

Survival intensity

+ γk (xk )︸ ︷︷ ︸
Birth intensity

, (4)

Lz(xk ) = 1− (1− eβ(xk ))pD(xk )+ eβ(xk )pD(xk )
∑
y 6 Zk

ωy
∑
W 6 y

β(xk )|β(xk )|

dW
·

∏
z∈W

φ(xk )
λkck (z)

, (6)

dW = δ|W|,1 +
∫
Dk|k−1(x|Z1:k−1)eβ(x)β(x)|β(x)|pD(x)

∏
z∈W

φ(xk )
λkck (z)

dx, (8)

where Jk−1 is the number of the survival Gaussian mixture
components. mj

k|k−1, and Pjk|k−1 denote the predicted state
mean and covariance of the j-th component, respectively.
In addition, we represent γk (x) by

γk (x) =
Jr,k∑
i=1

wir,kN (x;mi
r,k ,P

i
r,k ), (13)

where Jr,k is the number of birth Gaussian mixture compo-
nents, and wir,k is the weight of the i-th component.mi

r,k and
Pir,k denote the mean and covariance, respectively.
Then, the predicted intensity in (11) can be updated by

Dk|k (x) = DNDk|k (x)+ D
D
k|k (x) (14)

where DNDk|k (x) and DDk|k (x) denote the no detection and
detected target cases, respectively.

DNDk|k (x) =
Jk|k−1∑
j=1

wjk|kN (x;mj
k|k ,P

j
k|k ), (15)

wjk|k = (1− (1− e−β(x)))pD(x)w
j
k|k−1, (16)

mj
k|k = mj

k|k−1,P
j
k|k = Pjk|k−1, (17)

wheremj
k|k and P

j
k|k denote the updated mean and covariance

of the j-th component. wjk|k is the weight of the j-th compo-
nent.

DDk|k (x) =
Jk|k−1∑
j=1

wjk|kN (x;mj
k|k ,P

j
k|k ), (18)

wjk|k = ωy
0jpD(x)
dW

8
j
Ww

j
k|k−1, (19)

0j = e−β(x) − β(x)|β(x)|, (20)

8
j
W = φ

j
W

∏
z∈W

1
λkck (z)

. (21)

where φj(·) is the likelihood of single target.
Equations (11)-(21) express the main formulations of the

ET-GM-PHD approach. Implementing these equations iter-
atively, the posterior intensities of the extended targets at
different time steps can be conveniently achieved. How-
ever, according to (9) and (10), the ET-GM-PHD approach

assumes the motion and observation models are linear mod-
els. Thus, the ET-GM-PHD approach can only handle the
linear scenarios. In practice, the motion and observationmod-
els are always nonlinear functions. In such scenarios, the
ET-GM-PHD approach may lead to great tracking errors.

III. CUBATURE INFORMATION GM-PHD APPROACH FOR
EXTENDED TARGET TRACKING
In this section, we present the ET-CISMC-PHD approach in
detail. To be more specific, we, first, present a CIF based
extended target tracking algorithm in Section III-A. By incor-
porating the CIF and gating methods into the ET-GM-PHD
approach, our ET-CISMC-PHD approach can efficiently esti-
mate states and numbers of extended targets in nonlinear
scenarios. For initiating the birth intensity, Section III-B pro-
poses an adaptive intensity initiating method.

A. CIF BASED GM-PHD ALGORITHM FOR EXTENDED
TARGET TRACKING
As mentioned in Section II-D, the density Dk (x) in (14) con-
sists of Gaussian mixture components. The j-th component
can be achieved by computing its mean mj

k|k and covari-

ance Pjk|k . When each pair of mj
k|k and Pjk|k are achieved,

the density Dk (x) can be obtained. However, in traditional
ET-GM-PHD approach, these components are computed
under the linear model. For extending ET-GM-PHD approach
into nonlinear scenarios, we utilize the CIF method into
our approach for its significant tracking performance in the
nonlinear cases. Although the CIF and gating methods have
been used in [18], targets of [18] are assumed as the standard
targets. Thus, the CIF and gating methods can be directly
used. However, in extended target tracking scenarios, these
methods cannot be directly used. It is because that these
methods are proposed on the standard target assumption.
For utilizing these methods into the ET-GM-PHD approach,
we use the CIF method to predict states and covariance.
The CIF method of [18] uses observations (each observa-
tion denotes one possible target) to update predicted obser-
vation. In extended target tracking scenarios, each target
may generate serval observations. We use the cell to denote
observations generated by the same target. For updating
the predicted observation of the extended targets by the
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CIF method, the cell set should be converted into the obser-
vation set. Thus, a gating method has been proposed for
extracting the cells associated with the predicted observa-
tion of the CIF method. Unlike the standard gating methods
(in [12], [14], [18], [36], [37]), our method implements the
gating process by computing distances between the predicted
observation and cells. Merging the extracted cells into one
set, we can construct the observation set for updating the pre-
dicted observation of the CIF method. Thus, the CIF method
can be used to approximate the states and covariances of the
extended targets. Using the approximated states and covari-
ances, the Gaussian mixture components of the ET-GM-PHD
approach can be achieved for estimating states of extended
targets. Benefitted from the above operations, the tracking
performance of the traditional ET-GM-PHD approach in non-
linear scenarios can be significantly improved.

Before introducing our approach, we represent the nonlin-
ear models by

ϕk|k−1(xk |xk−1) ∼ N (x; f (xk−1),Qk−1) (22)

φk (zk |xk ) ∼ N (zk ; h(xk ),Rk ) (23)

where f (·) and h(·) denote the state transition and observation
functions, respectively.

In this section, the intensities vs,k|k−1 and DDk|k (x) in (12)
and (18) are computed under the nonlinear models (22)
and (23). Observed that both of vs,k|k−1 and DDk|k (x) consist
of Gaussian components, these Gaussian components can be
obtained by computing their means and covariances. Since
the models of (22) and (23) are nonlinear functions, we utilize
the CIF and gating methods to calculate each pair of the
mean and covariance in (12) and (18). For simplicity, we use
mk|k−1, Pk|k−1, mk and Pk to replace mj

k|k−1, P
j
k|k−1, m

j
k

and Pjk .
LetWi be the i-th cell of the current partition. According to

Section II-D, our approach consists of Prediction andUpdate
steps.
Prediction: In this step, we use mk−1 and Pk−1 to predict

mk|k−1 and Pk|k−1. These parameters can be calculated by
a group of cubature points. With the achieved mk|k−1 and
Pk|k−1, the predicted density vs,k|k−1 in (12) can be obtained.

According to the cubature rule [38], the n-dimensional
Gaussian weighted integral can be approximated by

IN (c) =
∫
Rn
c(x)N (x;m,P) ≈

1
2n

2n∑
j=1

c(m+
√
Pαj) (24)

where n is the dimension of m,

αj =
√
n[1]j, j = 1, 2, 3, . . . , 2n (25)

and [1]j is the j-th vector of the set

1
0
...

0

 , · · · ,

0
...

0
1

 ,

−1
0
...

0

 ,

0
...

0
−1


 .

Using the above cubature rule, the j−th cubature point at
time step k − 1 can be defined by

χk−1,j =
√
Pk−1αj +mk−1, (26)

Then, the cubature set can be represented by {χk−1,j}
2n
j=1.

Using the cubature set, mk|k−1 and Pk|k−1 can be calculated
by

mk|k−1 =
1
2n

2n∑
j=1

χ∗k−1,j, (27)

Pk|k−1 =
1
2n

2n∑
j=1

χ∗k−1,j(χ
∗

k−1,j)
T
−mk|k−1(mk|k−1)T

+Qk−1, (28)

where (·)T is the transpose operator, and

χ∗k−1,j = φ(χk−1,j). (29)

With the achieved mk|k−1 and Pk|k−1, we convert mk|k−1
and Pk|k−1 into their information forms,

yk|k−1 = Yk|k−1mk|k−1, (30)

and

Yk|k−1 = (Pk|k−1)−1, (31)

where yk|k−1 and Yk|k−1 denote the information state and
matrix, respectively.

By iterating (27) and (28), we compute each pair ofmj
k|k−1

and Pjk|k−1 in (12). Thus, the predicted density vs,k|k−1 in (12)
can be achieved.
Update: With the predicted yk|k−1 and Yk|k−1, we can

predict the observation zk|k−1. Then, we update the predicted
zk|k−1 by {Cl}

Nd
l=1 (partitioned by Table 1 in [24]). As for the

l−th partition, several cells may be contained. That means,
more than one cells may be used to update zk|k−1. How-
ever, the associations between cells and zk|k−1 are hard to
be achieved. To tackle with such a problem, we proposed a
gating method to extract cells corresponding to zk|k−1. With
the extracted cells, we can update zk|k−1. Using the updated
zk|k−1, we can calculate mk and Pk . Based on the calculated
mk and Pk , the intensity of (18) can be computed.

The predicted observation zk|k−1 can be denoted by

zk|k−1 =
1
2n

2n∑
j=1

χ∗k|k−1,j, (32)

where

χ∗k|k−1,j = ϕ(χk|k−1,j), (33)

and

χk|k−1,j =
√
Pk|k−1αj +mk|k−1. (34)

Using the denoted zk|k−1 of (32), we can evaluate the cross
covariance matrix of state and observation by (35), as shown
at the top of the next page.
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Pmzk|k−1 =
1
2n

2n∑
j=1

(χk|k−1,j −mk|k−1)(χ∗k|k−1,j − zk|k−1)T =
1
2n

2n∑
j=1

χk|k−1,j(χ
∗

k|k−1,j)
T
−mk|k−1(zk|k−1)T . (35)

Then, the state contribution and its corresponding informa-
tion matrix can be computed by

ik,j = Yk|k−1Pmzk|k−1R
−1
k (µj + (Yk|k−1Pmzk|k−1)

Tmk|k−1),

(36)

and

Ik = Yk|k−1Pmzk|k−1R
−1
k (Yk|k−1Pmzk|k−1)

T , (37)

where µj represents the innovation of the j-th observation zj

µj = zj − zk|k−1. (38)

Here, zj is the j−th component of the observation set Z̃k , and
Z̃k represents the observation set of the current target.We also
assume that zj is a two-dimension vector, and µj follows a
two-dimension Gaussian distribution.

Thus, we can obtain the information state vector yk and
matrix Yk by

yk = yk|k−1 +
Nl∑
j=1

ik,j, (39)

Yk = Yk|k−1 +

Nl∑
j=1

Ik,j. (40)

where Nl is the number of observations, Nl = |Z̃k |.
Equations (38)-(40) have been proposed in standard tar-

get tracking scenarios. In extended target tracking scenarios,
observations generated by the same target are represented by
the cell. For applying these equations into extended target
tracking scenarios, we utilize the gating method into the
CIF method for constructing Z̃k . Unlike the traditional gating
methods in [12], [14], [18], [36], [37], our method directly
implement on cells, leading to small computational cost. Our
gating method method consists of two steps.

Step 1 Extract candidate cells from the current partition
In this paper, we use the center to represent the current

cell. Then, we compute the distances between the predicted
observation and cells of the current partition. By selecting
certain threshold for these distances, the candidate cells can
be extracted.

Let zc,i denote the center of the cell Wi,

zc,i =
1
|Wi|

|Wi|∑
j=1

zj, (41)

where zj ∈Wi.
The distance between cellWi and zk|k−1 can be defined by

d(zk|k−1, zic) =
√
(zk|k−1 − zic)TR−1(zk|k−1 − zic), (42)

Using (42), the candidate cells can be computed by

W̃k = {Wi|d(zk|k−1, zic) < Th}, (43)

where Th is the threshold.
Step 2 Constructing observation set associated with the

target.
Let W̃i be the i-th cell of the candidate cell set W̃k . Accord-

ing to (38)-(40), the observation set (consists of possible
observations) are used for updating the predicted observation.
Thus, the candidate cells must bemerged into one observation
set. We merge the candidate cells by

Z̃k = {z|z ∈ W̃i, i = 1, 2, . . . ,Nl}, (44)

where, Nl =
∑|W̃k |

i=1 |W̃i|.
Substituting Z̃k into (38)-(40), we can obtain yk and Yk .

Then, the posterior statemk and Pk can be constructed based
on (30) and (46), given by:

mk = Yk
−1yk , (45)

Pk = (Yk )−1. (46)

When there is no cells in the current gate (W̃k = ∅), mk
and Pk can be approximated in the following:

mk = mk|k−1, (47)

Pk = Pk|k−1. (48)

Substituting mk and Pk into (18)-(21), we can finally
achieve the posterior intensity of our approach.

B. BIRTH INTENSITY INITIATION METHOD
According to (4), the predicted intensity consists of birth and
survival intensities. Commonly, the birth intensity is known
as a prior. However, it is unavailable in practice. Besides,
the observation set of multi extended targets are also par-
titioned into several possible partitions. When the number
of partitions are large, directly using all of the partitions
for birth intensity initiation may cost great computational
time. Moreover, each partition of the multi extended targets
consists of cells. As for each cell, several observations are
contained in it. Thus, the adaptive birth intensity methods of
standard target tracking can not be adopted in multi extended
target tracking. In this paper, we propose an observation
driven birth intensity initiating method for the birth intensity
initiation. To be more specific, we, first, project states of
estimated targets into the observation space. After projection,
we compute distances between the projected observations
and cell centers of partitions. By setting certain threshold,
we can calculate the number of cells corresponding to the
estimated targets for each partition. Second, we select the

103684 VOLUME 7, 2019



Z. Liu et al.: Cubature Information Gaussian Mixture Probability Hypothesis Density Approach

partition with the largest number as the most possible parti-
tion. With the selected partition, we remove the survival cells
from the ‘‘real’’ partition. The left cells can be considered
as the observations generated by the birth targets. Third,
we define the contribution factor to measure the degree of
importance of the current component to its corresponding
cell. By computing the contribution factors, we can achieve
the Gaussian components of the birth intensity. With these
three steps, the birth intensity can be initiated for the next
recursion.

Before introducing ourmethod, we represent the projecting
model for mapping the observation into the state space. Here,
we use the bearing and range model [39] to illustrate our
method. Remember that, xk and zk are the state and obser-
vation at time step k , respectively. Assume that rk and θk
denote the different dimensions of zk , where rk is the range
dimension, and θk represents the angle dimension. Then,
according to the unbiased model of [40], the projecting model
for mapping the state into the observation space can be given
as follows

uxk = β
−1
θ rk,i cos θk , (49)

uyk = β
−1
θ rk,i sin θk,i, (50)

where (uxk , u
y
k ) denotes the position coordinate of xk . βθ is

the biased comparison factor, βθ = σθ , where σθ , given as
a prior, represents the error of bearing angle θk .
LetMi be the i−th cell of the current projected partitionG,

and m be the center of Mi. According to (49), we define the
distance betweenMi and x by

dEi,x =

∥∥∥∥ū− [ 1 0 0 0 0
0 0 1 0 0

]
x
∥∥∥∥ , (51)

where ‖ · ‖ represents the `2−norm. In the following, we uti-
lize (51) for extracting the candidate cells.
Step1 (Find the Partition of Current Targets, and Remove

Cells Associated With the Estimated Targets):
Recall Section II-A, an extended target may generate more

than one observations. Thus, in multi extended target tracking
scenarios, we can cluster the observations into several cells.
However, the associations between states and observations
are commonly unknown. We can only achieve all of the pos-
sible partitions under the current observation set. Obviously,
cells with small distances may have large probability to be
generated by the estimated targets. Thus, we can use (51)
to find cells associated with the estimated set in the current
partition. By setting certain thresholds, we can achieve the
cells associated with the estimated target set. Then, we count
the cell number for each partition. The partition that has the
largest number can be considered as the partition that survival
targets belong to. Meantime, we remove the cells associated
with the estimated targets. The left cells can be considered
as cells of the birth targets. At last, we use the contribution
factors to compute the birth intensity.

Let Xe
k be the state set of estimated targets, C̃k be the

projected partition of birth targets, Uk be the mapped set of
Zk , and Gl be the l−th partition of Uk . With the help of the

distance of (51), we can obtain the candidate partition of birth
targets using the procedure in Table 1.

Step2: Estimate the components of birth targets.
Once the candidate cell set Cb

k has been achieved, we turn
to estimate the birth components (the mean of the i−th target
state vectormk,i and its corresponding covariance Pk,i) by the
unbiased model of [40].

Recall that each cell may contain more than one observa-
tion, in other words, there are more than one elements for
each cell of Cb

k . In order to combine these elements into one
element, we tend to use (51) to compute the distance between
each element and its corresponding cell. Let uk,j and uk,c be
the j−th element and its corresponding cell center, dj be the
distance between uk,j and uk,c, where dj can be computed
by (51). We define the contribution factor (denoting the con-
tribution of uzk,j to its corresponding cell) as

sj =
Dj∑Nb
j=1 Dj

, (52)

where

Dj =
1

dj/maxj dj
, (53)

and Nb is the number of current cells.
Using (52), we combine element of i−th cell into one

element by

tk,i =
N i
d∑

j=1

sij ∗ uk,j, (54)

where i denotes the i−th cell.
Let pxk,i and p

y
k,i be the two dimensions of tk,i, the mean of

the i−th new born target is defined by

m(i)
k = [pxk,i, 0, p

y
k,i, 0, 0]

T . (55)

The covariance can be estimated by

P(i)
k =


σxx 0 σxy 0 0
0 σv 0 0 0
σyy 0 σxy 0 0
0 0 0 σ 2

v 0
0 0 0 0 σ 2

θ

 , (56)

where σv is the standard deviation of velocity known as
a prior. In (56), the following exists:

σxx = (β−2θ − 2)(r̃k,i)2 cos2(θk,i)+ 0.5((r̃k,i)2

+σ 2
r )(1+ β

4
θ cos(2θk,i))

σxy = (β−2θ − 2)(r̃k,i)2 cos(θk,i) sin(θk,i)+ 0.5((r̃k,i)2

+σ 2
r )(1+ β

4
θ cos(2θk,i))

σyy = (β−2θ − 2)(r̃k,i)2 sin2(θk,i)+ 0.5((r̃k,i)2

+σ 2
r )(1− β

4
θ cos(2θk,i)).

(57)

Finally, the new born targets can be constructed by

{mk,i,Pk,i}
N b
k

i=1. At time k + 1, the CIF (discussed in
Section III-A) are used to achieve birth intensity of (13).
We summarize our ET-CIGM-PHD approach in Table 2.
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TABLE 1. Finding partitions and removing cells associated with the estimated targets.

TABLE 2. The ET-CIGM-PHD approach from time step k − 1 to k .

IV. SIMULATION RESULTS
In this section, we validate performance of the proposed
ET-CIGM-PHD approach. A simulation scenario composed
of five targets is constructed in Section IV-A. Under
such a scenario, we compare the tracking errors of the
ET-GM-PHD [24], CK-EPHD [25] and our ET-CIGM-PHD
approaches in terms of the optimal subpattern assignment
(OSPA) metric [41] and Root Mean Square Error (RMSE)
in Section IV-C. We follow the way of [24] and [25] to
compare OSPA distances and RMSE of the estimated tar-
gets. Finally, we compare the simulation results of these
approaches with different numbers of clutters and detection
probabilities, to prove the effectiveness of our approach.

A. SIMULATION SCENARIOS
In our simulations, we adopt the nonlinear scenarios of [18].
For simplicity, we define the target states x by x =

[px , vx , py, vy, α]T . In this paper, (px , py) is the vector of the

position, (vx , vy) is the vector of the velocity, and α is the
turn rate. Using these definitions, we represent the nonlinear
dynamic model as

xk

=



1
sin(αk−1T )
αk−1

0 −
1− cos(αk−1T )

αk−1
0

0 cos(αk−1T ) 0 − sin(αk−1T ) 0

0
1− cos(αk−1T )

αk−1
1

sin(αk−1T )
αk−1

0

0 sin(αk−1T ) 0 cos(αk−1T ) 0
0 0 0 0 1



× xk−1 +



T 2

2
0 0

T 0 0

0
T 2

2
0

0 T 0
0 0 1


εk−1, (58)
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TABLE 3. The initial state of the targets.

FIGURE 3. Ground-truth trajectories of five targets with the clutter
number setting to be 20. The target trajectories are depicted by
circle-solid lines with different colors, while the asterisks denote clutters.

where T = 1 second (s) is the sampling interval, and εk−1
is the noise defined by εk−1 ∼ N (εk−1; 0,Q). Here, Q =
diag(σ 2

x,ε, σ
2
y,ε, σ

2
α ) denotes the covariance matrix of εk−1.

In addition, we set σx,ε = σy,ε = 1 meter/second2 (m/s2),
and σα = π/180 rad. The initial states of the five targets are
listed in Table 3.

Besides, we use the observation model as follows,

zk =

arctan
(
py
px

)
√
p2x + p2y

+ ηk , (59)

where, ηk ∼ N (·; 0,R) represents the observation noise, and
R is the covariance defined by R = diag(σ 2

θ , σ
2
r ). In this

paper, we set σθ = π
180 rad and σr = 1 m. Moveover,

we assume that the clutter follows the uniform distribution
in the detection region. The angle range and distance range
of the detection region are (0, π/2) rad and (0, 1000) m,
respectively. Using the above parameters, the trajectories of
the five targets are shown in Figure 3.

For parameters, we set the gating threshold Th = 4 accord-
ing to [42]. The probabilities of survival and detection are
ps = 0.99 and pd = 0.95 in accordance with [39]. All of the
simulations are run in the environment with MATLAB2016a,
and i7 processor with 8GB RAM.

In order to validate the estimation accuracy, we select
the second order OSPA distance and RMSE as the metric.
Before comparison, we represent the basic idea of the second
order OSPA as follows. Let X = {x1, . . . , xm} and Y =
{Y1, . . . ,Yn} be two RFSs. m and n denote the numbers of
elements in X and Y, respectively. Let �n be the set of per-
mutations of {1, 2, . . . ,m}, the second order OSPA distance

TABLE 4. The estimated results of the ET-CIGM-PHD under different
thresholds.

can be represented by

d̄c(X,Y) =
1
n

(
min
ς∈�n

m∑
i=1

dc(xi, yς (i))2 + c2(n− m)

) 1
2

,

(60)

where dc(x, y) = min(c, d(x, y)), c > 0 is a cut off factor,
and d(x, y) is the distance between x and y. Here, we adopt
the Euclidean distance to calculate d(x, y). In this paper,
we assume that the value of c is equal to 70.

B. COMPARISON OF ESTIMATION ACCURACY ON
DIFFERENT THRESHOLDS
To validate the influence of thresholds, we implement the
ET-CIGM-PHD approach under different thresholds. Here,
we select the following values Th = 2, 3, 4, 5. According to
the definition of χ2 distribution, these values represent that
the probabilities of the observation locating in the gate are
set to be 87%, 98.9%, 99.9% and 100%. For each value, the
ET-CIGM-PHD is performedwith 500Monte Carlo runs. The
estimated results are listed in Table 4.

When the possibility is small, the observations generated
by the target may not be located in the gate. When the possi-
bility is large, more clutters may be contained in the gating.
Both of cases may lead to the large tracking errors. According
to this, in Table 4, we can observe that the estimated results of
Th = 4 is the smallest in all of the selected thresholds. Thus,
in this section, we select Th = 4 in the following simulations.

C. COMPARISON OF ESTIMATION ACCURACY ON
CERTAIN NUMBER OF CLUTTERS
Under the above parameters, all of these three approaches are
implemented with 500 Monte Carlo runs. For justice, all of
these approaches utilize the birth intensity initiating method
of Section III-B. The estimated trajectories are demon-
strated in Figure 4 to 6. From these figures, we can observe
that the estimated points of CK-EPHD and our ET-CIGM-
PHD approaches are rather closer to the true trajectories

VOLUME 7, 2019 103687



Z. Liu et al.: Cubature Information Gaussian Mixture Probability Hypothesis Density Approach

FIGURE 4. Estimated trajectories of ET-GM-PHD. We use the red (light)
points to represent the estimated trajectories, while the the true
trajectories denote the black (dark) solid lines.

FIGURE 5. Estimated Trajectories of CK-EPHD. We use the red (light)
points to represent the estimated trajectories, while the the true
trajectories denote the black (dark) solid lines.

FIGURE 6. Estimated trajectories of ET-CIGM-PHD. We use the red (light)
points to represent the estimated trajectories, while the the true
trajectories denote the black (dark) solid lines.

than the ET-GM-PHD approach. Moreover, compared with
Figure 4 and 5, most of the estimated points in Figure 6 are
overlapped with the true trajectories.

In order to compare the estimated performance of the above
approaches, we demonstrate the OSPA distances in Figure 7.
Here, we use the averaged OSPA distances and RMSEs
of all three approaches. Here, the averaged OSPA distance
refers to the average of OSPA distances among 500 Monte
Carlo runs. From Figure 7, we can observe that the OSPA
distance of the ET-GM-PHD approach is largest in all of
these three approaches. Noted that larger OSPA distance
corresponds to the larger tracking error, the ET-GM-PHD
approach has larger tracking error than the CK-EPHD and
our ET-CIGM-PHD approaches. This is because the CK-
EPHD and proposed ET-CIGM-PHD approaches utilize the
CKF and CIF methods to improve the tracking perfor-
mance of the ET-GM-PHD approach,respectively. Due to the

FIGURE 7. OSPA distances of the ET-GM-PHD, CK-EPHD and
ET-CIGM-PHD approaches with clutter number being 20.

FIGURE 8. Estimated numbers of three approaches with clutter number
being 20.

significant tracking performance of the CKF and CIF meth-
ods, these two approaches have better tracking accuracy than
the ET-GM-PHD approach. In addition, we can also observe
that the proposed ET-CIGM-PHD approach has smallest
OSPA distance in all of these approaches.

To further validate the tracking performance, we pro-
vide the estimated numbers and RMSEs of these three
approaches in Figure 8 and 9. The number in Figure 8
refers to the target number. From Figure 8, we can observe
that most of the estimated numbers of the ET-CIGM-PHD
approach are located around the ground truth. That means, the
ET-CIGM-PHD approach has better accuracy for estimating
the number of target than the other two approaches. It is
because that we integrate CIF and gating methods into the
ET-GM-PHD. For the high tracking performance of the CIF,
the estimated numbers of the proposed approach are more
accurate than the ET-GM-PHD and CK-EPHD. Figure 9
depicts the RMSEs of the three approaches. From this fig-
ure, we can observe that the RMSE of the ET-CIGM-PHD
approach is the smallest. That means, the estimated number
of the ET-CIGM-PHD approach is the most accurate in all of
these approaches. That is because we utilize the CIF method
and gating method to compute the Gaussian mixture compo-
nents. Since cells that have large probability to be generated
by the clutter have been removed from the current partition,
the estimated results of our approach are more accurate than
the ET-GM-PHD and CK-EPHD approaches.

Moreover, we list the numerical results of both approaches
in Table 5. According to Table 5, the CK-EPHD approach
has the longest computational time, while the proposed
ET-CIGM-PHD approach has the shortest computational
time. This is because the CK-EPHD approach costs a lot of
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FIGURE 9. RMSEs of the three approaches with clutter number being 20.

TABLE 5. Averaged estimation errors and computational times per target.

time to predict and update the cubature points, leading to
longer time than the ET-GM-PHD approach. However, in our
ET-CIGM-PHD approach, we select the CIF to estimate
the Gaussian mixture components. The update stage of the
CIF method is more computationally economic than the
CKF method. Besides, we only select part of cells to update
the predicted observations for reducing computational com-
plexity. Thus, the computation load can be significantly
reduced.

D. COMPARISON OF ESTIMATION ACCURACY ON
VARIOUS NUMBER OF CLUTTERS
To validate the effect of clutters, we change the number
of clutters ranging from 5 to 50. For each number of
clutters, the ET-GM-PHD, CK-EPHD and our ET-CIGM-
PHD approaches are performed with 500 Monte Carlo runs.
We plot the estimated results of these approaches in Figure 10
and 11. Figure 10 demonstrates the mean OSPA distances on
various number of clutters, and the averaged RMSEs are plot-
ted in Figure 11. Due to the significant tracking performance
of the CKF and CIF methods, the CK-EPHD and our ET-
CIGM-PHD approaches have better tracking accuracy than
the ET-GM-PHD approach (seen in Figure 10 and 11).We can
also observed that the mean OSPA distances and RMSEs of
the proposed ET-CIGM-PHD approach are smallest in all of
three approaches in Figure 10 and 11. Since clutters outside
the selected gate have been removed in the update stage,
the estimated results of our approach in Figure 10 and 11 are
more stable than the other two.

E. COMPARISON OF ESTIMATION ACCURACY ON
DIFFERENT PROBABILITIES OF DETECTION
In this section, we implement the ET-GM-PHD, CK-EPHD
and proposed ET-CIGM-PHD approaches under different
probabilities of detection (varying from 0.75 to 0.99). All of
these approaches have been simulated with 500 Monte Carlo
runs. Here, we set the number of clutters to be 20. We plot

FIGURE 10. Averaged OSPA distances of the ET-GM-PHD, CK-EPHD and
our ET-CIGM-PHD approaches along with the clutter number changing
from 5 to 50.

FIGURE 11. Averaged RMSEs of estimated number of the ET-GM-PHD,
CK-EPHD and our ET-CIGM-PHD approaches along with the clutter
number changing from 5 to 50.

FIGURE 12. Averaged OSPA distances of the ET-GM-PHD, CK-EPHD and
our ET-CIGM-PHD approaches along with the probability of detection
changing from 0.75 to 0.99.

FIGURE 13. Averaged RMSEs of estimated number of the ET-GM-PHD,
CK-EPHD and our ET-CIGM-PHD approaches along with the probability of
detection changing from 0.75 to 0.99.

the results in Figure 12 and 13. From these figures, we can
observe that when the probability of detection is less than
0.95, the OSPA distances and RMSEs are rapidly reduced.
When the probability increases from 0.95 to 0.99, the OSPA
distances and RMSEs are reduced slowly. The reason is that
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when the probability grows large, many observations gener-
ated by targets are detected. Thus, the tracking accuracy of
the three approaches becomes better. Along with the growing
probability, the estimated results of these approaches tend
to be stable. In addition, using the CIF and gating methods,
the OSPA distances and RMSEs of the proposed approach
are smaller than the ET-GM-PHDandCK-EPHDapproaches,
enjoying the best estimated accuracy.

V. CONCLUSION
In this paper, we have proposed the ET-CIGM-PHD
approach, which can be applied to estimate the number and
states of multi extended targets in nonlinear scenarios. In our
approach, we utilize the CIF to approximate the GM com-
ponents of targets for its significant tracking accuracy in
nonlinear scenarios. In order to construct the observation
set, and reduce the computation complexity, we present a
gating method to extract the cells associated with the pre-
dicted observation. Then, these abstracted cells are com-
bined into one set for updating the predicted observation of
the CIF method. Since our method directly implements the
gating process on the cells. Thus, the tracking performance
of the traditional ET-GM-PHD approach can be signifi-
cantly improved. Moreover, we propose an adaptive initiation
method for birth component initiating. Using the estimated
states into initiation, the proposed approach can initiate the
birth intensity adaptively. The simulation results demon-
strate that our ET-CIGM-PHD approach outperforms the
ET-GM-PHD and CK-EPHD approaches in terms of tracking
accuracy.

This paper focuses on improving the efficiency and accu-
racy of the traditional ET-GM-PHD approach. It simply uses
the GM component pruning and state estimating methods.
Other component pruning, state estimating, and clustering
methods may be incorporated into the future work. Studying
on optimizing parameters of observation partitioning can be
seen as another direction of the future work. In addition, for
lack of equipment and data sets, we verify our approach with
simulation data. Experiments with measured data will be the
third direction of the future work.

APPENDIX A
DERIVATIVES OF ωY
In this section, we give the proof of ωy in (7), which has been
derived in [1].

According to [1], the extended target posterior probability-
generating function (p.g.fl.) Gk+1|k+1[h] can be defined by

Gk|k [h] = F0[h] ·

∑
y 6 Zk

∏
W∈y dW[h]∑

y′ 6 Zk

∏
W∈y′ dW[h]

, (61)

where,

F0[h] = exp(µs[(h− 1)(1− pD + pDe−λ)]), (62)

and where

dW[h] =

1+ µs[he
−γ pDιz] ifW = {z}

µs[he−γ pD
∏
z∈W

ιz] if|W| 6= 1, (63)

dW = dW[1] =

1+ µs[e
−γ pDιz] ifW = {z}

µs[e−γ pD
∏
z∈W

ιz] if|W| 6= 1, (64)

lz(x) =
γ (x) · φz(x)
λc(z)

, (65)

and

µ =

∫
Dk|k (x)dx. (66)

Using the definition of the PHD in [2], the PHD Dk|k [h] can
be represented by

Dk|k [h] =
δGk|k [h]
δx

[1] (67)

According to the product rule of the functional derivatives,
we have

δGk|k [h]
δx

[h] =
δF0
δx

[h] ·

∑
y 6 Zk

∏
W 6 y dW[h]∑

y′ 6 Zk

∏
W 6 y′ dW[h]

+F0[h] ·

∑
y 6 Zk

δ
δx
∏

W∈y dW[h]∑
y 6 Zk

∏
W∈y dW[h]

(68)

The derivative of F0[h] in (62) can be calculated by

δF0
δx

[h] = F0[h] · Dk|k−1 · (1− pD(x)+ pD(x)e−λ(x)) (69)

Moreover,
δ

δx

∏
W∈y

dW[h] = (
δ

δx

∏
W∈y

d ′W[h]) ·
∑
W∈y

1
dW[h]

·
δdW
δ

[h],

(70)

where
δdW
δx

[h]

=

Dk|k−1(x) · e
−γ (x)

· pD(x) · ιz(x), W = {z}
Dk|k−1(x) · e−γ (x) · pD(x) ·

∏
z∈W

ιz(x), |W| 6= 1.

(71)

Thus,
δdW
δx

[h] = Dk|k−1(x) · e−γ (x) · pD(x) ·
∏
z∈W

ιz(x) (72)

Then, substituting (69) and (72) into (68), we have

1
F[h] · Dk|k−1(x)

·
δGk|k [h]
δx

[h]

= (1− pD(x)+ pD(x)e−γ (x)) ·

∑
y 6 Zk

∏
W∈y dW∑

y′ 6 Zk

∏
W∈y′ dW[h]

+

∑
y 6 Zk

(
∏
W∈y

dW[h]) ·

∑
W∈y

e−γ (x)pD(x)
∏

z∈W ιz(x)
dW[h]∑

y′ 6 Zk

∏
W∈y′ dW

(73)
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Setting h = 1, (73) yields to

Dk|k (x)
Dk|k−1(x)

= 1− pD(x)+ pD(x)e−γ (x) +
∑
y6 Zk

(
∏
W∈y

dW)

·

∑
W∈y

e−γ (x)pD(x)
∏

z∈W ιz(x)
dW∑

y′ 6 Zk

∏
W∈y′ dW

= 1− pD(x)+ pD(x)e−γ (x)

+

∑
y 6 Zk

∏
W∈y dW∑

y 6 Zk

∏
W∈y dW

·

∑
W∈y

e−γ (x)pD(x)
∏

z∈W ιz(x)
dW

(74)

To simplify (74), we define the coefficient

ωy =

∏
W∈y dW∑

y6 Zk

∏
W dW

, (75)

Using (75), (74) can be rewritten by

Dk|k (x)
Dk|k−1(x)

= 1− pD(x)+ pD(x)e−γ (x)

+

∑
y 6 Zk

ωp ·
∑
W∈y

e−γ (x)pD(x)
∏

z∈W ιz(x)
dW

= 1− pD(x)+ pD(x)e−γ (x)

+ e−γ (x)pD(x)
∑
y 6 Zk

ωp ·
∑
W∈y

1
dW
·

∏
z∈W

ιz(x)

(76)

Finally, we can observe that (75) is the same as (7) in
Section II-C.
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