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ABSTRACT We propose the first authenticated key exchange (AKE) protocol with different physical
unclonable functions (PUFs). Our protocol allows for two end-users each holding a distinct PUF-embedded
device and a long-term secret to agree to an authenticated session key. For malicious behaviors on the
PUF-embedded device, we first define a Device query, which models an adversary who intentionally
(or unintentionally) picks up an arbitrary device and attempts to input a message and obtain an output.
As per the author’s knowledge, this is the first study to consider Corrupt queries that return long-term secrets
in the PUF-embedded device and its relevant platform. In this paper, we prove that our protocol is secure
under a new security model and requires three flows to achieve a secure AKE with users’ distinct PUFs. As it
requires no intervention by a central server after its initial setup phase, it is suitable for practical decentralized
networks.

INDEX TERMS Physical unclonable function, authentication, device authentication, authenticated key
exchange.

I. INTRODUCTION
A physical unclonable function (PUF) is physically embodied
in the device hardware. It always returns an unpredictable
output depending on random physical factors, which are gen-
erally initialized at the manufacturing stage. Such physical
factors are assumed to be uniquely assigned to each PUF,
which cannot be cloned or identically remanufactured. Any
malicious attempt to reproduce or clone the function changes
its hardware structure and renders it useless. Owing to its
unpredictability and unclonability, the PUF has been widely
utilized in cryptography for enhancing security. For instance,
in conventional public key infrastructure PKI-based banking
settings, users secretly manage their long-term private keys in
a nonvolatile memory and utilize them later for authentication
or secure transaction. One critical weakness of such a setup
is that it cannot completely be free from a long-term private-
key-exposure attack. In contrast, in the PUF-based setting, the
PUF embodied in a device first receives a long-term secret
and always outputs a noisy result, with increased entropy,
and which is completely unpredictable against any adversary
who already obtains the long-term secrets. For this reason,
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the PUF has been considered as a countermeasure to prevent a
key-exposure attack. In the last decade, excellent studies have
been conducted on PUFs to securely and efficiently combine
the existing cryptographic primitives. They created crypto-
graphic primitives based on PUFs, for example oblivious
transfer (OT) [33], bit commitment (BC) [33], cryptographic
key or random number generator [34], [41], authenticated
encryption [2], authentication or authenticated key exchange
(AKE) [9], [14]. As such, PUF-based primitives have become
an essential technique in cryptology.

The current study focused on a PUF-based AKE, in which
the subject of changeable network requirements has always
been a big issue in cryptology. In particular, whenever a new
innovative technology (e.g., PUF) emerges, a new methodol-
ogy on efficient and secure construction for the AKE should
be re-examined under a new security model. Until now, inter-
estingly, most PUF-based AKE schemes between two entities
(server and user) have assumed a single PUF owned by a
user (or a server). That is, a user (or a server) first registers
an output of a PUF in the registration phase, and then the
user (or a server) recovers the secret and performs an AKE
protocol in the authentication phase. In cryptology, this has
been a typical way of use of a single PUF between a server
and user. However, under a single-PUF setting, a server’s
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database (DB) cannot basically support an end-to-end
(or device-to-device) authentication that are naturally based
on different PUFs. In addition, its DB should be securely
maintained with no small cost. Thus, the single PUF scenario
is not suitable for the decentralized network such as IoT,
P2P setting. Instead, a different PUF setting in which
a PUF-embedded device makes a secure channel with another
PUF-embedded device through a mutual authentication is
more suitable for the decentralized scenario.

In our work, we focused on a practical PUF-based end-
to-end setting in which two users, who usually have distinct
PUF-embedded devices, execute anAKE protocol without any
help from the server. Our goal was to construct an AKE in
which only valid users, possessing a unique PUF-embedded
device and a long-term secret, can successfully authenticate
each other by using a mutually agreed upon session key.
However, owing to the use of two distinct PUFs, the establish-
ment of a common keying material during an authentication
protocol is not easy. This can be inevitably solved by making
full use of the registration phase. Thus, one of the important
tasks is to determine initial values and how they should be
setup in the registration phase. Based on the initial setting,
two users recover the same secrets and perform the usual
AKE protocols. In this paper, we present a proper security
model based on a previous model [10] and construct differ-
ent PUF-based AKEs. The first construction has a structural
weakness and explicitly shows the importance of the appro-
priate design of the registration phase. The second PUF-based
AKE is the final version that fully achieves our security goal.

II. RELATED WORKS AND OUR CONTRIBUTION
A. RELATED WORKS
Over the last decade, extensive research has been conducted
in areas of PUF-based authentication or AKE under various
settings (e.g., IoT, RFID, smart meter system, and smart
grid) [1], [5], [6], [8], [11], [12], [17], [18], [24], [25], [27],
[29]–[32], [37], [39], [44], [45]. A PUF has been applied in
an RFID authentication for enhancing security and efficiency.
Sadeghi et al. [37] first applied a PUF in RFID authentication
to guarantee destructive privacy, i.e., privacy of a tag, which
has been originally introduced by the Vaudenay security
model, is destroyed after its corruption [43]. The protocol is
simple in that a tag evaluates a PUF with its secret status S
then derives an authentication key K for authentication [37].
Then, a new destructive private PUF-based authentication
protocol was designed for a large-scale RFID system [1],
and it guarantees scalability that a server does not need a
linear search operation to identify tags. The protocol provides
mutual authentication with three communication flows, and
its security is also analyzed using the Vaudenay security
model. In 2010, Kulseng et al. [27] proposed a PUF-based
lightweight mutual verification protocol that uses a PUF and
linear feedback shift register for low-cost RFID tag. It con-
sists of four rounds and encrypts (⊕ operation) a tag’s ID
by using a shared secret key. For every session, the secret

key is updated using the PUF on the tag side. However, its
security was reexamined and enhanced in view of ID protec-
tion (confidentiality) and desynchronized attack [24], [44].
In 2013, Moriyama et al. [32] presented a novel PUF-based
RFID authentication protocol (MMY) under a new tag pri-
vacy model that supports secret-key leakages in nonvolatile
memory (NVM). The MMY allows a RFID reader to update
random status secret s and then a tag receives s for each
session; this is the main concept for ensuring security against
key leakage in NVM. In 2015, a new state-aware privacy
model was suggested in an RFID setting [29]. The model
classifies the existing RFID protocols into stateful and state-
less authentication protocols, depending on the existence of
updatable secrets. A new stateful-private RFID authentication
protocol was constructed considering the unpredictability
of PUF. However, its construction is based on a secure public-
key encryption. In 2017, a combination PUF with a thresh-
old cryptography was presented in an RFID system. It uses
a secret sharing technique for thwarting tag compromising
attacks [23].

In 2017, Chatterjee et al. have proposed a PUF-based AKE
between nodes under IoT setting [11]. The protocol has been
designed under a three party setting where two nodes do
AKE by the help of a server. However, it has been flawed
by Braeken et al. in 2018 [4]. Braeken has shown that the
protocol [11] is weak against man-in-the-middle, imperson-
ation, and replay attacks [4]. In 2019, Chatterjee et.al. have
proposed PUF-based AKE without explicit PUF’s challenge
and response pairs (CRP) under IoT setting [12]. By using
ID-based encryption, they remove CRP requirement at a ver-
ifier side. It needs additional security association provider to
guarantee AKE for a node and a verifier.
Recently, more lightweight PUF based authentication

schemes [3], [18], [20] have been presented in IoT and
RFID setting. First, in 2018, Gope and Sikdar have proposed
a lightweight and privacy-preserving authentication scheme
(GS) for IoT devices [19]. It utilizes a long-term secret and
PUF as two-factor authenticators between an IoT device and
a server. The protocol updates a one-time alias (identity) in a
device every session, any outsider adversary cannot identify
device at all. It preserves both security and privacy, but its
authentication setting assumes a normal authentication sce-
nario where a device and a server desire to authenticate each
other with two-factor authenticators. In other words, it actu-
ally uses one same PUF between them as an authentication
factor. In 2018, Gope et al. have also proposed a lightweight
authentication protocol using PUF (GLQ) in a RFID set-
ting. However, its RFID setting focuses on an authentication
between a PUF-embedded tag and a reader with a shared
same PUF, which is not end-to-end setting either. In 2018,
one interesting authentication model has been suggested for
software attestation in [3]. It assumes different types of
PUF-embedded IoT devices. For attestation, each different
device individually is verified by a system manager responsi-
ble for control, monitoring security. This authentication may
consider different PUF-based devices, but note that it is still
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in an authentication scenario between each PUF-embedded
device and a verifier with a same PUF’s output.
With regard to a general two-party setting, in 2011, a PUF-

based KE was briefly introduced in a universal composition
(UC) framework [8]. For dealing with PUF noise, a fuzzy
extractor comprising a secret generation algorithm Gen was
applied along with recovery algorithm Rep. In the enroll-
ment phase, a server first evaluates a PUF(d = PUF(r))
for random value r and generates its secret s as {s, p} =
Gen(d). In the authentication phase, a client recovers s
through Rep(PUF(r), p). Secret s is later served as a key to
ensure confidentiality and integrity. This might be a typical
PUF-based AKE, but its main contribution is to firstly model
and design a UC-secure PUF-based AKE. Formal studies have
been conducted on modeling a PUF in terms of realistic
attack scenarios [15]. Such studies assumed a posterior access
model in which an adversary achieves physical access to a
PUF at least once. Further, a bad PUF model has been defined
for a malicious adversary to cheat a malicious hardware that
resembles a real PUF from outside [15]. In 2014, Rostami
et al. have designed PUF-based AKE that are resilient against
reverse-engineering attacks [36]. It is based on PUF’s CRP
between a prover and a verifier, but random subsets of the
PUF response are sent to the verifier. The verifier authenti-
cates the prover by matching the substring to full response
string by an indexing secret key [36]. In 2018, a new attempt
has been made by Zhang et al. [45]. They have proposed
a transparent PUF-based user authentication with two-factor
authenticators; PUF and voiceprint. It removes a typical inter-
action issue occurs between a user and a smart device and
guarantees user-transparent two-factor authentication [45].

Some attempts have been made to combine a password
with PUFs [5], [6], [17], [39] for efficient authentication.
These studies used a password as an input of a PUF to
generate a long-term secret key. First, Frikken et al. [17]
presented a robust unilateral authentication (FBA) that only
allows users with a PUF-based device with a memorable
password to pass through the authentication step. The device
is designed to output zero-knowledge proof of a discrete loga-
rithm gr . Subsequently, Resende et al. [39] build a PUF-based
authentication scheme (RMA) by combining a PUF with a
password-authenticated key exchange (PAKE) [10] between
the user and server. In this scheme, a user first registers PUF-
based secrets into DB and then recovers the secret at the
authentication phase. By using the same secret, both parties
finally go through the PAKE phase for creating a common
session key. Very recently, Byun has built a PUF-based multi-
factor AKE (MAKE) with a single PUF [5]. It has applied a
single PUF into a well-known Bellare et. al.’s password-based
AKE (PAKE) scheme [10]. Furthermore, Byun has designed
a new MAKE (B19) in a generic way [6]. It first takes a
secure PAKE and securely transforms it into a secure PUF-
based MAKE scheme. It only supports a single PUF authen-
tication setting where a user who has own PUF-embedded
device desires to perform AKE with a server who previously
keeps its corresponding PUF’s unique output for multi-factor

FIGURE 1. End-to-end authentication with different PUF-embedded
devices.

authenticators. Due to the generic design, the cost of com-
munication and computation is relatively higher, but it can
be easily and securely constructed if a secure and efficient
PAKE is once given.

B. OUR CONTRIBUTION
Our work achieves the same AKE goals but greatly differs
from the previous works in the following aspects.

• Distinct PUF-based mutual authentication between two
parties: The problem of AKE with a single PUF between
a server and a client has been well researched in liter-
ature. In this paper, we consider a practical authentica-
tion scenario in which two users, each with a distinct
PUF-embedded device, desire to establish an authen-
ticated session key, as illustrated in Fig. 1. Our
setting supposes that each user holds their own
PUF-embedded device. For instance, a memory-based
PUF, which exploits unstable characteristics of memory
cells (SRAM, DRAM, and flip-flop) can be embedded
in various devices such as PUF-embedded microSD,
JAVA, and smart cards. These PUF-embedded devices
are usually installed on a main platform (e.g., PC, cell
phone, and smart electronic car) that is capable of com-
municating and computing for mutual authentication.
In contrast, a PUF-based chip or device is originally
soldered on and permanently detached from the main-
board of a platform. Then, each solderedPUF-based chip
may output a secret information over the mainboard.
Based on these outputs, the platforms finally exchange
authenticated materials with other platforms for mutual
authentication. A noticeable factor here is that both cases
do not assume one PUF-based device between two par-
ties but individual PUF-based unique devices belonging
to each user. In this new setting, we first built a secure
AKE with different PUFs.

• Device oracle and PUF oracle: In this study, we focus
on a novel issue regarding a missing device. As a device
is considered an equipment, it is usual to suppose that
a PUF-embedded device can be stolen or lost. In addi-
tion, in case of permanently attached type of devices,
they can be lost or stolen along with their platforms
(PC, cell phone, etc.). In this case, an adversary is capa-
ble of asking queries to the device through the plat-
form. To model this, we simply define a Device oracle
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FIGURE 2. The ability of Adversaries.

and allow an adversary A to ask for inputs m1, . . .ml
into a PUF-embedded device to obtain its outputs o1(=
Devie(m1)), . . . , ol(= Devie(ml)). In addition, we sup-
pose that A can physically access a PUF at least more
than once. This type of security on PUF has already been
well studied in [8], [15]. Similarly, our security model
also allows A to choose inputs x1, . . . , xl and achieve
answers of y1, . . . , yl(= PUF(x1), . . . ,PUF(xl)), except
an answer for a target challenge. A corruption query
for stealing long-term secrets, named Corrupt, is also
newly considered in our model. Our model differs
from the previous models in that two cases of Cor-
rupt are defined: one for device corruption and the
other for platform corruption. Fig. 2 illustrates the capa-
bilities of A. In conclusion, our construction is the
first different PUF-based AKE that satisfies all secu-
rity considerations under Device, PUF, and Corrupt
oracles.

• Operations in a device: When we design operations
inside PUF-embedded devices, we are required to con-
sider whether their operations, steps, protocols should
be designed in an identical manner. That is, in case
of mass-produced PUF-embedded devices, protocols
inside the device of A is usually equivalent to those
on a device of B. This is not only beneficial to a
device company but also positively influences an open
security policy or international standard. Through these
identical operations on every device, it is possible
for cryptographic designers to be able to expect the
next outputs or consider the inputs that are appropri-
ate for security. In addition, the designers can concen-
trate more on other important protocols carried over a
platform. For these reasons, in our work, we assumed
that every device has the same protocols (I-device).
However, under I-device setting, designing a secure
PUF-embedded AKE is more challenging; this is mainly
because our model permits both Device and PUF ora-
cles. That is, in our new model, an adversary can consis-
tently achieve inputs/outputs for a device and PUF and
then finally attempt to compute future or past session
keys. We solved this issue in the new security model and
built a secure AKE with different PUFs.

• Efficiency: As the previous protocols focus on a single
PUF-based authentication system between a server and
user, they consider a server’s interventions not only to
initially register PUF evaluations for users but also to
authenticate for users. However, our distinct PUF-based
AKE aims at an end-to-end authentication in a distributed
network, and inherently its DB management cost can be
reduced. It requires no intervention by a central server
after an initial setup phase, and is hence suitable for prac-
tical decentralized networks. As analyzed in Table 1, our
protocol requires only three flows to achieve an AKE
with a distinct PUF, while other protocols need five
flows or do not provide an common session key with
mutual authentication.

III. COMPUTATIONAL ASSUMPTIONS AND
CRYPTOGRAPHIC PRIMITIVES
A fuzzy extractor [16] is used to convert PUF’s output into
a uniform pseudorandom secret that serves as a secret key
during authentication phase. For making a uniformly random
session key, pseudorandom functions are applied in our pro-
tocol. They are defined as follows.

A. FUZZY EXTRACTORS
Definition 1 ( [16]): An (M ,m, l, t, ε)-fuzzy extractor

consists of two procedures, Gen(·), Rep(·);
(1) Gen(·) outputs a string R ∈ {0, 1}lr and a helper string

P ∈ {0, 1}∗, on input W , guaranteeing that for any
distributionW with min-entropy m, if (R,P)←Gen(W )
then SD((R,P), (Ul,P)) ≤ ε, where the SD means
statistical distance.

(2) Rep(·) takes (W ′,P) on inputs and it outputs
Rep(W ′,P) = R if dist(W ,W ′) ≤ t and (R,P) ←
Gen(W ).

B. PSEUDORANDOM FUNCTION
Definition 2: It is defined by a function FK : K(F) ×

D(F) → R(F) where K(F) = {0, 1}k is a set of keys and
D(F) = {0, 1}l is a set of domain, and R(F) = {0, 1}L is a
set of range of FK . For any PPT algorithm B, the followings
are satisfied:
(1) Computation of FK (x) should be efficient.
(2) The following prf-advantage, εprf is negligible.

εprf = |Pr[BFK = 1 : K
R
← K(F)]

−Pr[BF = 1 : F
R
← UFK ]|

BFK means thatB only accesses FK whileBF means that
B only accesses F fromUFK . UFK is a set of all functions
from D(F) to R(F).

C. PUF
We follow an ideal PUFmodel in which the PUF is considered
as a random permutation oracle and an adversary adaptively
query the PUF within polynomial time [8], [15], [17], [37],
[39]. This unpredictability of PUF is formally defined in
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TABLE 1. Comparison of relevant protocols.

the second property of definition. The third property says that
the PUF always responses output within bounded noise and
the last property defines that the PUF should have uniqueness
for each device. Our second property follows the definition
in [37], and other two properties follows the definition in [17].
Definition 3 (PUF): A physically unclonable function

(t, ε1, ε2, εpuf )-PUF is a function {0, 1}lp → {0, 1}lo satis-
fying the followings.
(1) A PUF is bound to a device and its evaluation is efficient.
(2) For any PPT adversaryApuf , PUF’s output is impossible

to characteri1ze. Let PUF:{0, 1}lp → {0, 1}lo be an
ideal PUF. An experiment ExppufbApuf

(k) is defined for b
R
←

{0, 1} where k ∈ N is a security parameter. Exppuf0Apuf
(k)

means an experiment in whichApuf can access an ideal
PUF in polynomial number of times. That is, in this
experiment, an oracle OPUF(·) returns y ← P(x) on
input x ∈ {0, 1}lp . Otherwise if b = 0, in Exppuf1Apuf

(k),

OPUF(·) returns a random y
R
← {0, 1}lo as an answer.

Apuf ’s goal is to finally output a guessing bit b′ for b.
To be precise, the following puf-advantage, εpuf , should
be negligible.

εpuf = |Pr[Exppuf1Apuf
(k) = 1]− Pr[Exppuf0Apuf

(k) = 1]|

(3) The distance between two PUF’s outputs on the same
challenge x is at most t, e.g., the following probability
is negligible ε1.

Pr[dist(y, z) > t | x ← {0, 1}lp ,

y← PUF(x), z← PUF(x)] ≤ ε1

(4) The distance between two outputs PUFA(x), PUFB(x)
from different devices A,B, on the same challenge x, is at
least t e.g., the following probability is negligible ε2.

Pr[dist(y, z) < t | x ← {0, 1}lp ,

y← PUFA(x), z← PUFB(x)] ≤ ε2

D. COMPUTATIONAL DIFFIE-HELLMAN (CDH)
ASSUMPTION
Definition 4 (CDH): We suppose that p is a strong prime

order of a multiplicative group Gp and g is its generator. Let
Acdh be an adversary of CDH running in polynomial time.
We define εcdh as probability thatAcdh succeeds in computing
gxy mod p from (gx mod p, gy mod p). The CDH assumption
is that the probability, εcdh is negligible.

IV. SECURITY DEFINITION
In 2001, Bellare et at. have introduced a formal security
model (for short, BPR) for a PAKE [10]. Since then, the
model has been widely utilized for proving security of
authentication and key exchange protocols for a single or
multi-authentication factors (password, smartcard, finger-
print). Basically our security definitions are also based on
the BPR. In addition, our definition considers a device-based
authentication that allows for adversaries to access the target
device as many times as they want. That is, our model defines
Device query which models two kinds of behaviors that is
able to access device or PUF. Since thePUF-embedded device
contains PUF in a device,A should first get device thenA can
access PUF. In order to formalize this property, we define a
new query Device(5i

A, �1, �2). Inputs �1, �2 respectively
mean that A can access device alone or device with PUF.

First letU be a set of identities for participants. Participants
A (or B) may execute the protocol multiple times. We denote
the i-th (resp. j-th) instance executed by entity A (resp. B)
as 5i

A (resp. 5j
B) that models a participant A (resp. B) try-

ing to authenticate B (resp. A) in instances i-th (resp. j-th).
Let’s consider permitted queries that model malicious behav-
iors for an adversary A. The following queries are asked
by A.
• Send(5i

A, m), Send(5j
B, m). This query models that

A can send an intended message m to 5i
A (resp. 5j

B).
Then 5i

A (resp. 5j
B) outputs the next, honest message

according to the protocol.
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• Reveal(5i
A), Reveal(5j

B). If 5i
A (resp. 5j

B) accepts
with a session key sk then this query outputs sk to A.

• Corrupt(5i
A), Corrupt(5j

B). It outputs A’s (or B’s)
long-term secrets stored in a platform. This query
is modeled for a corruption of long-term key, not
ephemeral values in a platform.

• CorruptD(5i
A), CorruptD(5j

B). It outputs A’s
(resp. B’s) long-term secrets stored in a PUF-embedded
device regardless of PUF. Its scope is limited to a long-
term secret (not ephemeral value) in a PUF-embedded
device as in Corrupt query.

• Device(5i
A, �1, �2), Device(5i

B, �1, �2). If �1 is
not empty and �2 is empty then this query models that
A can access A’s (resp. B’s) device with an input �1.
That is, A’s (resp. B’s) device takes an input �1 and
processes �1 by inside instructions. The device finally
returns its output as an answer. If�1 is empty and�2 is
not empty then it models that A wants directly access
PUFa (resp. PUFb) in a PUF-embedded device with an
input �2, and finally PUFa(�2) (resp. PUFb(�2)) is
returned as an output. The notion PUFa (resp. PUFb)
means A’s PUF (resp. B’s PUF) which is embedded in
A’s (resp. B’s) device. If neither �1 nor �2 are empty
cases then A is able to access both Device(5i

A, �1, ·)
and Device(5i

A, ·, �2) queries. The notion · means
empty value.

• Execute(5i
A, 5j

B). It returns protocol messages that
comes through an honest execution between 5i

A
and 5j

B.
• Test(5i

A). This query is used tomeasureA’s advantage
on a target key. A should distinguish the target key is
a real session key or not. That is, when this query is
asked, a coin is flipped to determine b. If b = 1, a real
session key is returned to A. Otherwise, a random key
is randomly selected and returned to A.

The notion of partnering is used as it is defined in [10]
while the notion of freshness is lightly modified in terms of
corruption queries.
Definition 5 (Session Identifier, Partner id, and

Partnering [10]): We denote sidiA a session identifier for5
i
A.

It is a concatenation of protocol messages sent and received
by 5i

A. A partner ID is defined as a corresponding par-
ticipant with whom 5i

A is interacting, which is denoted as
pidiA. Instances 5

i
A and 5

j
B are partnering if the following

conditions are satisfied: (1) Both instances have accepted
with a same session key, session ID, partner ID; (2) no oracle
other than 5i

A and 5
j
B accept with the pid of 5

i
A and 5

j
B

(pidiA = 5
j
B, pidjB = 5

i
A).

Definition 6 (Freshness and Session Key Security): Supp-
ose that A asks a Test(5i

A) query. A session key is said to
be fresh if they meet the following conditions: (1) Neither
Reveal(5i

A) nor Reveal(5j
B) queries are asked by A where

5i
A are partnering with 5

j
B; (2) Regarding corrupt queries,

trivial cases should be excluded. That is, if A is able to
access long-term secrets (Corrupt(5i

A)) and PUF-embedded

FIGURE 3. Setup phase.

device (Device(5i
A, �1, �2)) together, then it is easy forA to

distinguish a target session key. Thus, the following formula
should be false. (Here, it is defined that ifA has asked a query
of Corrupt(5i

A) then C(5i
A) = true, otherwise it is false. The

same is applied for C(5j
B), D(5

i
A, �1, �2), D(5j

B, �1, �2).)

(C(5i
A) ∧ D(5i

A, �1, �2)) ∨ (C(5j
B) ∧ D(5j

B, �1, �2))

= false

For a Test query, a coin bit b is determined. A out-
puts a guessing bit b′ for b. A’s advantage is defined as
AdvskP (T , k) = 2 Pr[b = b′]−1. A given protocol P is session
key secure if AdvskP (T , k) is bound to a negligible function
ε(k) in k for probabilistic polynomial time T adversary A,

AdvskP (T , k) ≤ ε(k),

where k is a security parameter.

V. AKE WITH DIFFERENT PUF-EMBEDDED DEVICE
A. THE FIRST PROTOCOL
The protocol is made up of setup and authentication phases.

1) SETUP PHASE
In our setting, we suppose two authentication factors;
(1) two users (A and B) share a common secret S and
(2) they carry each own devices embedded with PUF.
We denote each PUF-embedded device by PUFb, PUFa,
respectively. Through two factors, two users prepare ini-
tial value for secure authentication. As illustrated in Fig. 3,
a user A obtains wa by evaluating PUFa(H1(S)) then also
obtains (ra, pa) from computation of Gen(wa). In the same
way, B obtains (rb, pb). Finally users A and B securely
exchange ra, rb and maintain (S, rb, pa), (S, ra, pb) as long-
term secrets, respectively. H1 is a cryptographic secure hash
function H1 : {0, 1}∗→ {0, 1}l1 .

2) AKE PHASE
In Fig. 4, we illustrate a sequence of operations performed in
each device into square boxes with its inputs and outputs.
(1) A user A selects a random value Na and sends it to B
(2) A user B sets mb = (Na||A||B) and inputs (S,mb) into

PUFb. Upon receiving (S,mb), PUFb obtains w̃b by eval-
uating PUFb(H1(S)) and computes rb from Rep(w̃b, pb).
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FIGURE 4. AKE phase.

Using the key rb, an authentication tag t1 is computed
from Frb (mb||Nb). PUFb finally outputs (t1,mb,Nb)
where t1 = Frb (mb||Nb),mb = Na||A||B. B directly
sends them to A.

(3) Since a user A holds S and rb, A can compute t̃1 =
Frb (mb||Nb) and check if t̃1 is equal to t1. If it is equal,
B’s authentication is successful, otherwise, it is a failure.
In the sameway,A setsma = (Nb||A||B) and puts (S,ma)
into PUFa and obtains the output (t2,ma,Nr ). A sends
(t2,ma,Nr ) to B. Then, B can compute t̃2 = Fra (ma||Nr )
and check if it is equal to the received t2. If the check
is valid then A’s authentication is successful, otherwise,
it is a failure.

3) WEAKNESS ANALYSIS
The first protocol has two weaknesses, as follows.

• Let’s consider that an adversary A only knows a secret
S. In the protocol, if the secret S is revealed to A,
the authentication tag t1 cannot be produced without B’s
device. Moreover, A cannot impersonate A or B with
only the secret S because the authentication protocol
necessarily uses ra or rb for making tags t2, t1. However,
what if A gets to obtain long-term keys such as ra or rb
then? Unfortunately, if A has ra or rb then A is able to
impersonate B or A without devices. For example,A can
compute t2 = Fra (ma||Nr ) without any PUF evaluations
in A’s devices if once A steals ra. It renders A’s device
useless in terms of an authentication factor. Our goal is
to design an authentication protocol that only valid user
who has a valid device and long-term secrets should be
able to authenticate mutually. In the symmetric setting,
the corruption of A’s long term secret means to be able
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FIGURE 5. Setup phase.

to impersonate A. However, the problem here is, through
corruption A, A can impersonate B, and vice versa.

• Second, the protocol only focuses on how to mutu-
ally authenticate based on authentication factors. That
is, it hasn’t addressed on how to securely agree an
authenticated session key. In addition, the initial set-
ting requires three long-term distinct secrets for each
user ([S, ra, pb]), which might be one of big burdens
for users. One solution is to keep those secrets in the
memory of device, if it is possible.

We next present an enhanced version that overcomes these all
weaknesses.

B. THE SECOND PROTOCOL
1) SETUP PHASE
The same authentication setting is considered as in the first
protocol. Before authentication, users A and B compute
(ra, pa) and (rb, pb) by using their own PUFa(·) and PUFb(·)
functions with an input of a common secret S. As shown
in Fig. 5, they securely exchange and keep (Apub,Bpub, pa)
and (Apub,Bpub, pb), respectively, in each device, where
Apub,Bpub are defined by gra mod p, grb mod p. Then the
secret S is securely maintained in a user-side platform while
(Apub,Bpub, pa) (or (Apub,Bpub, pb)) is securely stored in A’s
(or B’s) device. The public parameter p is a strong prime
order of a multiplicative group Gp and g is its generator.
H1,H2 are hash functions H1 : {0, 1}∗ → {0, 1}lh1 , H2 :

{0, 1}∗ → {0, 1}lh2 where H1 is a random hash orale and
H2 is a collision resistant hash function that is infeasible
to find a collision x 6= y satisfying H2(x) = H2(y).
When making Apub(= gra mod p) (or Bpub(= grb mod p)),
a group hash function (or programmable hash function [21])
that efficiently maps an arbitrary string ra (or rb) into
a group Gp where a discrete logarithm problem is hard
regarding ra(or rb) is applied in our protocol. Here, for sim-
plicity, we omit its notation.

2) AKE PHASE
(1) First a user A selects a random valueNa and sends it with

an identifier A to B.
(2) On receiving Na,A, B sets mb = (Na||A||B). Then

B puts [i1(= S), i2(= mb), i3(= ∅)] into B’s device.
Then, it obtains (w̃b, rb) from executions w̃b =

PUFb(H1(S)) and rb = Rep(w̃b, pb). A random number
Nb is chosen and mB is newly set by mb||Nb inside
a device. B’s device computes v = Fd (mb||Bpub)
where d = H2((Apub)rb mod p). If v is equal to
i3 (or i3 is empty value) then B’s device computes
tb = Fd (mB||Apub), k1 = Fd (mB||1), k2 = Fd (mb||1)
where d = H2((Apub)rb mod p), and finally outputs
(mB, tb, k1, k2). The messages (mB, tb) is only sent to
A for B’s authentication. A session key material kB is
initialized by k1 and later used for making a real session
key.

(3) In order to verify (mB, tb), A needs to compute d first.
A inputs [i1(= S), i2(= mB), i3(= tb)] into own device.
Internally, with regard to the identical S, A’s device can
recover the identical ra from computing Rep(w̃a, pa)
where w̃a = PUFa(H1(S)). A random number Ña is
chosen andmA is initialized bymB||Ña. From calculation
of H2((Bpub)ra mod p), it computes v = Fd (mB||Apub)
and checks if i3(= tb) is equal to v. If it is valid
then A’s device computes ta = Fd (mA||Bpub), k1 =
Fd (mA||1), k2 = Fd (mB||1) and concludes B’s authen-
tication is successful. Otherwise, its authentication is
failed. Furthermore, for A’s authentication, (mA, ta) is
delivered to B. In the same way, B inputs [i1(= S), i2(=
mA), i3(= ta)] into B’s device and then it internally
computes rb through ŵb = PUFb(H1(S)),Rep(ŵb, pb).
It computes the same d = H2((Apub)rb mod p) and
computes v = Fd (mA||Bpub). A random number N ′b is
chosen and m′B is newly set by mB||N ′b. If ta is equal
to v then A’s authentication is successful. Otherwise,
it outputs an authentication failure. It finally computes
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FIGURE 6. AKE phase.

t ′b = Fd (m′B||Apub), k1 = Fd (m′B||1), k2 = Fd (mA||1).
B then sets kA be k2 andmakes a session key sk = kA||kB.

VI. PROTOCOL DISCUSSION
A. DEVICE OPERATION
First, device operations should be designed in a consistent
manner with identical steps and operations until it outputs
a valid answer. For mutual authentication, at least three
accesses to devices are required; one access for a sender
(initiator) and two accesses for a receiver, as shown in Fig. 6.
Our device has been designed to take three inputs i1, i2,
and i3. Input i1 is used for long-term secret S and input i3 is
used for an authentication tag for input i2. One important prin-
ciple is that each device is able to produce authentication tag
i3 for i2 with the help of input i1(= S). Thus, the verification

task for the authentication tag is performed in advance in each
device. However, an exceptional case exists, in which receiver
Bfirst receiving challengemessage (Na,A) does not comprise
authentication tag i3 derived from PUFa. Even though our
protocol is designed for A to first use its device, it cannot
initially have an authentication tag. For handling such a case,
we additionally designed a null(∅) condition by using the if
statement inside a device so that the remaining operations
may be continuously executed over the device.

B. SHOULD RANDOM NUMBER BE GENERATED
IN THE DEVICE?
The generation of random numbers inside a device requires
operational costs. However, for security reasons, random-
number generation is unavoidable. If we assume that random
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FIGURE 7. AKE phase.

numbers are generated outside the device, for example at
the platform level of B, as illustrated in Fig. 7, this may
result in a vulnerability against forward secrecy. The protocol
in Fig. 7 is not a full protocol but only illustrates certain
part of the protocol of A. To take a random input from the
outer platform, a device of A may be designed to achieve four
inputs and outputs instead of generating random numbers.
Thus, as in Fig. 7, the newly generated value (mA) by A
and the received values from B (mB, tb) are used as inputs
for A’s device. Normally, forward secrecy guarantees that
A cannot create the past session key after an adversary A
raises Device(5i

A, �1, �) and Corrupt(5i
A) queries. Let us

suppose that A captures a valid message mB, tb,mA, ta from
honest executions and accesses Device(5i

A, S||mB||mA||tb, ·)
oracle where S is an answer of the Corrupt(5i

A) query. Then,
it outputs [mA, ta = Fd (mA||Bpub), k1 = Fd (mA||1), k2 =
Fd (mB||1)] as an answer. Values mA, ta are sent to A but k1 =
Fd (mA||1), k2 = Fd (mB||1) are directly used for creating
a session key. This clearly violates a forward secrecy that
ensures secrecy for a past session key (sk = k1||k2) against
future compromises of long-term secrets. Therefore, for secu-
rity reason, we designed for each device to create random
numbers by itself. This does not imply that an approach of
generating random numbers inside a device is the only way to
achieve forward secrecy. There might be other ways, but such
a method has not been found yet. This might be an interesting
future work.

C. FORWARD SECRECY
As shown in Fig. 6, our device deals with the generation of
a random value. Let us suppose a same situation in which
A asks Device(5i

A, S||mB||tb, ·) for secret S, in which mB, tb
are values collected from past honest executions. Our proto-
col is designed for the device to create a new key material
k1 = Fd (mA||1), k2 = Fd (mB||1) for a new random value

mA = mB||Ña whenever a session key is generated. Hence,
answer k1 can no longer be the key material for the past
session key. Further,Amay use the device of B with secret S.
That is, A captures mA, ta,mB, tb from the past honest exe-
cutions and passes a query to Device(5j

B, S||mA||ta, ·). The
Device answers with m′B = mb||Nb = Na||A||B||Nb, t ′b =
Fd (m′B||Apub), k1 = Fd (m′B||1), k2 = Fd (mA||1). Among
these, k2(= Fd (mA||1)) is the important keying material
for the past session key. However, for creating a complete
session key, Fd (mB||1) for mB is also required. Thus, A
may put forward a query to Device(5j

B, S||mB||tb, ·), for
which the answer would always be FAIL. This is because
Device(5j

B, S||mB||tb, ·) first checks if tb(= Fd (mB||Apub))
is equal to v = Fd (mB||Bpub), and then outputs FAIL. The
critical point is that A would never be able to obtain tag
value v = Fd (mB||Bpub) from any Device oracle as v is
generated using Bpub (not Apub) and tb is generated using
Apub inside the device. Hence, A cannot manipulate v. What
if A could access two Device oracles by using secret S?
In this case, through the queries Device(5i

A, S||mB||tb, ·) and
Device(5j

B, S||mA||ta, ·), A can obtain each valid key mate-
rial Fd (mB||1),Fd (mA||1) without failures. In some ways,
it might be a usual consequence in the symmetric setting that
if A with secret S could access two users’ devices, then A
could surely obtain past or future session keys. This remains
a good future work to guarantee forward secrecy under two
device accesses with secret S. We further discuss this issue
with an asymmetric setting in Section VII.

D. IMPERSONATION ATTACK WITH DEVICE ORACLE
In an AKE phase, B first uses its device with input (S,mb,∅).
Basically, input i3 serves as an authenticator received from A.
In B, there cannot exist an authenticator from a device of
A because A is the first sender and B is the first receiver.
However, one security issue here is that A may intentionally
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abuse ∅ to paralyze the authentication validation pro-
cess in the device. That is, in our device design,
Device(5i

A, i1||i2||∅, ·) always outputs answers without
FAIL, regardless of i1 and i2. First, if we suppose that A
possesses secret S from the Corrupt query and accesses
two Device oracles, then A can obviously impersonate A
and B. However, the issue in such a situation is as follows:
‘‘Is A able to impersonate A (or B) with only S or Device
oracles? (only with one authenticator factor). First, suppose
thatA uses Device(5i

A, S
′
||M ||∅, ·) for an arbitrary S′. Then,

its answer is [M ||r, fd ′ (M ||r||0), fd ′ (M ||r||1), fd ′ (M ||r||1)],
where d ′ = H1((Apub)r

′
b ), r ′b = Rep(PUFb(H1(S′))) and r

is a random value chosen inside the device. However, those
outputs are useless owing to invalid value d ′. In contrast, ifA
only knows S, it still cannot obtain valid d without accessing
the Device oracle. Therefore, in our scheme, to validly use
the Device oracle, valid secret S is necessary. Hence, only
valid users who hold S and the device are able to authenticate
each other with a common session key.

E. IS THE DEVICE MEMORY NECESSARY?
First, suppose that A obtains secrets (Apub,Bpub, pb) in the
device memory (DM) of B. For producing valid messages,
mB, tb, k1, k2, the most important step is to calculate d .
Although A obtains Apub,Bpub, pb, it encounters another
challenge on the calculation of d to forge authenticator tb.
That is, without d ,A can never fake authenticators.Moreover,
in our scheme, computations of d require valid secret S and
a device. However, if we design Apub,Bpub, and pb on a
platform (outside the devices), then wemust design new input
i4 for handling Apub. In this case, for instance, A may have
Apub from theCorrupt query and can produce authenticator ta
(or tb) for i2 through the Device oracles; this violates forward
secrecy, as discussed earlier. That is, from the past valid
transcripts (mB, tb = Fd (mB||Apub),mA, ta = Fd (mA||Bpub)),
A can ask query Device(5i

A, S||mB||tb||Apub, ·) and
Device(5i

A, S||mA||ta||Bpub, ·), and successfully obtain
answers Fd (mB||1) and Fd (mA||1) without needing d , which
are the main keying materials for a session key. Thus, in con-
clusion, Apub,Bpub should be processed in A’s, B’s device,
respectively (and not be an input outside) with secret d .
Therefore, we designed a DM in the device.

F. ANONYMOUS IDENTIFIER
One possible argue may be that our protocol does not
provide privacy while the recent schemes [18], [19] guar-
antee privacy in an anonymous ID aspect. First, in their
network model, there are servers aiming to authenticate a
PUF-embedded device. The server is able to regularly update
a temporary identifier (TID) over a database. By chang-
ing TID every session, they preserve anonymous identifier
for devices. However, our setting aims a distributed set-
ting without a central server, hence it is hard to maintain a
database for keeping many user’s TID. To protect identifier,
an encryption approach may be one of candidates in our

setting. For instance, to hide identifiers A,B, our protocol
may send mB(= Na||A||B||Nb),mA(= Na||A||B||Nb||Ña) in
an encrypted form. However, for making encryption, new
encryption/decryption keys should be established before-
hand. Besides, those keys should be securely maintained
from outsider adversaries. Then, once if Corrupt query is
asked, all identifiers are revealed to adversaries. Moreover,
our security model allows a new Device and PUF oracles for
PUF-to-PUF authentication. That is, any adversary can access
any user’s Device and PUF on behalf of the participants.
Hence it is impossible to perfectly satisfy identifier protection
under such Device and PUF query model. For these reasons,
in this paper, an issue of anonymous identifier has not been
addressed. It remains a good future work on how we handle
and define a privacy model for PUF-to-PUF setting.

G. APPLICATION FOR MULTI-USER SETTING
Amulti-user setting assumes multi-pair of end users. It is dif-
ferent from a group-based AKE where group members desire
to share a group key. Our scheme has been designed with
PUF-based device that is embedded into IoT platform such
as laptop or tablet, as illustrated in Fig. 1. In view of imple-
mentation, our network setting can be a decent architecture
when we extend our scheme into a multi-user IoT settings.
When our scheme is implemented with two different types of
PUF-embedded device, two IoT devices communicate each
other through each own TCP/IP socket. After socket is estab-
lished, our scheme does execute AKE phase for making a
common session key without any involvement of trust parties.
However, our AKE scheme has a structural limitation. Since
our AKE is based on symmetric cryptographic primitives,
each device cannot do authentication phase without a setup
phase. That is, if we suppose n PUF-embedded devices, then
n(n−1)

2 setup phases should be prepared before actual AKE
phase starts. It also does mean that each user should previ-
ously know all participants they desire to communicate.

H. STATIC SCENARIO IN A SYMMETRIC SETTING
Our authentication model only supports a static scenario in
which designated users are only considered beforehand. All
users with embedded PUF devices should do setup phase
before deployment. After deployment once, users cannot
join with a new user without a registration phase. It does
not mean that our model does not accept new users at all.
That is, even after deployment, if a new user starts the
setup phase once with a target user, afterwards they can do
AKE. But, during the setup phase, involved users cannot do
anything (or AKE) but do exchange initial data in a secure
way for the setup phases. This is a natural consequence for
sharing secrets in a symmetric setting. In our scheme, each
PUF-embedded device requires one PUF evaluation with one
round communication during a setup phase.

I. SECURITY PROOF
We define sequences of games and the following well-known
lemma is used in the security proof.
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Lemma 5.1 [40] Let E,E ′ and F be events defined on a
probability space such that Pr[E∧¬F] = Pr[E ′∧¬F]. Then,
we have |Pr[E]− Pr[E ′]| ≤ Pr[F].
Theorem 5.1 LetA be a polynomial time adversary against

AKE protocol Pwithin a polynomial time bound T .A can ask
qs send queries, qe execute, qh1 hash, qd device queries. Then,

AdvskP (T ′, k) ≤
(qe + qs)6

23lr+2
+
q2h1
2lh1

+ 2εpuf +
2q4d (2

2L
+ 2ls )

22L+ls
+ 2εcdh

where p is a strong prime order of a group Gp and T ′ is a
polynomial bound time.

Proof: We define several games from the real game G0
toG4. In each game, whenA asks a Test query, a coin for bit
d is flipped to specify the answer on a real key or a random
key. ThenA guesses a bit d and outputs d ′. Let Si be an event
that d ′ = d in Gi and Pr[Si] is its probability.
GameG0: The setup phase is assumed to be performed in a

secure channel. Then an authentication protocol P is executed
against an adversary A. The session key advantage of A is
defined as

AdvskP (T , k) = 2Pr[S0]− 1 (1)

Game G1: In this game, Device, Corrupt, CorruptD, Send,
Reveal, and Execute queries are simulated as follows.
• H1 query: For simulation H1, we maintain a list

table LH1 . When A asks a hash query of m to H1 such
that a record (m, r) appears in LH1 , then r is outputted
as an answer of H1(m). Otherwise, a new r ∈ {0, 1}lh1 is
chosen at random and returned, then the record (m, r) is
added to the list LH1 .

• Device(5i
A, ·,m), Device(5i

A, ·,m) query: G1 queries
PUFa (resp. PUFb) with m and obtains y = PUFa(m)
(resp. PUFb(m)), which is returned as an answer.

• Device(5i
A,m, ·) query: Basically the answer is made

according to the protocol. The input m is parsed into
m1,m2,m3. The game G1 first asks H1 oracle with m1
and gets r = H1(m1) through H1 defined above. Then
G1 queries PUFa with r and obtains an answer PUFa(r)
and then finally computes rb = Rep(PUFa(r), pa).
Then G1 computes v = Fd (m2||Apub) where d =
H2((Bpub)ra mod p). It chooses a random number Ña
and mA = m2||Ña. If v = m3 then it makes ta =
Fd (mA||Bpub), k1 = Fd (mA||1), k2 = Fd (m2||1) for a
random number Ña. It finally returns mA, ta, k1, k2 as an
answer.

• Device(5j
B,m, ·) query: The process is same with

the previous rule except notations. G1 first parses m
into m1,m2,m3. It asks H1 oracle with an input m1
and obtains r = H1(m1). Then G1 queries PUFb
with r and obtains an answer PUFb(r) and computes
rb = Rep(PUFb(r), pb) and d = H2((Apub)rb mod p).
G1 chooses a random value Nb and sets mB =

m2||Nb. Then G1 is able to check if v is equal to

Fd (m2||Bpub). If they are equal then it computes t ′b =
Fd (mB||Apub), k1 = Fd (mB||1), k2 = Fd (m2||1) for a
random number Nb. It finally returns mB, t ′b, k1, k2 as an
answer.

• Send queries are simulated as follows.
− Send(5i

A, start): A random value Na and an iden-
tifier A are outputted as an answer.

− Send(5j
B,Na||A): When this query is asked,

G1 makes an input m = [S,Na||A||B,∅] and
executes Device(5j

B,m, ·) query and obtains an
answer [Na||A||B||Nb, tb, k1, k2] for a random num-
ber Nb. Then G1 finally outputs (Na||A||B||Nb, tb)
as an answer.

− Send(5j
B,mA||ta): When this query is asked,

G1 makes m = [S,mA, ta].G1 does simulate inside
steps for B’s device by asking Device(5j

B,m, ·)
query. If ta is equal to Fd (mA||Bpub) then G1
obtains an answer [mA||N ′b, t

′
b, k1, k2] where t

′
b =

Fd (mA||N ′b||Apub), k1 = Fd (mA||N ′b||1), k2 =

Fd (mA||1) for a random number N ′b. G1 establishes
a session key sk = k2||kB where kB comes from
previous simulation of Send(5j

B,Na||A) query.
If Device(5j

B,m, ·) outputs FAIL then it directly
outputs an authentication failure.

− Send(5i
A, mB||tb): When this query is asked,

G1 initializes an input m = [S,mB, tb] and asks
Device(5i

A,m, ·) in order to simulate the steps
for A’s device. If tb is equal to Fd (mB||Apub)
then G1 finally gets mA, ta, k1, k2 where ta =
Fd (mB||N ′a||Bpub), k1 = Fd (mB||N ′a||1), k2 =

Fd (mB||1). Otherwise if the output is FAIL then
terminates the protocol as an authentication failure.
G1 establishes sk = k1||k2 and outputs mA, ta as an
final answer on this Send query.

• Other queries: They are simulated as follows.
− Execute(5i

A,5
j
B) query: Through the inputs and

outputs of Send queries, the honest transcripts
(Na,A,mB, tb,mA, ta) between 5i

A and 5
j
B are

returned.
− Reveal(U t

i ) query: G1 returns the established ses-
sion key sk .

− Corrupt(5i
A), Corrupt(5j

B) query: A’s (or B’s)
long-term keys in each platform are returned to A.

− CorruptD(5i
A), CorruptD(5j

B) query: A’s (or B’s)
long-term keys in each device are returned to A.

− Test query. For a Test query, G1 flips a coin to
decide d . If d = 1, G1 returns a real session key
sk . Otherwise, G1 returns a random key.

A collision event Col is analyzed in this game. It is an
event that a same session key is generated for two arbitrary
sessions due to the duplication of messages from simulation
of queries. That is, if the random values N ′a,Na,N

′
b are dupli-

cated for arbitrary sessions, then protocol’s messages mA(=
Na||A||B||Nb||Ña),mB(= Na||A||B||Nb) are duplicated. Then
it makes a same session key sk = Fd (mB||1)||Fd (mA||1)
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for two sessions. This happens within negligible probability
(q2+qs)6

23lr+3
by birthday paradox. We also exclude duplicative

cases from simulating a random oracle H1, which is within
q2h1

2
lh1
+1 . Thus we have

∣∣Pr[S1]− Pr[S0]
∣∣ ≤ Pr[Col] =

(qe + qs)6

23·lr+3
+

q2h1
2lh1+1

(2)

where lr is the size of each random number.
Game G2: In this game, we replace an output of ideal

PUF with a random value. That is, on input x, a random y
is chosen from {0, 1}lo . Finally y is returned as an answer for
PUFa(x) (or PUFb(x)). For valid simulation, we also maintain
list tables LPa ,LPb like a random oracle H1. On a query xa
to PUFa(·), if a record (xa, ya) appears in LPa , then ya is
outputted as an answer. Otherwise, a new ya ∈ {0, 1}lo is
randomly chosen and returned. The record (xa, ya) is added
to the list LPa . The same applies to LPb .
It is straightforward to construct an adversary Aprf by

using A that is able to distinguish two games. In G1 an ideal
PUF is used, but in G2 a randomly chosen value is used for
simulating PUF. Aprf just returns A’s output bit d ′ as an
guessing bit b′. Then we have

εpuf = |Pr[Exppuf1Apuf
(k) = 1]− Pr[Exppuf0Apuf

(k) = 1]|

= |Pr[b = b′|PUFa(x),PUFb(x)]
−Pr[b = b′|ya← {0, 1}lo , yb← {0, 1}lo ]|

≥ |Pr[d = d ′|G1]− Pr[b = b′|G2|

=
∣∣Pr[S1]− Pr[S2]

∣∣ (3)

Game G3: In this game we consider an event VOD that A
produces a valid output on A’s (or B’s) device for making a
fresh session key. According to the definition of freshness,
we classify two subcases, as follows.

• Device(5i
A, m, ·), Device(5j

B, ·, x): First, we suppose
that A can access Device(5i

A, m, ·) and Device(5j
B,

·, x) queries. However, without S, A cannot compute d
through Device(5j

B, ·, x) query. A may freely guess S̃
and capture mB, tb from protocol messages. A finally
makes m′ = S̃||mB||tb and asks Device(5i

A, m
′, ·),

Device(5j
B, m

′, ·) to get k1, k2. Since S̃ is not S,
Device(5i

A, m
′, ·), Device(5j

B, m
′, ·) answer an output

FAIL. That is, A should correctly guess S first, which is

negligible probability within
q2d
2ls .

• Corrupt(5i
A), Corrupt(5j

B): Second, let’s suppose that
A can access Corrupt(5i

A) and Corrupt(5j
B) queries.

Without querying Device(5i
A, ·, ·), Device(5j

B, ·, ·)
queries, the secret S only is no use formaking a valid out-
puts of devices. Thus, in order to impersonate devices,
A may try to compute d . That is, A asks CorruptD
query first and obtains Apub = gra ,Bpub = grb to gain
d = H2(grarb ). However, these values never help A
compute d . If this case happens it is easy to construct
a polynomial time Acdh that forges grarb . Hence it is

negligible probability εcdh by CDH assumption. Thus,
the last way for establishing a valid sk would be just
to guess k1, k2, which are outputs of pseudo random

function, which is negligible,
q4d
22L

.
Two gamesG3 andG2 are indistinguishable unless VOD does
not happen.∣∣Pr[S2]− Pr[S3]

∣∣ ≤ Pr[VOD] ≤
q2d
2ls
+

q4d
22L
+ εcdh (4)

Game G4: In this game, we consider an output of pseudo
random function Fd . We replace Fd with a uniformly ran-
dom function F from the set of all functions UFK . Then
the session key sk = Fd (mA||0)||Fd (mB||1) is simulated as
sk = F(mA||0)||F(mB||1). The simulated sk is uniformly
random and is independent from all possible session keys.
Thus we have

Pr[S4] =
1
2

(5)

It is clear to show that the difference between two games is
within εprf as follows.

εprf = |Pr[b = b′|sk = Fd (mA||1)||Fd (mB||1)]

−Pr[b = b′|sk = F(mA||1)||F(mB||1)]|

=
∣∣Pr[S3]− Pr[S4]

∣∣ (6)

From the equations (1)∼(6), we finally obtain the following
main result.

Pr[S0] ≤
(qe + qs)6

23·lr+3
+

q2h1
2lh1+1

+ εpuf +
q2d
2ls
+

q4d
22L
+ εcdh +

1
2

(7)

�

VII. PERFORMANCE ANALYSIS AND COMPARISON
Let’s analyze the performance of our scheme. First of all,
we note that our scheme is based on a different PUF setting
while others are based on single PUF setting. Nevertheless,
Table 1 shows that our scheme preserves efficiencywith secu-
rity as compared with other schemes. We classify the most
relevant PUF-based schemes into two categories; a general
RFID setting and a normal two party setting (IoT, multi-
factor, AKE).

First, the RFID setting assumes an unbalanced network
where a reader with back end server desires to identify a
tag with limited resources, and it usually focuses on mutual
authentication rather than an authenticated key exchange.
As shown in Table 1, the relevant PUF-based RFID protocols
do not support a key agreement (exchange) either while our
scheme guarantees authenticated key agreement. The for-
ward secrecy here is the security for the past agreed session
key after long-term secrets are revealed. In other words,
the forward secrecy cannot be discussed without support-
ing a session key agreement. Hence Table 1 shows that all
PUF-based RFID schemes doesn’t provide forward secrecy.
On the other hand, our scheme guarantees the forward secrecy
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and mutual authentication with authenticated key exchange.
Furthermore, our scheme needs the least three communica-
tion flows while others [27], [44] need four or five flows.
In view of the communication size, the LNB [29], KYWG [27]
schemes are efficient than our scheme, but they do not support
an authenticated key agreement or mutual authentication.

Second, in normal two-party setting, FBA [17] and
AS [3] schemes just needs 2 flows, but they aim for uniliteral
authentication. Only the RMKWD [36] scheme needs less
communication size (3łr ) than ours, but it only guarantees
uniliteral authentication. Therefore our scheme is superior
than others in aspect of both efficiency and security.

One security concern is the privacy property. It stems
from our security model that any adversary can access user’s
Device and PUF on behalf of the participants. That is, to ask
Device query, an adversary should take an identifier as inputs
in our security model. That is, accessing Device oracles by
an adversary means that user’s identifier is already known
to the adversary. In our security model, therefore, it would
be a contradiction to be able to satisfy identifier protection.
On the other hand, in aspect of efficiency, our scheme needs
three communication flows for mutual authentication. Also,
our scheme less requires the total size of communication than
others. In conclusion, our scheme is the first PUF-to-PUF AKE
scheme that guarantees efficient communication cost, session
key security, and forward secrecy with mutual authentication.

VIII. EXTENSIONS AND FUTURE WORKS
There may be possible extensions and variants of the original
scheme. Here we discuss two obvious settings such as pass-
word and asymmetric, as follows.

• Password setting: A common password (or different
passwords) between A and B can be considered as an
alternative authentication factor. For instance, in our
scheme, a password pwd can be used as substitute for
a secret S, which results in convenience and efficiency
due to its memorable property. However, one serious
threat is that the password can be guessed in an off-
line way under the Device oracles. For example, let’s
suppose that the secret is replaced with pwd . Then
A may obtain a session key sk = Fd (mA||1)||Fd (mB||1)
for valid transcripts (mB, tb,mA, ta). A guesses a
password pwd ′ and asks Device(5j

B, pwd
′
||mB||∅).

It receives answers [mb||Nb, t ′b(= Fd ′ (mb||Nb||Apub)),
k ′1(= Fd ′ (mb||Nb||1)), k2(= fd ′ (mB||1))] for d ′ =
H1((Apub)rb mod p). Among answers, A just checks if
k2(= F ′d (mb||Nb||1)) is equal to k2 then reduces the
candidates from a dictionary of password, as many as
A wants, in an off-line way. It doesn’t seem to be an
easy task to securely design for PUF to have an input of
password under assumption ofDevice oracle. It remains
an future work.

• Asymmetric setting: An asymmetric approach like the
Diffie-Hellman key agreement can be considered for
guaranteeing forward secrecy. As discussed earlier,

if we suppose a strong adversary A that accesses a
secret S and two Device oracles, then A is able to
compute all past session keys. This is a natural result,
but if we extend our scheme into asymmetric set-
ting where a pair of public/private keys are assigned
to participants, then forward secrecy may be guaran-
teed against A. For this end, one easy solution is to
design that A and B exchange gx mod p, gy mod p in
an authentication phase and make a final session key
sk = H (gx ||gy||Fd (mA||1)||Fd (mB||1)||gay+bx) where
(a, ga), (b, gb) are private/public key pairs for A and B.
Then A should face the intractability of Diffie-Hellman
problem (gay or gbx) in order to compute sk even if
A accesses Device(5i

A,m) and Device(5j
B,m) oracles

with a secret S. This is a simple suggestion on authenti-
cation phase, but it still remains a future work to design
a full version of protocol secure against new security
model with provable security. Further, more strength-
ened security model [13], [22], [28] such as CK, CK+,
eCK, can be considered in asymmetric setting. In these
case, considerable changes or modifications may be
required for a secure and efficient construction.

IX. CONCLUDING REMARKS
In this paper we presented a new authentication setting
where two end users holding two authentication factors
(own PUF-embedded device and a long-term secret) desire
to authenticate each other with an agreed session key over a
distributed network. In establishing a new model, we firstly
explored a new concept of Device oracle which models that
an adversary picks up an arbitrary device and attempts to
input a message and obtains its output from the device. Under
a new setting, we newly presented a distinct PUF-embedded
AKE with provable security.
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